Imaging the Electronic and Vibronic States of Single Semiconductor Nanowires

Leigh M. Smith
Dept. of Physics, University of Cincinnati

Univ. of Cincinnati
Howard E. Jackson
Lyubov Titova
Thang B. Hoang
Ahutosh Mishra

Ohio University
Alexander O. Govorov

Australian National Univ.
Chennupati Jagadish
Hannah Joyce

Miami University
Jan Yarrison-Rice

H. Tan
Y. Kim

Financially supported by University of Cincinnati, the Nano-Biotechnology Initiative at Ohio University and the Australian Research Council.

TMS-Orlando, 2007
Semiconductor Nanowires as Photodetectors
Nanowires as Single Electron Transistors

TMS-Orlando, 2007
Nanowires as single photon emitters
Nanowires as Biosensors

TMS-Orlando, 2007
Core-Shell Nanowire Growth

Pre-growth

Core: GaAs

Shell: AlGaAs

Vapor-Liquid-Solid growth

600°C, 10 min
Desorb surface contaminants and form eutectic alloy.

450°C, 30 min

650°C, 15 min
Wire diameter is determined by Au catalyst and shell growth time

TMS-Orlando, 2007
Motivation

Nanowire diameters D (~50-150 nm) > Bohr exciton’s diameter (~24 nm)

Dielectric “confinement” of EM dipole field ($D<<\lambda$):

- Exciton density: $N_\parallel = N_\perp$
- Photoluminescence intensities: $I_\parallel >> I_\perp$
- Lifetimes: $\tau_\parallel << \tau_\perp$

We are interested in exciton spin dynamics of single nanowires

TMS-Orlando, 2007
Single nanowire studies

Nanowires were removed from the growth substrate into solution and deposited onto a silicon substrate:

- A single nanowire:
 - ~80nm in diameter, ~5-8 μm long

Field-Emission Scanning Electron Microscope (FESEM) image

AFM image:

wire’s diameter > Bohr exciton diameter
=> expect no quantum confinement effects

TMS-Orlando, 2007
Single nanowire studies

Field-Emission Scanning Electron Microscope (FESEM) image: nanowires have tapered shape.

Nanowires were removed from the growth substrate into solution and deposited onto a silicon substrate.

A single nanowire:
~80nm in diameter, ~5-8 μm long

Core diameter > Bohr exciton diameter (24nm) => no quantum confinement effects

TMS-Orlando, 2007
Polarization studies

polarizer = \pi_0 \, ; \, \text{analyzer} = \sigma^+ \, \text{and} \, \text{polarizer} = \sigma^+ \, ; \, \text{analyzer} = \pi_0

PL emission is strongly polarized parallel to the wire, and is strongly enhanced when the laser excitation is polarized parallel to the wire

TMS-Orlando, 2007
Polarization Imaging

Calculate pixel by pixel

\[P = \frac{I_\parallel - I_\perp}{I_\parallel + I_\perp} \]

\(~82\%~

Strongly polarized due to the large dielectric mismatch between GaAs and air

\((\text{Science 293} \ 1455 \ (2001), \ \text{APL.} \ 89 \ 173126 \ (2006))\)
Resonant Excitation

Tune excitation energy, E_{Laser}, record PL intensity (PLE)

- core GaAs
- shell AlGaAs

AlGaAs

GaAs

resonances

$h\omega_{\text{excitation}}$

$h\omega_{\text{emission}}$

E

r

real space

k-space

E$_{\text{laser}}$

GaAs

AlGaAs

TMS-Orlando, 2007
Clear resonances at 36, 73 and ~133 meV above free exciton energy.
Resonant Excitation

1-LO and 2-LO GaAs phonons

Resonance at ~133 meV:
1. Defect-AlGaAs related.
2. Bottom of AlGaAs band (Low concentration of Al ~10%, instead of growth condition 26%)

How does the polarization depend on excitation energy?
Excitation dependent polarization

Polarization changes with excitation energy!
PL Polarization Imaging

- Excitation laser polarized along nanowire
- Analyze emission polarization

\[P = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + I_{\perp}} \]

TMS-Orlando, 2007
Polarization depends on excitation energy.

- Note that the emission energy does not change.
- Only the energy of excitation changes.
- Changing polarization must result from changing exciton distributions.

TMS-Orlando, 2007
Polarization excitation dependence also depends on wire...

As one comes closer to resonance the relative density of excitons changes.

\[\frac{n_{\parallel}}{n_{\perp}} \rightarrow 1 \]

\[\frac{n_{\parallel}}{n_{\perp}} > 1 \]

TMS-Orlando, 2007
Resonant excitation creates non-equilibrium exciton spin distributions

- As excitation comes closer to free exciton energy:
 - Along wire: polarization increases
 - Perpendicular: polarization decreases

- Polarization are different for different wires

- Wire 2: thermal equilibrium
 \[N_{\parallel} = N_{\perp} \]
Exciton Dynamics

\[\tau_{x,z} = \tau_y \left(1 + \varepsilon_s \right)^2 \]

\[\tau_y = \tau_{\text{vac}} = \frac{3\pi \varepsilon_0 \hbar c_0^3}{\omega_{\text{exc}}^3 D_{\text{exc}}^2} \]

At thermal equilibrium (highest energies) assume:

\[n_x = n_y \quad \Rightarrow \quad \frac{I_\parallel}{I_\perp} = \frac{\tau_y}{\tau_x} \]

\[\tau_{x,z} >> \tau_y >> \tau_{nr}, \tau_s \quad \text{and} \quad \frac{I_\parallel}{I_\perp} << 1 \]

TMS-Orlando, 2007
Spin scattering time

Steady state: \(\frac{dn_\alpha}{dt} = 0 \)

\[
\frac{\tau_s}{\tau_{nr}} = \frac{I_\perp(1+P)}{I_\parallel(1-P)} - 1 \quad \text{for} \quad \parallel
\]

\[
\frac{\tau_s}{\tau_{nr}} = \frac{I_\perp(1-P)}{I_\parallel(1+P)} - 1 \quad \text{for} \quad \perp
\]

Spin relaxation time depends on excitation energy

“Non-Equilibrium Exciton Spin Dynamics in Resonantly Pumped Single Core-Shell GaAs-AlGaAs Nanowires”

TMS-Orlando, 2007

Nano Letters - Web release 15 Feb '07
Conclusions

Single GaAs-AlGaAs NWs under resonant excitation:

- Resonances observed at 1-LO and 2-LO and ~133meV (AlGaAs related) above the PL emission line

- Resonant excitation creates non-equilibrium exciton dipole distributions
 - Polarization of PL is strongly enhanced as excitation energy comes closer to resonance with free exciton emission.

- Rate equations: dependent of spin relaxation time on excitation energy

TMS-Orlando, 2007
Rate equations

\[
\begin{align*}
\frac{dn_x}{dt} &= G_x - \frac{n_x}{\tau_x} - \frac{n_x}{\tau_{nr}} - \frac{2 \cdot n_x}{\tau_s} + \frac{n_y}{\tau_s} + \frac{n_z}{\tau_s}, \\
\frac{dn_y}{dt} &= G_y - \frac{n_y}{\tau_y} - \frac{n_y}{\tau_{nr}} - \frac{2 \cdot n_y}{\tau_s} + \frac{n_x}{\tau_s} + \frac{n_z}{\tau_s}, \\
\frac{dn_z}{dt} &= -\frac{n_y}{\tau_z} - \frac{n_y}{\tau_{nr}} - \frac{2 \cdot n_y}{\tau_s} + \frac{n_x}{\tau_s} + \frac{n_z}{\tau_s},
\end{align*}
\]