19 - REVIEW OF RADIATION MECHANISMS

Atomic processes can be:

- 1. Scattering
- 2. Absorption/Thermal Emission

They may also be:

- A. Line processes
- B. Continuum processes

Scattering

Line (bound-bound) Scattering

During the scattering process, the frequencies may change a little: Lines \Rightarrow widths of energy levels

Continuum \Rightarrow Thomson scattering (recoil of electron) MORE BELOW!

Generally, we will assume isotropic scattering, although the results won't change much when this condition is relaxed.

Absorption/Thermal Emission

Free-free (continuum) ("Bremsstrahlung") Emission/Absorption

Deexcitation

Charged Particle in a Magnetic Field

Scattering Regimes: Thomson

(Klein-Nishina)

$$\sigma_{KN} \approx \frac{3}{8} \sigma_{T} \left(\frac{mc^{2}}{hv} \right) \left[\ln \left(\frac{2hv}{mc^{2}} \right) + \frac{1}{2} \right] \approx \frac{3x10^{-5}}{v} \left[\ln \left(1.6x10^{-20} v \right) + \frac{1}{2} \right] \quad for \ v >> 10^{20} \, Hz$$

φ

Compton

$$\sigma_{c} \approx \begin{cases} \sigma_{T} & \text{for } \gamma hv \ll mc^{2} \\ \frac{8}{3} \sigma_{T} \frac{mc^{2}}{\gamma hv} \left[\ln \left(\frac{2\gamma hv}{mc^{2}} \right) + \frac{1}{2} \right] & \text{for } \gamma hv \gg mc^{2} \end{cases}$$

$$v_{scatt} = v_{0} \left[1 + \left(\frac{hv}{mc^{2}} \right) (1 - \cos \phi) \right]^{-1} & \text{for } \gamma \ll 1 \text{ and } \gamma hv \ll mc^{2} \end{cases}$$

$$= \frac{4\gamma^{2}v}{3} & \text{for } \gamma \gg 1 \text{ and } \gamma hv \ll mc^{2}$$

$$= \frac{\gamma mc^{2}}{h} & \text{for } \gamma \gg 1 \text{ and } \gamma hv \gg mc^{2}$$

Inverse-Compton

$$\sigma_{c} \approx \begin{cases} \sigma_{T} \left(1 - \frac{2\gamma h v}{mc^{2}} \right) & and \quad v_{scatt} \approx \gamma^{2} v_{0} \quad for \ \gamma h v \ll mc^{2} \\ \frac{8}{3} \sigma_{T} \frac{mc^{2}}{\gamma h v} \left[\ln \left(\frac{2\gamma h v}{mc^{2}} \right) + \frac{1}{2} \right] & and \quad v_{scatt} \approx \frac{\gamma mc^{2}}{h} \quad for \ \gamma h v \gg mc^{2} \end{cases}$$

Note: The inverse –Compton scattering can take place in a thermal gas or a non-thermal gas. If a synchrotron-emitting plasma has a high enough density of photons and electrons, then the synchrotron-emitting photons can inverse Compton scatter other photons nearby, This is called synchrotron self-Compton scattering (SSC). (An analogous process to free-free absorption, synchrotron self-absorption (SSA) can also occur).