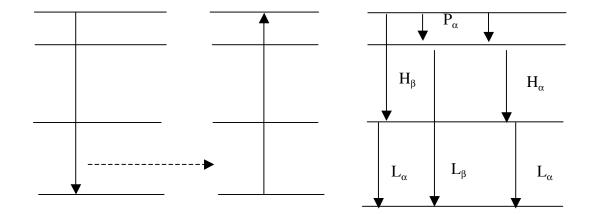
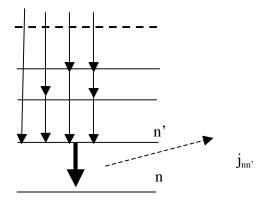

10 - EMITTED SPECTRUM


LYMAN ABSORPTION OPTICAL DEPTH

Lyman Continuum Absorption $a_v(L_c) = 6.3x 10^{-18} \left(\frac{v_0}{v}\right)^3 cm^2$

Lyman Line Core Absorption $a_v \sim 10^{-12} cm^2$

So if $\tau_{Lc} \sim 1$ at the Lyman edge, $\tau_{L \text{ line core}} \sim 10^5$! (up to L_{40})


In general, Lyman photons NEVER get out of the ionized region. They just scatter around until they are destroyed.

LINE RADIATION

To get the strengths of other recombination lines, need to calculate the "effective" recombination coefficients – the recombinations to all higher levels that ultimately lead to the population of level n'.

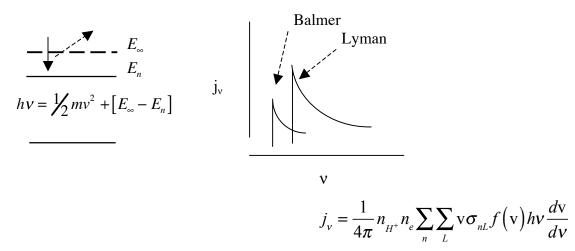
$$n_{+}n_{e}\alpha^{eff} = \frac{4\pi j_{nn'}}{hv_{nn'}}$$
 $j_{nn'} = emission \ coeff. \ erg \ cm^{-3}s^{-1}Hz^{-1}ster^{-1}$

= production rate of v_{nn} , photons from recombinations and other subsequent cascades from higher levels

Results:

TABLE 4.1 H I recombination lines (Case A)

			Т			
		2,500° K	5,000° K	10,000° K	20,000° K	
engths:	$\frac{4\pi j_{\rm H\beta}/N_p N_e}{(\rm erg\ cm^3\ sec^{-1})}$	2.70×10^{-25}	1.54×10^{-25}	8.30×10^{-26}	4.21×10^{-26}	
$\pi j \left(H_{\beta} \right) = h v_{H\beta} n_4 A_{42}$	$lpha_{ m Heta}^{eff}~(m cm^3~sec^{-1})$	6.61×10^{-14}	3.78×10^{-14}	2.04×10^{-14}	1.03×10^{-14}	
	Balmer-line intensi	ities relative to ${ m H}eta$				
$n_p n_e \alpha_{42}^{eff} h v_{42}$	<i>ј</i> на/ <i>ј</i> нв	3.42	3.10	2.86	2.69	
	$j_{\rm H\gamma}/j_{\rm H\beta}$	0.439	0.458	0.470	0.485	
$n_e^2 T^{-0.8}$ approximately	jHs/jHp	0.237	0.250	0.262	0.271	
<i>approximatery</i>	<i>јне/јн</i> в	0.143	0.153	0.159	0.167	
	<i>јнв/јн</i> β	0.0957	0.102	0.107	0.112	
	<i>ј</i> н9/ <i>ј</i> н <i>8</i>	0.0671	0.0717	0.0748	0.0785	
	<i>j</i> н10/ <i>j</i> н <i>β</i>	0.0488	0.0522	0.0544	0.0571	
$(\pi \pi)$	<i>ј</i> н15/ <i>ј</i> н <i>β</i>	0.0144	0.0155	0.0161	0.0169	
$\frac{J(H_{\alpha})}{\Delta} \propto T^{-0.072}$	<i>j</i> н20/ <i>j</i> н <i>в</i>	0.0061	0.0065	0.0068	0.0071	
$\frac{j(H_{\alpha})}{j(H_{\beta})} \propto T^{-0.072}$	Lyman-line intensi	ties relative to ${ m H}eta$				
i(H)	$j_{Llpha}/j_{{ m H}eta}$	33.0	32.5	32.7	34.0	
$\frac{j(H_{15})}{j(H_{\beta})} \propto T^{0.033}$	Paschen-line intensities relative to corresponding Balmer lines					
$J(\Pi_{\beta})$	<i>ј</i> ра/ <i>ј</i> нр	0.684	0.562	0.466	0.394	
	<i>јрø/ј</i> н ₇	0.609	0.527	0.460	0.404	
	<i>ј</i> р _ү / <i>ј</i> нь	0.565	0.504	0.450	0.406	
	<i>ј</i> рв/ <i>ј</i> нв	0.531	0.487	0.443	0.404	
	j P10/ j H10	0.529	0.481	0.439	0.399	
	<i>j</i> P15/ <i>j</i> H15	0.521	0.465	0.429	0.396	
	<i>j</i> P20/ <i>j</i> H20	0.508	0.462	0.426	0.394	


Total Line Stre

$$4\pi j (H_{\beta}) = h v_{H\beta} n_4 A_{42}$$
$$= n_p n_e \alpha_{42}^{eff} h v_{42}$$
$$\propto n_e^2 T^{-0.8} \quad approximately$$

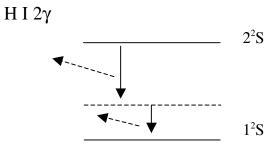
Line Ratios:

CONTINUUM RADATION

H I Free-Bound

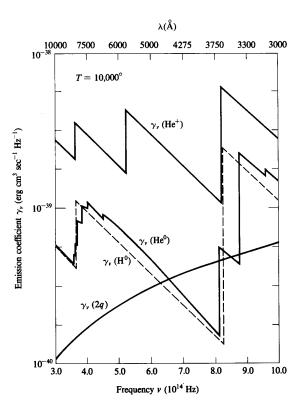
HIFree-Free

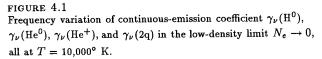
$$j_{v} = \frac{1}{4\pi} n_{H^{+}} n_{e} \frac{32Z^{2}e^{4}h}{3m^{2}c^{3}} \left(\frac{\pi hv_{0}}{3kT}\right)^{1/2} e^{-hv/kT} g_{ff}$$

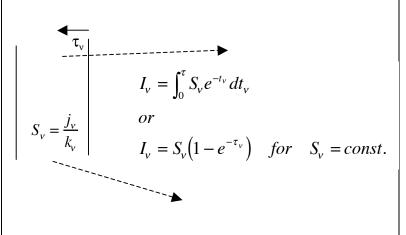

where $g_{ff}(T,Z,v) \approx 1$ at "visible" wavelengths

$$FF + FB \quad j_{\nu} = \frac{1}{4\pi} n_{H^+} n_e \gamma_{\nu} (H^0, T)$$

Can also do for He I and He II.


"Two-Photon Process"


Generally, the H atom cannot make the transition from the 2²S state to the 1²S state since the photon must carry away some angular momentum. Here QM allows for a "virtual" intermediate state to be used, resulting in TWO photons being emitted.


$$hv_1 + hv_2 = hv(L\alpha) = hv_{12}$$

Probability distribution by number is symmetric about $hv_{21}/2$.

Radio Continuum

In TE, $I_v = S_v = B_v$ (*Planck fn.*). Although not strictly TE, because the velocity distribution is essentially maxwellian, we can use $S_v = B_v$ for the free-free emission.

 $I_{v} = B_{v} \left(1 - e^{-\tau_{v}} \right)$

At radio wavelengths we are in the Rayleigh-Jeans tail of the blackbody curve, so that

$$B_{v} \approx \frac{2v^{2}}{c^{2}}kT$$

For
$$\tau_{v} \ll 1$$
 $I_{v} = \frac{2v^{2}}{c^{2}}kT\tau_{v} \propto v_{9}^{-0.1}T^{-0.35}$ insensitive to T, v
For $\tau_{v} \gg 1$ $I_{v} = \frac{2v^{2}}{c^{2}}kT \propto v_{9}^{2}T$ sensitive to T, v
Log I_{v}
 $v^{0.1}$
 $v^{0.1}$
 $v^{0.1}$
Log v
Log v

DETERMINATION OF T

Because the
$${}^{1}S_{0}$$
 and ${}^{1}D_{2}$ have different energies, they
are sensitive to T.
Low n Limit
Every ${}^{3}P \rightarrow {}^{1}D$ collision leads to $\lambda 5007$ or $\lambda 4959$
Every ${}^{3}P \rightarrow {}^{1}S$ collision leads to EITHER $\lambda 2321$

[in practice, ${}^{3}P$ —*collisional* \rightarrow ${}^{1}D$ dominates over

 ^{3}P —*collisional* ^{1}S —*radiative* ^{1}D in populating ^{1}D]

OR

λ4363 PLUS [λ5007 or λ4959]

 $\begin{bmatrix} 0 \text{ III} \end{bmatrix}$ $\begin{bmatrix} \lambda 4363 \\ \lambda 4363 \\ \lambda 4363 \\ \lambda 5071 \\ \lambda 50071 \\ \lambda 50071 \\ \lambda 6583 \\ \lambda 6583 \\ \lambda 6583 \\ \lambda 6583 \\ \lambda 65848 \\ \lambda 6548 \\ \lambda 65$

FIGURE 3.1

Energy-level diagram for lowest terms of [O III], all from ground $2p^2$ configuration, and for [N II], of the same isoelectronic sequence. Splitting of the ground ${}^{3}P$ term has been exaggerated for clarity. Emission lines in the optical region are indicated by dashed lines, and by solid lines in the infrared and ultraviolet. Only the strongest transitions are indicated.

For simplicity, let us call the ³ P, ¹ D, and ¹ S levels, 1, 2,	A similar expression can be obtained for the [N II] lines.
and 3.	
	NOTE: λ 4363 IS ALWAYS WEAK AND HARD TO
$n_1 n_2 q_{12} h v_{12}$	MEASURE ACCURATELY.
$J(4959) + J(5007) = \frac{1}{4\pi}$	
(n_1n_2,hv_2) A_2	$[O III] \frac{j(4959+5007)}{j(4363)} \sim 300$
$j(4959) + j(5007) = \frac{n_1 n_e q_{12} h v_{12}}{4\pi}$ $j(4363) = \frac{n_1 n_e q_{13} h v_{23}}{4\pi} \left[\frac{A_{32}}{A_{32} + A_{31}} \right]$	<i>j</i> (4363)
$\begin{bmatrix} 32 & 31 \end{bmatrix}$	$\begin{bmatrix} N & H \end{bmatrix} = j(6548 + 6583) = 100$
fraction out of 3 making \lambda4363	$[N \ II] \frac{j(6548 + 6583)}{j(5755)} \sim 100$
$q_{12} = \frac{8.63 \times 10^{-6}}{\omega_1 T^{1/2}} \Omega_{12} e^{-\chi_{12}/kT}$	
$\omega_1 T^{\frac{1}{2}}$ $\omega_1 T^{\frac{1}{2}}$	To do this requires calibrated, linear, high dynamic
8.63×10^{-6} $-\chi_{13}$	range light detectors. These did not exist until about 30
$q_{13} = \frac{8.63 \times 10^{-6}}{\omega_1 T^{\frac{1}{2}}} \Omega_{13} e^{-\frac{\chi_{13}}{kT}}$	years ago (CCDs).
$\omega_1 T^{\gamma_2}$	
$so_{,} \frac{j(4959+5007)}{j(4363)} = \frac{\Omega_{12}}{\Omega_{12}} \left[\frac{A_{32}+A_{31}}{A_{32}} \right] \frac{V_{12}}{V_{13}} e^{-(x_{13}-x_{12})/kT}$	NOTE: THESE NUMBERS ARE ONLY MENT TO
$\int \frac{so}{j(4363)} = \frac{1}{\Omega_{13}} \int \frac{1}{\Omega_{13}} \frac{1}{\Omega_{13}} = \frac{1}{\Omega_{13}} \frac{1}{\Omega$	BE REPRESENTATIVE OF "TYPICAL" VALUES. AS
	THEY DEPEND ON TEMPERATURE, THEY WILL
Applying first-order corrections for collisions	DIFFER FROM REGION TO REGION!!
downward, get	
2 20 - 104 /	
$\frac{j(4959+5007)}{j(4363)} = \frac{7.73e^{3.29\times10/T}}{1+4.5\times10^{-4} \left(\frac{n_e}{\sqrt{T}}\right)}$	
$\int (4303) 1 + 4.5 \times 10^{-4} \left(\frac{n_e}{\sqrt{T}} \right)$	

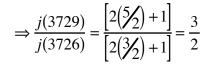
[N II]			[O III]		
Nebula	$\frac{I(\lambda 6548) + I(\lambda 6583)}{I(\lambda 5755)}$	<i>T</i> (⁰ K)	$N_{e}/T^{1/2}$	$\frac{I(\lambda 4959) + I(\lambda 5007)}{I(\lambda 4363)}$	<i>T</i> (° K)
NGC 1976 2b	81	10,000	51	338	8,700
NGC 1976 1a	102	9,100	68	371	8,500
NGC 1976 5b	111	8,900	21	310	8,900
NGC 1976 5a	189	7,500	12	263	9,300
M 8 I	162	7,900	(10)	445	8,100
M 17 I	257	6,900	(10)	330	8,700
NGC 2467 1a	46	13,000	(1)	129	11,600
NGC 2467 1b	53	12,200	(1)	137	11,400
NGC 2359 av			(1)	90	13,200

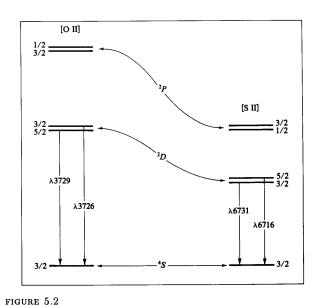
TABLE 5.1Temperature determinations in H II regions

CONTINUUM/LINE ratio has a *weak* sensitivity to T:

$$\frac{j(4861 \ cont)}{j(H_{\beta})} \sim T^{0.9} \ near \ T \sim 10^4 K$$

RADIO CONTINUUM: When v is small and
$$\tau$$
 is large: $I_v = \frac{2v^2}{c^2}kT$ (Rayleigh-Jeans Tail of Planck fn.)

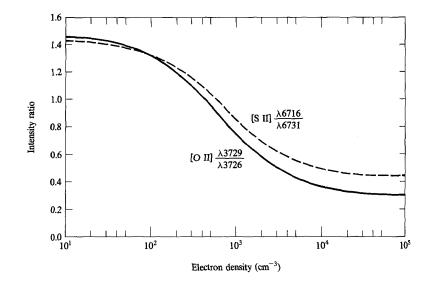

DETERMINATION OF n_e


If there are excited states with 2 or more levels close in energy, but different A's or q's, one can calculate the density n.

Example – [O II]

Low n Limit

Here, every collision up is followed by a radiative transition down. The rate of the transitions from each level J will be proportional to their statistical weights (2J+1) and not on the value of A_{ij} .



Energy-level diagrams of the $2p^3$ ground configuration of [O II] and $3p^3$ ground configuration of [S II].

High n Limit

As $n \to \infty$ the relative populations are in the ratio of their statistical weights, *and* the ratio of emission is *that times* the rate of downward transmission for each level $\propto n_{level}A_{line}$ (downward radiative transitions must compete with downward collisional transitions):

$$\frac{j(3729)}{j(3726)} = \frac{n\left({}^{2}D_{5/2}\right)A_{3729}}{n\left({}^{2}D_{3/2}\right)A_{3726}} = \frac{3}{2}\left(\frac{3.6x10^{-5}}{1.8x10^{-4}}\right) = 0.30$$

In between these limits, the ratios are more complicated.

FIGURE 5.3 Calculated variation of [O II] (solid line) and [S II] (dashed line) intensity ratios as function of N_e at $T = 10,000^{\circ}$ K. At other temperatures the plotted curves are very nearly correct if the horizontal scale is taken to be $N_e(10^4/T)^{1/2}$.

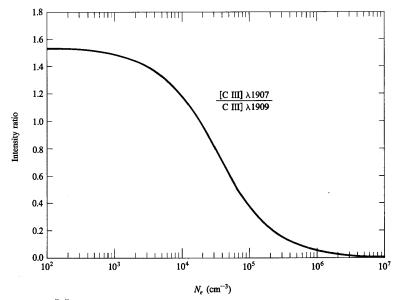
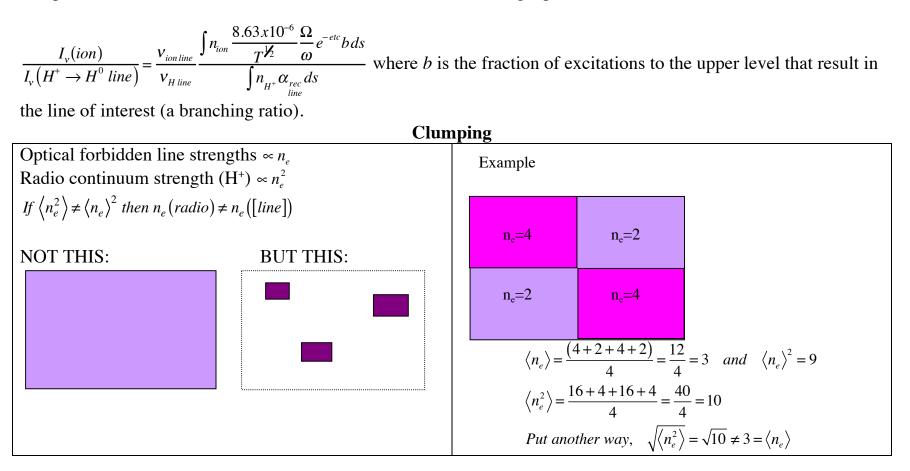



FIGURE 5.5 Calculated variation of [C III] λ 1907/C III] λ 1909 intensity ratio as function of electron density N_e at $T = 10,000^{\circ}$ K.

The C [III] and C III] lines are in the UV, and used when observing high-redshift galaxies and quasars (or when using Hubble, IUE, etc.).

OTHER ISSUES Chemical Composition

It is possible to measure the abundance of O, N, etc. versus H along a path s:

