Introduction to Metallurgy
(MTEN3012)

Donald R. Askeland

Professor Donglu Shi
The Materials Science & Engineering
Dept. of Mechanical and Materials Engineering
College of Engineering and Applied Science
University of Cincinnati

493 Rhodes Hall
Tel. 513-556-3100
e-mail: donglu.shi@uc.edu
http://homepages.uc.edu/~shid/

Objective

To introduce various basic concepts of metallurgy, such as crystal structure, defects,
phase diagrams, mechanical properties, and hardening mechanisms. Also introduced are
strengthening methods and failure process in engineering metals and alloys. The lectures will
focus on their unique properties, selection, design, and industrial applications.

Teaching philosophy and policies for assignments/tests

(a) I shall try to cover the different topics from the text book as much as possible within the
limits of the class. However, it may be difficult to cover everything in the textbook on a given
topic. Therefore, I shall emphasize the important points from different topics.

(b) The Teaching Assistants will be available at their office during office hours for any
questions. The TA's will also upload the copies of the solution manual on Blackboard after the
deadline of the homework.

(c) All homework assignments are due in class to me on the days indicated. No late home
work will be accepted.

(d) No make up exams will be given and I must be notified of any absence in advance.

Grading standard for a class average of 75% or above

90% to 100% - A, 80% to 89% - B, 70% to 79% - C, 60% to 69% - D, 59% or below - F

Grading policy

1. One midterm ... 30%
2. 5-6 homework assignments ... 30%
3. Final ... 40%

Total: 100%
Syllabus

Introduction to Metallurgy
Professor Donglu Shi
University of Cincinnati

<table>
<thead>
<tr>
<th>Part</th>
<th>Section</th>
<th>Chapter</th>
<th>DRA</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I Atomic Structure, Arrangement, and Movement</td>
<td>Atomic Structure</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atomic Arrangement</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imperfection in the Atomic Arrangement</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atomic Movement in Materials</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Part II Controlling the Microstructure and Mechanical Properties of Materials</td>
<td>Mechanical Testing and Properties</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strain Hardening and Annealing</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of Solidification Strengthening and Processing</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid Solution Strengthening and Phase Equilibrium</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersion Strengthening</td>
<td>10/11</td>
<td>10/11</td>
<td></td>
</tr>
<tr>
<td>Part III Engineering Materials</td>
<td>Ferrous Alloys</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>