Site-Specific Biomimetic Precision Chemistry of Bimodal Contrast Agent with Modular Peptides for Tumor-Targeted Imaging

Bingbo Zhang,†‡ Jun Wang,‡ Jiani Yu,† Xiangming Fang,*‡ Xiuli Wang,‡ and Donglu Shi†§∥

†Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200443, China
‡Department of Radiology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi 214023, China
§The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
∥The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio 45221, United States

ABSTRACT: Various biomimetic nanoparticles have been fabricated for cancer nano-theranostics with a diverse range of proteins. However, the operating mechanisms of these reactions are still unclear, especially on the interaction between metal ions and protein, the precise binding sites, and the existence format of nanoparticles. Assuming the shortening of the amino acids sequence into several, namely short peptides, it would be much easier to investigate the biomimetic reaction mechanism. In this study, a modular peptide, possessing Au³⁺ ion coordination motifs and a Gd³⁺ ion chelation sequence, is designed and synthesized. This peptide is experimentally found effective in site-specific biomimetic synthesis of paramagnetic fluorescent gold nanoclusters (pAuNCs) with a quantum yield of 6.8%, deep red emission at 676 nm, and potent relaxivity. The gel electrophoresis result declares that the two imaging motifs in pAuNCs are quite stable. In vivo fluorescence—magnetic resonance bimodal imaging show significant tumor enhancement by pAuNCs in tumor-bearing mice. In vivo biodistribution and toxicity studies reveal that pAuNCs can be gradually cleared from the body without damage. This study presents a modular peptide that can incubate multifunctional nanoparticles in a biomimetic fashion and hopefully provides a strategy for the investigation of the mechanism of protein-mediated biomimetic synthesis.

Although the burgeoning advancement in cancer nano-theranostics has much to offer for improving diagnostics and medical treatments,¹—⁴ new strategies in this field need to be further developed in terms of rational design of intelligent imaging and theranostic probes, particularly in a green and facile fashion. In the past decade, the rapid advancement of nanotechnology has enabled the emergence of various approaches for the fabrication of functional nanostructured materials for cancer imaging and therapy. These synthetic methods, including co-precipitation,⁵ sol–gel,⁶ hydrothermal synthesis,⁷ microemulsion,⁸ thermal decomposition,⁹ etc., have been well-developed along with the associated synthetic theories. In the construction of the multifunctional nanostructures, in the overwhelming majority of cases, functional units are assembled upon certain nanoparticle scaffold—architecture step-by-step. Quite often, these final constructs are achieved with versatile capabilities¹⁰,¹¹ (for instance, the combined fluorescent imaging and magnetic resonance imaging (MRI)). However, these methods and nanostructures encounter disadvantages including tedious synthetic processing, harsh reaction conditions, toxicity concerns, and environmentally unfriendly metrics, which are particularly not suitable for biomedical applications.¹²—¹⁴ Furthermore, the assembled nanosystems, even though afforded with multifunction, are taking the risks of enlarged sizes, structural instability, adverse reactions with each other, and reduced surface space utilization. Thus, there remains a strong need for advanced multifunctional nanostructure designs and synthetic strategies that can demonstrate: (1) robustly facile fashion without requiring complex assembling or conjugation chemistries; (2) site-specific precision synthesis, embodying each function moiety in its intended position without interference; and (3) green chemistry without involvement of organic solvents, heating, or refluxing.

Biomimetic chemistry has been recently developed that can cumulatively contribute important elements for achieving the above goals.¹⁵ We have previously shown that bovine serum albumin (BSA) protein can be used efficiently for the phase transfer of hydrophobic quantum dots into aqueous phase by metal affinity coordination and hydrophobic interaction with the quantum dot surfaces in the condition of ultrasound.¹⁶ This

Supporting Information
Communication

Bioconjugate Chemistry

The technique has been extended onto other nanoparticles (NPs), such as Cd-free quantum dots, iron oxide NPs, and up-conversion NPs. Furthermore, BSA was found talented in the direct biosynthesis of fluorescent gold nanoclusters in a facile fashion. We have also developed Gd-based NPs for MR angiography with BSA via a biomimetic synthesis. By this approach, the Gd–CuS NPs were synthesized as a theranostic agent for in vivo photoacoustic–magnetic resonance (MR) imaging-guided tumor-targeted photothermal therapy. The synthesis chemistry relied mostly on a series of chemoselective amino acid triggered chemical events, including ion chelation, crystal nucleus formation, and further growth. However, in an initial stage, various biomimetic NPs have been fabricated via this robust strategy for cancer nanotheranostics with a diverse range of proteins. However, the operating mechanisms of these reactions are still unclear, especially on the interaction between metal ions and protein, the precise binding sites, and the existence format of NPs.

Proteins are known as large biomolecules, or macromolecules, consisting of one or more long chains of amino acid residues. As such, it causes the complexity in biomimetic chemistry. Through current literatures, it can be found that most of proteins, particularly for gold NPs biosynthesis, contain cysteine (C), tyrosine (Y), and tryptophan (W). Assuming shortening of the amino acids sequence into several, namely short peptides, it would be much easier to identify the biomimetic reaction mechanism. Based on this hypothesis and structural similarity between protein and peptide, we herein design a unique structure of short peptide of cyclic (Pro–Asp–Trp–Glu–Gly–Pro–Glu–Arg–Asp–Lys (Cys–Cys–Tyr–C6)) termed CCY–C6–CP with a molecular weight of 1692.9 (Scheme 1). The matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS) of pure CCY–C6–CP peptide is presented in Figure S1. As shown in Scheme 1, this peptide displays three internal functional modules or domains. Domain I of the Cys–Cys–Tyr (CCY) motif can capture Au3+ ions by the –SH groups of cysteine and further in situ site-specifically reduce them into gold nanoclusters by the phenolic group of tyrosine. Domain II of cyclic peptide (CP) with multiple carboxylic sequences is customized for Gd3+ chelation. The design idea of cyclic peptide for Gd3+ chelation comes from a small molecule structure of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The molecule consists of a central 12-membered tetraaza (i.e., containing four nitrogen atoms) ring. DOTA is used as a complexing agent, especially for lanthanide ions for medical MRI. Domain III of C6 is arranged as a flexible spacer linker. This modular peptide with separated functional domains is specially designed and attempted for in situ site-specific biomimetic synthesis of multifunctional nanoarchitecture in a precision chemistry fashion.

In a typical synthesis, Au3+ ions were added into the solution of peptide at 37 °C, whereupon Au3+ ions can be captured by the thiol groups of domain I to form bidentate Au thiolates intermediates. After stirring for 3 min for thorough mixing, the pH value of solution was adjusted to ca. 10.5 with 2.0 N NaOH, provided alkaline environment to initiate reduction of Au3+ ions to Au NPs via the phenolic group of tyrosine in domain-I. The detailed reaction mechanism was discussed in literatures. The resulting bright yellow solution shows a broad absorption band ranging from 250 to nearly 600 nm (Figure S2), in which the absorption peak at 275 nm is the characteristic absorption of tyrosine at pH ≈ 7. The peak at 275 nm is presented on the peptide (black) and pAuNCs (red) in neutral environment. This peak has a slight red shift in the alkalized CCY–C6–CP solution (blue). Interestingly, the fluorescence intensities of the resulting samples are found to be highly dependent on the amount of NaOH added and the Au3+-to-peptide ratio. Parallel experimental investigation on the reaction parameters shows that, for a certain amount of peptide, either overly excessive or diluted Au3+ ions or NaOH is unfavorable to fluorescence emission. Compared with rhodamine 6G, the quantum yield of the optimized AuNCs is found as ca. 6.8%, which is similar to that of the protein-mediated gold nanoclusters. In the protein-mediated biosynthesis of gold nanoclusters, the emission peak is mainly located at a range from 640 to around 690 nm. The peak emission at 676 nm in this study is also located in this range.

AuNC core size and distribution were measured by high-resolution TEM (Figure 1B). The mean size of AuNCs is 1.25 ± 0.2 nm (Figure S5). This size is consistent with other findings that fluorescent AuNCs are confined with a very small core size, exhibiting a strong quantum confinement effect. In this study, the size of pAuNCs was found difficult to tune. However, the fluorescent intensity can be controlled by the feeding ratios of Au3+ to peptides or the added NaOH amounts. The inset in Figure 1B is the lyophilized powder of AuNCs, showing that it can be scaled up. According to the inductively coupled plasma mass spectrometry (ICP-MS) determination results of Au3+ ions, the synthetic yield of pAuNCs from Au3+ ions is 45.8%.

Scheme 1. Molecular Structure of CCY–C6–CP Modular Peptide and the Illustration of Site-Specific Biomimetic Chemistry of pAuNCs via CCY–C6–CP*
The designed CCY–C6–CP modular peptide has been verified competent on biomimetic synthesis of fluorescent AuNCs. It is also primarily shown, as expected, that CCY motif plays a vital role in biosynthesis. To further investigate the site-specific biomimetic precision chemistry, MALDI-TOF MS was employed for its superior capability in identifying the accurate number of Au atoms and the peptides coating of AuNCs. The technique has been well-established for resolving quite a lot of structures. In this study, CCY–C6–CP@AuNCs was performed in a positive ion linear mode using sinapic acid (SA) as a matrix.

The MALDI-TOF MS spectrum of CCY–C6–CP@AuNCs is shown in Figure 1C. As can be seen in this figure, it is composed of a series of intense peaks between 5 and ~25 K m/z. The inset is an enlarged one for the spectrum between 10 and ~25 K m/z. The interval between adjacent maximum peak positions is very close to that of intact CCY–C6–CP (1692.9 Da). The m/z of the intense peaks basically matches the formula of Au_{25}(CCY–C6–CP)_{m}S_{14–2m}. Interestingly, it is accurate in the low-mass m/z range, while it becomes slightly deviated. In detail, the fractional errors for m values of 0–7 are 0.09%, 1.96%, 3.0%, 3.6%, 4.1%, 4.3%, 4.2% and 4.8%, respectively. These small variations were likely attributed to the small amount of impurity of the synthesized peptide. All intense peaks indicate a Au_{25} core capped by (CCY–C6–CP)_{m}S_{14–2m} (m = 0–7). The sulfur atoms attached on the Au_{25} cluster originate from the cleaved C–S bond of cysteine in domain I of the peptide during the desorption–ionization laser processing.25 As such, there is a strong negative correlation between the number of peptides attached to each Au cluster and the number of the attached sulfur atoms in the mass spectrum.

These results show the robust biomimetic synthesis of fluorescent Au_{25} nanoclusters with the designed peptide.
delayed imaging scanning. The evidence on agarose gel electrophoresis analysis from another side demonstrates that the modular peptide with two separated domains can work independently on the biomimetic chemistry of bimodal pAuNCs. More importantly, it has demonstrated the possibility of the separated imaging moieties of pAuNCs. To further evaluate the stability of pAuNCs, pAuNCs were dialyzed against phosphate-buffered saline (PBS) buffer with 2% fetal bovine serum, and the dialysate was taken out every 2 h in 24 h for ICP-MS determination of Gd3+ ions. Results shows that no Gd3+ was leaking, suggesting the successful conjugation of Gd chelates and AuNCs. The structural integrity of pAuNCs assisted by the modular peptide will resolutely enhance a single mode of pharmacokinetics in vivo.

Cytotoxicity of pAuNCs on Hela cells was evaluated. As can be seen in Figure 1F, after 12 and 24 h of incubation, more than 80% of Hela cells can survive at all concentrations, suggesting...
enhanced biocompatibility by the biomimetic chemistry and raw materials employed in this work.

Figure 2A,C shows bimodal imaging of pAuNCs on tumor-bearing mice. The implemented tumors can be clearly enhanced in both fluorescent imaging and MR imaging after intravenous (i.v.) injection of pAuNCs. In particular, both imaging modalities show hyper-intensity achieves at 1 h post-injection, and the enhancement declines along with time. The corresponding intensities are further quantified as shown in Figure 2B,D. As expected, pAuNCs presents a univocal kinetics in vivo, corresponding to the in vitro co-localization of fluorescent imaging and MR imaging in agarose gel electrophoresis.

The detailed biodistribution of intravenously administrated pAuNCs in vivo is shown in Figure 3A.B. Dissolved Au3+ and Gd3+ ions from harvested organs have a similar distribution and tendency in the clearance process. Both indicate that pAuNCs experienced primary uptakes in liver and spleen and were gradually excluded from body via glomeruli and bile. In vivo bimodal imaging and biodistribution by intravenously injection collectively demonstrate good tumor targeting and strong stability in circulation of the modular peptide-bioinspired pAuNCs. In addition to the cytotoxicity test, the in vivo toxicity of pAuNCs was further investigated with hematoxylin and eosin (H&E) staining examination on the treated heart, liver, spleen, lung, kidney, and intestine tissues. Compared with the control group, there is no notable histological change of the involved tissues after exposure to pAuNCs (Figure 3C). All of the mice were found without any weight loss, illness, or abnormal behaviors during the investigated period. Evidence from in vitro cytotoxicity and in vivo histological studies suggest that pAuNCs are slightly toxic.

In conclusion, the designed modular peptide enables the in situ site-specific precision synthesis of paramagnetic and fluorescent ultrafine gold nanoclusters. This biomimetic strategy is found to be effective, straightforward, and environmentally benign. The bioinspired pAuNCs show good stability, excellent biocompatibility, and high relaxivity. In vivo bimodal imaging reveals potent tumor selective enhancement by pAuNCs in mice. No obvious toxicity is found in the in vitro or in vivo toxicity tests. Biodistribution suggests pAuNCs can be dispelled from body in a hepatic and renal hybrid pattern.

By the combination of selected elements, biomimetic chemistry is shown to demonstrate a generalized strategy for chemoselective engineering of modular peptide, which site-specifically incubates bimodal NPs with high efficacy and facilitates efficient delivery to the tumors. The amino acids or amino acid sequences, which are conjectured with the capability of biomimetic chemistry, can be spliced into short peptides and used to verify the hypothesis. Based on this concept, other proteins or peptides can be found and used in biomimetic synthesis for cancer nanotheranostics.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconjchem.6b00712.

Experimental details, mass and absorption spectra, images showing the effects of Au3+ ions and NaOH on fluorescence emission, and a size distribution histogram. (PDF)

AUTHOR INFORMATION

*E-mail: drfxm@163.com.
*E-mail: shid@ucmail.uc.edu.

ORCID

Bingbo Zhang: 0000-0002-0981-7071

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the funding of National Natural Science Foundation of China (grant nos. 81571742, 81371618, and 81271629), and Shanghai Innovation Program (grant no. 14ZZ039).

REFERENCES

