A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO$_2$-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes

Xiaomei Cheng, Lianhai Zu, Yue Jiang, Donglu Shi, Xiaoming Cai, Yonghong Ni,* Sijie Lin* and Yao Qin*

A pseudo-Fenton reaction works synergistically with photocatalysis to greatly accelerate the oxidative degradation rate.
Funding information

Providing accurate funding information will enable us to help you comply with your funders’ reporting mandates. Clear acknowledgement of funder support is an important consideration in funding evaluation and can increase your chances of securing funding in the future.

We work closely with Crossref to make your research discoverable through the Funding Data search tool (http://search.crossref.org/funding). Funding Data provides a reliable way to track the impact of the work that funders support. Accurate funder information will also help us (i) identify articles that are mandated to be deposited in PubMed Central (PMC) and deposit these on your behalf, and (ii) identify articles funded as part of the CHORUS initiative and display the Accepted Manuscript on our web site after an embargo period of 12 months.

Further information can be found on our webpage (http://rsc.li/funding-info).

What we do with funding information

We have combined the information you gave us on submission with the information in your acknowledgements. This will help ensure the funding information is as complete as possible and matches funders listed in the Crossref Funder Registry.

If a funding organisation you included in your acknowledgements or on submission of your article is not currently listed in the registry it will not appear in the table on this page. We can only deposit data if funders are already listed in the Crossref Funder Registry, but we will pass all funding information on to Crossref so that additional funders can be included in future.

Please check your funding information

The table below contains the information we will share with Crossref so that your article can be found via the Funding Data search tool. Please check that the funder names and grant numbers in the table are correct and indicate if any changes are necessary to the Acknowledgements text.

<table>
<thead>
<tr>
<th>Funder name</th>
<th>Funder’s main country of origin</th>
<th>Funder ID (for RSC use only)</th>
<th>Award/grant number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Natural Science Foundation of China</td>
<td>China</td>
<td>501100001809</td>
<td>21607115, 21777116, 21571005</td>
</tr>
</tbody>
</table>

Researcher information

Please check that the researcher information in the table below is correct, including the spelling and formatting of all author names, and that the authors’ first, middle and last names have been correctly identified. Names will be indexed and cited as shown on the proof, so these must be correct.

If any authors have ORCID or ResearcherID details that are not listed below, please provide these with your proof corrections. Please ensure that the ORCID and ResearcherID details listed below have been assigned to the correct author. Authors should have their own unique ORCID iD and should not use another researcher’s, as errors will delay publication.

Please also update your account on our online manuscript submission system to add your ORCID details, which will then be automatically included in all future submissions. See here for step-by-step instructions and more information on author identifiers.

<table>
<thead>
<tr>
<th>First (given) and middle name(s)</th>
<th>Last (family) name(s)</th>
<th>ResearcherID</th>
<th>ORCID iD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaomei</td>
<td>Cheng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lianhai</td>
<td>Zu</td>
<td>N-5979-2016</td>
<td></td>
</tr>
<tr>
<td>Yue</td>
<td>Jiang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donglu</td>
<td>Shi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiaoming</td>
<td>Cai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yonghong</td>
<td>Ni</td>
<td></td>
<td>0000-0002-4979-9867</td>
</tr>
<tr>
<td>Sijie</td>
<td>Lin</td>
<td></td>
<td>0000-0002-6970-8221</td>
</tr>
<tr>
<td>Yao</td>
<td>Qin</td>
<td></td>
<td>0000-0001-9880-7301</td>
</tr>
</tbody>
</table>
Queries for the attention of the authors

Journal: ChemComm
Paper: c8cc05866k
Title: A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO$_2$-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes

For your information: You can cite this article before you receive notification of the page numbers by using the following format: (authors), Chem. Commun., (year), DOI: 10.1039/c8cc05866k.

Editor’s queries are marked on your proof like this Q1, Q2, etc. and for your convenience line numbers are indicated like this 5, 10, 15, ...

Please ensure that all queries are answered when returning your proof corrections so that publication of your article is not delayed.

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Funder details have been incorporated in the funder table using information provided in the article text. Please check that the funder information in the table is correct.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Please confirm that the spelling and format of all author names is correct. Names will be indexed and cited as shown on the proof, so these must be correct. No late corrections can be made.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Do you wish to add an e-mail address for the corresponding author? If so, please provide the relevant information.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>“minutes” appears to be spelled incorrectly as “minuts” in the Graphical Abstract image. Please could you supply a corrected version (preferably as a TIF file at 600 dots per inch) with your proof corrections.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>The meaning of the sentence beginning “As Zhang et al...” is not clear – please provide alternative text.</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>The sentence beginning “It is noteworthy...” has been altered for clarity. Please check that the meaning is correct.</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>The sentence beginning “To investigate the...” has been altered for clarity. Please check that the meaning is correct.</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>The sentence beginning “Interestingly, after light...” has been altered for clarity. Please check that the meaning is correct.</td>
<td></td>
</tr>
</tbody>
</table>
A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO$_{2-x}$ nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes

Xiaomei Cheng,a Lianhai Zu,b Yue Jiang,c Donglu Shi,bd Xiaoming Cai,e
Yonghong Ni,f*,g Sijie Linf*,g and Yao Qinf*

mp-MXene/TiO$_2$ nanodots (NDs) structurally composed of microporous MXene monolayers embedded with Ti$^{3+}$-doped TiO$_2$ nanodots were developed for the first time. The drastically enhanced catalytic efficiency (as much as 13 times higher than that of P25) in degrading dye molecules over mp-MXene/TiO$_2$ NDs is due to a synergistic effect of the pseudo-Fenton reaction and photocatalysis.

Advanced oxidation processes (AOPs) based on Fenton reactions, which are capable of generating powerful oxidative hydroxyl radicals (\(^{*}\)OH), have been applied for wastewater treatment for decades. So far, most of the reported Fenton reagents, either traditional Fe$^{2+}$-H$_2$O$_2$ homogeneous systems or their recently developed heterogeneous counterparts,$^{1-4}$ which usually include solid ferrous nanoparticles activating H$_2$O$_2$ to trigger a pseudo-Fenton reaction, are iron-based and need a large amount of H$_2$O$_2$. However, the intrinsic chemical instability of iron-based species limits the applications of these reagents under harsh industrial effluent conditions. Moreover, the large H$_2$O$_2$ dosage present in iron-based Fenton reagents have been denounced for the cost and environmental issues.5 Titanium dioxide (TiO$_2$) has been well known as a durable and efficient photocatalyst for decades.6,7 Recent discovery in several reports8,9 has shown that this semiconductor material can accelerate H$_2$O$_2$ decomposition by self-doping of low-valence Ti species, making titanium dioxide an emerging generation of titanium-based photo-(pseudo)Fenton bifunctional catalyst, alternative to iron-based heterogeneous Fenton reagents but with better chemical stability and recyclability.

As Zhang et al. have reported in eqn (1)-(4):9

\[
\begin{align*}
\text{Ti}^{3+} + \text{H}_2\text{O}_2 &\rightarrow \text{Ti}^{4+} + \text{OH}^- + \text{H}_2\text{O} \quad (1) \\
\text{Ti}^{4+} + \text{H}_2\text{O}_2 &\rightarrow \text{Ti}^{3+} + \cdot \text{OOH} + \text{H}^+ \quad (2) \\
\cdot \text{OH} + \text{H}_2\text{O}_2 &\rightarrow \text{H}_2\text{O} + \cdot \text{OOH} \quad (3) \\
\text{Ti}^{4+} + \cdot \text{OOH} &\rightarrow \text{Ti}^{3+} + \text{O}_2 + \cdot \text{H}_2\text{O} \quad (4)
\end{align*}
\]

aided by the ability to cycle between low- and high-valence states, titanium species on the surface of titanium oxide nanoparticles can serve as a lattice shuttle for electron transfer in H$_2$O$_2$ activation.9 In their work, TiO$_2$ nanoparticles were first prepared via a hydrothermal method and then specially treated in reductive H$_2$ at high temperature to create TiO$_{2-x}$ with a high density of Ti$^{3+}$ for H$_2$O$_2$ activation.

Herein, we synthesized a new composite from Ti$_3$C$_2$ MXene,$^{10-13}$ a good source for active low-valence titanium species, denoted as “microporous-MXene–TiO$_{2-x}$ nanodots” (mp-MXene/TiO$_{2-x}$ NDs), which is structurally composed of porous, monolayered MXene flakes as the skeleton and TiO$_{2-x}$ nanodots embedded evenly on the flake surfaces. The active low-valence titanium species in both the monolayered MXene flakes and the

References:

a College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241000, China

b The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China

c Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, 1239 Spring Road, Shanghai 200092, China

d The Materials Science and Engineering Program, Dept. of Mechanical and Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA

e Center for Genetic Epidemiology and Genomics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China

f Electronic supplementary information (ESI) available: Experimental details; XRD patterns of the pristine MAX, multi-layer MXene and the prepared mp-MXene/TiO$_{2-x}$ NDs; SEM images of the pristine MAX, multi-layer MXene and delaminated mono-layer MXene; TEM images of delaminated mono-layer MXene and the prepared mp-MXene/TiO$_{2-x}$ NDs; XPS depth profiling results; UV-vis absorption of mp-MXene/TiO$_{2-x}$ NDs and multi-layer MXene; specific surface area of mp-MXene/TiO$_{2-x}$ NDs; TEM image of TiO$_2$-Ti$_3$C$_2$; TOC change during the degradation process of RhB; the degradation of RhB on mp-MXene/TiO$_{2-x}$ NDs with and without the attendance of H$_2$O$_2$; EPR signal of superoxide radicals \(\cdot \text{O}^-\) generated in the prepared photo-Fenton catalyst and H$_2$O$_2$ system; recyclability assessment of mp-MXene/TiO$_{2-x}$ NDs. See DOI: 10.1039/c8cc05866k
TiO$_{2-\gamma}$ dots as well as the porous structure endow the synthesized mp-MXene/TiO$_{2-\gamma}$ NDs with high catalytic efficiency in organic pollutant degradation at a low catalyst concentration and low H$_2$O$_2$ dosage under both dark and light conditions.

The mp-MXene/TiO$_{2-\gamma}$ ND catalyst was prepared simply by mixing multilayer MXene (ml-MXene) with 30% H$_2$O$_2$ as depicted in detail in ESI 2.1 (ESI†). Compared to ml-MXene, the as-synthesized product is composed of MXene monolayers lying on the grid (Fig. 2c) are identified in Fig. 2d as the (0006) plane. Moreover, from Fig. 2c and Fig. S2f (ESI†), numerous micropores with sizes smaller than 1 nm can be seen in the MXene flakes. It is reasonable to assume that these micropores arise from the attack of H$_2$O$_2$ on the 2D monolayed MXene by “digging” some of the Ti atoms out and oxidizing them in situ into TiO$_{2-\gamma}$ dots, leaving the porous skeletons of the MXene flakes. This also explains the vague polycrystalline rings of the selected area electron diffraction (SAED) pattern in the inset of Fig. 2a. The oxidative “etching” process forming “mp-MXene/TiO$_{2-\gamma}$ NDs” was also verified by the high-resolution XPS depth profiling (XPS-DP) results shown in Fig. S3 (ESI†), where compositions at 0 nm, 3 nm, 5 nm and 10 nm beneath the surface of the intermediate product were checked. In the Ti 2p region (Fig. S3a, ESI†), from 10 nm to 0 nm beneath the sample surface, where the layers are ready to be delaminated to form the final product, the BE peaks representing the chemical states of Ti 2p$_{3/2}$ and Ti 2p$_{1/2}$ electrons in TiO$_2$ are narrowed and intensified while the peaks at 454.8 eV and 460.2 eV assigned to Ti 2p$_{3/2}$ and Ti 2p$_{1/2}$ in TiO$_2$ respectively become weaker and wider, indicating that the Ti atoms of lower valence near the surface layers of MXene are oxidized gradually into Ti(IV) in TiO$_2$. In the C 1s region (Fig. S3b, ESI†), approaching the surface layer, the intensified graphitic C–C (sp2) peak at 284.8 eV indicates that parts of the carbon atoms rearranged into a graphene-like structure by overlapping their sp2 orbital after the Ti atoms are “dug out” by H$_2$O$_2$ oxidation, which is evidenced in Raman characterization (Fig. S4, ESI†) as well, thereby leaving a mass of micropores in the parent MXene skeleton flake. The specific surface area of mp-MXene/TiO$_{2-\gamma}$ NDs was analyzed using a classical BET method and measured to be ~54.56 m2 g$^{-1}$ (Fig. S5a, ESI†). The average pore width calculated using the DFT model was 1.31 nm (inset of Fig. S5a, ESI†), corresponding to the size of micropores.
Meanwhile, as shown in Fig. 2b, there are also many black dots (marked with red circles) with a size of ~3 nm inlayed in the MXene plane (see Fig. S2f, ESI† for additional evidence). The lattice fringes of one of these black dots are presented in the high-resolution TEM image of Fig. 2c, where the d-space is measured to be 0.35 nm, corresponding to the (101) facets of anatase TiO2. The UV-vis diffuse reflection spectrum was measured to study the optical properties of the synthesized product. As shown in Fig. S5b (ESI†), due to the deposited Ti3C2 nanodots on the MXene skeleton flakes, the absorption of mp-MXene/TiO2−x NDs behaves as a typical semiconductor with a calculated band gap of 2.2 eV via the Kubelka–Munk method, which is quite different from the pristine ml-MXene.

Based on the composition and structural characteristics of mp-MXene/TiO2−x NDs, we evaluated its potential as a heterogeneous photo-Fenton catalyst by degrading several typical model dye molecules. Considering the possible contributions of Ti species in both MXene and TiO2−x dots to a photocatalytic-Fenton reaction, the dosage of the synthesized product and the samples for comparison were determined according to the concentration of the Ti element ([Ti]). For example, a mp-MXene/TiO2−x NDs solution of 150 ppm contains the same [Ti] with a Degussa-P25 (P25) dispersion of 0.25 g L−1. As shown in Fig. 3a, under simulated sunlight irradiation (SSI), rhodamine B (RhB) decomposes very fast with mp-MXene/TiO2−x NDs as the catalyst in the presence of low-dosage H2O2: in 10 min, 96% of the RhB molecules (30 mg L−1) were degraded (black square line, [Ti] = 150 ppm, and [H2O2] = 0.7 mM) with a TOC removal of 55.4% at 1 h (Fig. S7, ESI†, TOC analysis). It is noteworthy that even when [Ti] decreases to 30 ppm and 10 ppm, as shown by the red, spherical dotted line and the magenta, downward triangular line respectively in Fig. 3a, the catalytic efficiency is still much higher than that of commercial P25 (navy blue, sideward triangular line).

To investigate the catalytic degradation process, 10 ppm [Ti] was chosen (equivalent to 16.7 mg L−1 P25 or 13.3 mg L−1 TiO2−Ti3C2 (ml-MXene-pure TiO2 nanoparticles, see ESI 2.2 and Fig. S6, ESI†) and the whole process was separately controlled under dark or light irradiation for comparison. In darkness, mp-MXene/TiO2−x NDs, at a concentration as low as [Ti] = 10 ppm and [H2O2] = 0.047 mM, showed a considerable degradation effect to RhB (Fig. 3b, magenta, solid/hollow triangular lines in the first hour) with a TOC removal of 33.6% at 120 min (Fig. S7, ESI†, TOC analysis). On the other hand, both P25 and TiO2−x/TiC2 had negligible catalytic activity in the presence of the same amount of H2O2 without light irradiation (Fig. 3b, navy blue, solid/hollow triangular lines and orange, solid/hollow-dotted lines in the first hour). These observations provide convincing evidence that the pseudo-Fenton catalytic activities in the dark come from the mono-layered MXene fragments and Ti3+ doped TiO2 nanodots rather than the multi-layered MXenes and pure TiO2 nanoparticles. Interestingly, after light was turned on at the beginning of the second hour, as indicated by the magenta, solid triangular line in Fig. 3b, there is a drastic increase in catalytic efficiency over the mp-MXene/TiO2−x ND catalyst, implying that the photocatalytic mechanism could set in synergistically with the pseudo-Fenton reaction, and it greatly accelerates the degradation rate. In contrast, neither P25 (navy blue, solid triangular line) nor TiO2−x/TiC2 (orange, solid dotted line) shows comparative catalytic activity.

The synergistic effect can also be verified via the control experiments as shown in Fig. S8 (ESI†). When H2O2 is removed from the catalysis system (the orange square line), the Fenton reaction becomes blocked, resulting in the decrease of catalytic efficiency. The first-order rate constant over the present photo-(pseudo)Fenton catalysis reaction with mp-MXene/TiO2−x NDs as the catalyst ([Ti] = 150 ppm and [H2O2] = 0.7 mM) was calculated to be 19.45 h−1 (14 times the rate constant in the P25–H2O2 catalytic system), which is much higher than the reported values of 1.72 and 2.38 h−1 for TiO2−x/H2O2 and Fe3O4/H2O2 systems, respectively. Besides RhB, the photo-Fenton catalytic performance was tested over the degradation of other dye pollutants as well, such as methyl orange (MO) and methylene blue (MB) at pH = 10.0 and 3.33, respectively (Fig. S9, ESI†). The data suggest that the as-prepared photo-Fenton catalyst can work in a wide pH range, which is a significant improvement over traditional Fenton reagents.

The main reactive oxygen species (ROS) were detected through the trapping experiments of radicals using t-BuOH, EDTA-2Na and p-benzoquinone as the hydroxyl radical (•OH), hole (h+) and superoxide radical (•O2−) scavenger, respectively. The experiments were conducted under dark and light conditions separately in order to distinguish the ROS species behind the two different mechanisms. The result under light irradiation is shown in Fig. 4a. The addition of t-BuOH (1 mM) has hardly any effect on the degradation efficiency (red dotted line), meaning that •OH radicals are not the functional ROS under light conditions. However, the addition of p-benzoquinone (1 mM) distinctly reduced the reaction rate (magenta, downward triangular line), indicating that •O2− radicals are one of the main ROS during the catalysis reaction under light irradiation. This was further confirmed by EPR measurements, as shown in Fig. S10 (ESI†), after irradiation with light, the signal for the superoxide radicals becomes stronger along with the stimulation time. Specifically, the scavenger of EDTA-2Na (1 mM) greatly weakened the reaction efficiency as shown by the navy blue, upward triangular line. This can be explained from two aspects: first, as a classical hole scavenger, EDTA-2Na removes most of the photo-generated holes which play a main role in oxidizing the dye molecules; second, as a typical chelating agent, EDTA-2Na blocks out the function of active

Fig. 3 (a) Degradation of RhB (30 mg L−1) using mp-MXene/TiO2−x NDs at different concentrations of titanium and H2O2 with simulated sunlight irradiation (SSI); (b) degradation of RhB (30 mg L−1) upon mp-MXene/TiO2−x NDs and catalysts for comparison under dark (1 h) and light (SSI, 1 h) conditions. For all the above experiments, the pre-dark adsorption–desorption equilibrium process was done for 120 min without adding H2O2.
the mp-MXene/TiO$_2$-ND catalyst shows a similar efficiency as the first cycle in the degradation of RhB.

In conclusion, we have developed a novel hetero-structured mp-MXene/TiO$_2$-ND composite as a photo-Fenton bifunctional catalyst. In addition to holes, *OH and *O$_2^-$ were detected to be the functional ROS involved under dark and light conditions, respectively. Specially, under light, the high efficiency is accomplished via a pseudo-Fenton reaction and photocatalysis mechanism working synergistically together. As a fresh member of the emerging “titanium-based AOP catalyst” family, mp-MXene/TiO$_2$-ND is promising to find its potential applications in other AOPs, in addition to waste water treatment, owing to its fast response, high efficiency at a very low dosage and a wide working pH range under light and dark conditions.

This work was supported by “2017 and 2018 Fundamental Research Funds for the Central Universities” (Y. Qin), NSFC Grant #21607115 and #21777116 (S. Lin), and NSFC Grant #21571005 (Y. H. Ni).

Conflicts of interest

There are no conflicts to declare.

Notes and references