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The General Problem

Consider molecules, or clusters of atoms: The Free-Energy
Landscape has many wells or basins which are separated by energy
barriers.

Some of the barriers may be large, some may be small, and some
may shift with temperature or external field.

Such transitions will be rare when the barrier is large compared to
the available thermal energy.

How do we find the paths that describe the transitions to
the new equilibrium state when such events are rare?
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A possible solution: constrain paths to make the desired transition
and then sample these paths in a thermodynamic significant
manner.

The most common way of doing this: using the Onsager-Machlup
(OM) functional as a ”Thermodynamic Action” which defines not
only the most probable path but includes fluctuations.

Outline

In this talk I will look at the OM functional from the traditional
point of view and explain some of the sophisticated sampling
methods used to obtain an ensemble of paths.

A new perspective will be used to explore the limitations of this
approach. And I will end with an unexpected result.
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Starting Point - Brownian Dynamics

Sample Boltmann Distribution: PB ∝ exp (−U/ε)

dx = F dt +
√

2 ε dWt = ε∇ logPB dt +
√

2 ε dWt

x is the position of the particle
F is the force: F = −∇U
ε is the temperature
t is the time along the path
dWt is the standard Wiener Process (White Noise)

If a large energy barrier exists, the transition is a rare event.

Thrust of this work: find an efficient way of sampling the transition
paths themselves in a thermodynamically significant manner.
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Discrete time step ∆t

xn+1 = xn + F (xn) ∆t +
√

2ε∆t ξn

xn is the position of the particle at time t = n∆t
F (xn) is the force
ε is the temperature
tn is the time along the path
N is the number of steps in the process
T = N ∆t is the total time of the process
ξn is an Gaussian-distributed random number (mean 0; variance 1)

PG (ξ) dξ = 1√
2π

exp
(
−1

2ξ
2
)
dξ

Quadratic Variation∑
∆x2 = 2 εN ∆t = 2 εT
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Definition of Path

xn+1 = xn + F (xn) ∆t +
√

2ε∆t ξn

Iterate to form
{x0, x1, x2, x3, x4, x5, x6, x7, ... xN}

Such a sequence of positions is a path.

Onsager-Machlup Functional

Replace the noise history:

ξn =
(
xn+1 − xn − F (xn) ∆t

)
/
√

2 ε∆t

Path Probability

logPpath = −I = −∆t
4ε

∑∣∣∣ xn+1−xn

∆t − F (xn)
∣∣∣2
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Path Probability

I = − logPpath = ∆t
4ε

∑∣∣∣ xn+1−xn

∆t − F (xn)
∣∣∣2

I = ∆t
2ε

∑{
1
2

∣∣∣ xn+1−xn

∆t

∣∣∣2 + 1
2

∣∣∣F (xn)
∣∣∣2 − F (xn) · ( xn+1−xn

∆t )

}

I = ∆t
2ε

∑{
1
2

∣∣∣ xn+1−xn

∆t

∣∣∣2 + 1
2

∣∣∣F (xn)
∣∣∣2

+ 1
2

F (xn+1)−F (xn)
xn+1−xn

· (xn+1−xn)2

∆t − F (xn+1)+F (xn)
2 · ( xn+1−xn

∆t )

}

Measure relative to Brownian Bridge Measure

I − I0 = U(xN )−U(x0)
2 ε + 1

2ε

∫ T
0 dt G (xt) G = 1

2 |F |
2 − ε∇2U
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Path Probability

I = − logPpath = ∆t
4ε

∑∣∣∣ xn+1−xn

∆t − F (xn)
∣∣∣2 G = 1

2 |F |
2 − ε∇2U

I = U(xN )−U(x0)
2 ε + ∆t

2ε

∑{
1
2

∣∣∣ xn+1−xn

∆t

∣∣∣2 + G (xn)

}
If we fix x0 = x− and xN = x+ the first term is a constant.

Most Probable Path (MPP)
Look at the minimum of I . Look for heter0clinic orbits to

H =
1

2
p2 − G (x)

Solution is smooth; it is not a path itself.
Should look at the solution as the center of a ball that contains
the most likely paths.
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Monte Carlo Sampling
We want to sample paths from the measure,

πpath ∝ exp
(
− I

2 ε

)
and I = 1

2〈x , L x〉+ 〈1, G (x) 〉
(math notation: 〈 ... 〉 denotes an inner product.)

L is a positive definite operator L = −d2/dt2

Augment I to include ”Kinetic Energy” thereby forming Heff :
Heff = 1

2〈pM
−1p〉+ 1

2〈x , L x〉+ 〈1, G (x) 〉
where M is the mass matrix.

The auxiliary variables p are conjugate to the path variables x .
This term does not alter the stationary distribution of paths.

1. Choice of mass Matrix M. M = L.
2. Pick p from its known distribution.
3. Use a splitting to form an integrator that is reversible and

volume conserving (Symplectic).
4. Avoid the subtraction of large numbers when

implementing the Metropolis-Hasting step.
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Deterministic Integrator
Consider the second order equation and convert it to

v =
∂x

∂τ
and

∂v

∂τ
= −x − L−1DG

Splitting of the Verlet integrator (τ is Algorithm (MC) time)

1. Half step wi = vi − h
2 L−1DGi

2. Full step – Rotation(
xi+1

wi+1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
xi

wi

)
3. Half step vi+1 = wi+1 − h

2 L−1DGi+1

cos θ = cos h or
4− h2

4 + h2
sin θ = sin h or

4 h

4 + h2

Integration scheme is Reversible and Volume Conserving.
For finite representations, this Verlet-like splitting preserves the
Quadratic Variation of the evolving path.
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Metropolis-Hastings Criterion
The value of Heff is almost surely infinite in the continuum limit.

Must devise a method to calculate differences in Heff as the path
evolves without subtracting large (possibly infinite) numbers.

At the end of every MD step, ∆Heff can be tracked.

∆Heff = 〈1, Gi+1〉 − 〈1, Gi 〉

+
h2

8

(
〈DGi+1, L

−1DGi+1〉 − 〈DGi , L
−1DGi 〉

)
− h

2 sin θ

(
〈DGi+1, xi+1 − xi 〉 − 〈DGi , xi − xi+1〉

)
Accumulate the changes as one performs MD integration. If step
size, h, is small, drift in Heff is minimal, the evolved path will be
accepted. For large step sizes, the integration error will be
substantial, and the entire sequence of paths will be rejected.
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Start out with 1-dimensional Potential

Potential

-1 0 1 2

0

0.5

1

Position

U(x) =
(3x − 4)4 (3x + 2)2

1024

I Degenerate Minima
at x = −2

3 and x = 4
3

I Barrier Height: UB = 1

I ε = 0.15

Boltzmann probability: entropy drives the particle to spend less
time in the skinny well.
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SDE with and without the Metropolis step

Brownian
Metropolis
 Hastings

Boltzmann
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In the regime where the quadratic variation is satisfied, the
Metropolis step makes only small adjustments.
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MAP estimator
Find the maximum a posteriori probability (MAP) estimate or the
most probable path (MPP), fixing the path length (time) T = 100.
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Asymmetric Degenerate Double Well: Most probable path HMPPL
Position xHtL plotted as a function of time t
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Some paths

(Loading Video...)

All have the same path probability ! ! ! ! ! !
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Some paths

(Loading Video...)

All have the same path probability ! ! ! ! ! !
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Path sampling for a one dimensional well U(x)
Let’s use this machinery to sample double ended paths.
Start with a path that was ripped from a SDE calculation.
Note that the initial path starts and ends in the same well.

Potential t (time along the path)

The path # denotes the evolution in τ the algorithmic time.
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Path sampling for a one dimensional well U(x)
Let’s use this machinery to sample double ended paths.
Start with a path that was ripped from a SDE calculation.
Note that the initial path starts and ends in the same well.

Potential t (time along the path)

These results are not consistent with Boltzmann distribution!
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Take a new perspective
Start with a Monte-Carlo method instead of a SDE. Why?
The method samples the Boltzmann distribution and is understood.

I Choose velocity: v0 =
√
ε ξ0 (Markov chain)

I Leap-Frog integrator (symplectic method)

x1 = x0 + h
(
v0 +

h

2
F (x0)

)
v1 =

(
v0 +

h

2
F (x0)

)
+

h

2
F (x1)

I SDE (remember)

I Identify:

I Define
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Take a new perspective
Start with a Monte-Carlo method instead of a SDE. Why?
The method samples the Boltzmann distribution and is understood.

I Choose velocity: v0 =
√
ε ξ0 (Markov chain)

I Leap-Frog integrator (symplectic method)

x1 = x0 + h
(
v0 +

h

2
F (x0)

)
v1 =

(
v0 +

h

2
F (x0)

)
+

h

2
F (x1)

I SDE (remember)

x1 = x0 + ∆t F (x0) +
√

2ε∆t ξ0

I Identify: ∆t = h2/2

I Define error in the Energy

δe =
1

2
v2

1 + U(x1)− 1

2
v2

0 − U(x0)
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Equivalence with the Onsager-Machlup functional

Manage errors with Metropolis-Hastings exp (−δe/ε) > η

M(x) = Min[ 1, e−x ] − log(M(x)) = Max [0, x ] =
(
x + |x |

)
/2

PMC ∝ exp

(
−∆t

2ε

∑[
1

2

(
∆x

∆t

)2

+
1

2
|F |2 − ε∇2V +

∣∣∣ δe
∆t

∣∣∣ ])

When δe is small,
this new functional is equivalent to the OM functional.

Remember that the size of ∆t was chosen to be small enough to
ensure that the quadratic variation sum rule is satisfied.

In this regime, δe is also small and has little effect.
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What went wrong ? ? ? ? ?

Hamiltonian H =
p2

2m
+ U(x)

Velocities are distributed according to the Maxwell-Boltzmann
distribution. And the same distribution at every position x .

MAP estimator

In constructing the MPP one introduces correlations between the
velocities and the positions. One wants to find the ”optimal”
velocities. Thus the MPPs are not consistent with the Boltzmann
distribution: exp

(
− U(x)/ε

)
.

We need to ensure that the velocities are Gaussian distributed
along the path.
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What went wrong ? ? ? ? ?
Take a closer look at the sampling algorithm.

The first step is to generate a Brownian Bridge that will be used as
the velocities in algorithmic time. These velocities govern the
evolution of the paths, thereby proving a sample of paths.

However, during the deterministic integration, ”energy” is allowed
to be redistributed among the modes. This is where the problems
originate. The ”energy” flows out of the low-frequency modes and
into the many thousands of high-frequency modes.

The OM functional alone does not define the action. The
action is defined by OM functional with the requirement that every
frequency channel must be noisy. The deterministic integration
defeats this requirement by allowing the low-frequency modes to
become optimal. This then is the ingredient that forces paths to
look similar to MPPs but with some high frequency noise. This
latter feature is needed to ensure that the quadratic variation is
satisfied.
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The fix

Simply do not perform the deterministic integration steps.
Stick with the Metropolis Adjusted Langevin Algorithm (MALA).

Evolution of the average position

Beginning path (blue)
Path after 5 million steps (red)

Using MALA: after 5 million moves, the path has not collapsed.
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Concluding remarks

I Overview of Brownian dynamics
I Generates the correct distribution (Boltzmann)
I Inefficient when trying to sample transitions

I Derived the OM functional
I Ensemble of transition paths
I Not consistent with the Boltzmann distribution!

I New Perspective
Recast the diffusion process in terms of a MCMC process

I Method where the errors are well understood
I Generates (almost) the same measure as the OM measure

Lesson to take home

The double ended paths that are generated by using the
Onsager-Machlup functional alone are unphysical.
Need to require a Gaussian distribution of velocities along the path.

26 26


