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Abstract

I report on a series of computer experiments to test our
understanding of classical path integrals. In particular, I
examine calculations of doubly-constrained paths for a particle
undergoing Brownian dynamics and moving in an external
potential.



Apples - A tasty treat

Consider an apple.
If one bites into it, and only sees the flesh of the apple, one enjoys
the experience.



Apples - A tasty treat

On the other hand if one sees part of a maggot, one is disgusted.
Define the yuckiness function as a measure of the revulsion one
feels when one sees part of a maggot in the apple.



The yuckiness Function

The yuckiness function Y(R)
depends on R, the remaining part of the maggot.

The first value we have is when no maggot is seen in the apple.



The yuckiness Function

The yuckiness function Y(R)
depends on R, the remaining part of the maggot.

The next value: a half of a maggot is found in the apple.



The yuckiness Function

The yuckiness function Y(R)
depends on R, the remaining part of the maggot.

What’s worse than finding half a maggot?
Discovering only a quarter of one.



The yuckiness Function

The yuckiness function Y(R)
depends on R, the remaining part of the maggot.

Away from R = 0, the yuckiness function is monotonic when
viewed as a function of the fraction of the remaining maggot.



The yuckiness Function has a singular limit (Berry)

The yuckiness function Y(R)
depends on R, the remaining part of the maggot.

Clearly as R ⇒ 0, lim Y(R) 6= Y(0)

Note that if one does not see a maggot in the uneaten part of the
apple, one cannot tell if one ate a whole maggot or not.



A Singular Limit in thermodynamics

I explore a particle moving in a simple one dimensional potential
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The ground state is degenerate: at zero temperature
the particle is equally likely to be in either well.



A Singular Limit in thermodynamics

I explore a particle moving in a simple one dimensional potential
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A Singular Limit in thermodynamics

I explore a particle moving in a simple one dimensional potential
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Equilibrium Thermodynamics
The zero temperature limit is singular.



The Big Picture
Protein Folding

Proteins are horribly complex structures. We are interested in
constructing efficient methods to probe how proteins fold.
To accomplish this, we start with very simple systems.

We never got beyond a single particle in two dimensions.



Focus: Rare Events

I Transitions – ultimate goal: Protein Folding

I Rare Events vs extremely rare
(seen) (never seen in the life of the universe)

I Transitions driven by Thermodynamical fluctuations (Folding)

I Violating Thermodynamics (atoms into a corner of the room)

I Brownian Dynamics - Onsager and Machlup (1953)



Brownian Dynamics ε⇒ kB Temperature

Particle buffeted by random forces – modeled by White Noise

dxt = F (xt) dt +
√

2 ε dWt F (x) = −dU

dx

For a finite time step, ∆t, (Euler-Maruyama Method)

xi+1 = xi + F (xi ) ∆t +
√

2 ε∆t ξi

where ξ is a Gaussian random variate: mean zero and unit variance.

Paths are continuous but almost nowhere differentiable.

Quadratic Variation
∑(

xi+1 − xi
)2 ≈ 2 εT

where T is the length of the path, T = Nt ∆t.



Brownian Trajectory ε⇒ kB Temperature

xi+1 = xi + F (xi ) ∆t +
√

2 ε∆t ξi

Iterate to get a Trajectory {x0, x1, x2, x3, ... xNt}

Path probability Ppath ∝ Πi exp
(
− ξ2

i /2
)

= exp
(
−
∑

i ξ
2
i /2
)

Onsager-Machlup functional (1953) Ppath ∝ exp
(
− IOM

)
IOM =

1

4 ε

Nt∑
i=1

∆t

∣∣∣∣∣ ∆x

∆t
− F (xi )

∣∣∣∣∣
2



Doubly Constrained Paths ε⇒ kB Temperature
Fixed beginning and end points x0 = x− and xNt = x+

Onsager-Machlup functional ⇒ ”Thermodynamic Action”

Graham (1977) Minimize to find Most Probable Path (MPP)

IOM =
1

4 ε

Nt∑
i=1

∆t

∣∣∣∣∣ ∆x

∆t
− F (xi )

∣∣∣∣∣
2

In the continuous time limit: Radon-Nikodym derivative,
Girsanov theorem and Ito’s lemma: with T = Nt ∆t

− log
Ppath

P0
= C +

U(x+)− U(x−)

2 ε
+

1

2 ε

∫ T

0
dt G (xt)

G (x) =
1

2
U ′(x)2 − εU ′′(x)

where P0 is the Free Brownian Measure.

Note: Maruyama’s 1954 paper predates Girsanov’s Theorem (1960).



Girsanov Theorem and Ito’s Lemma
Onsager-Machlup functional (1953) Ppath ∝ exp

(
− IOM

)
IOM =

1

4 ε

Nt∑
i=1

∆t

∣∣∣∣∣ ∆x

∆t
− F (xi )

∣∣∣∣∣
2

IOM =
1

4 ε

Nt∑
i=1

∆t

∣∣∣∣∣ ∆x

∆t

∣∣∣∣∣
2

+
1

2 ε

Nt∑
i=1

∆t

(
1

2

∣∣∣F (xi )
∣∣∣2 − ∆x

∆t
F (xi )

)
Cross Term (use a Taylor Expansion)

−∆x F (xi ) = ∆x V ′(xi ) ≈ U(xi+1)− U(xi )−
∆x2

2
U”(xi )

Ito’s Result (continuous time limit)
Use the definition of the Quadratic Variation

1

2

∆x2

∆t
U”(xi )⇒ εU”(xi ) G (x) =

1

2
U ′(x)2 − εU”(x)



Simple Example – Forward Integration
Follow the motion of a particle as

it tries to hop from one well to the other.
Brownian Dynamics, Temperature: ε = 0.25

xi+1 = xi + F (xi ) ∆t +
√

2 ε∆t ξi



Path Sampling Results: Ito-Girsanov ε = 0.25

I ItoOM =
1

2 ε

∑
i

∆t

(
1

2

∣∣∣∆x

∆t

∣∣∣2+G (xi )

)
G (x) =

1

2
F (x)2−εU ′′(x)

Use the Path-Space HMC machinery
to sample double ended paths. Potential︸ ︷︷ ︸

−−−−−−−→︸ ︷︷ ︸
Energy



Path Sampling: away from the Continuous-Time-Limit

IOM =
1

2 ε

∑
i

∆t

(
1

2

∣∣∣∆x

∆t
− F (x i )

∣∣∣2 − Ji

)
Ji = Jacobian

Use the Path-Space HMC machinery
to sample double ended paths. Potential︸ ︷︷ ︸

−−−−−−−→︸ ︷︷ ︸
Energy



Numerical Tests: Comparisons

B(s) =
1

T

∫ T

0
dt Θ(x

(s)
t ) ≈ 1

N

∑
i

Θ(x
(s)
i )

Red: Ito-Girsanov Green: OM Blue: Midpoint
Orange Dashed Line: Equilibrium Thermodynamics



Question

What do these results show?
Is the continuous time limit singular ?

To answer this: first examine Brownian trajectories.

xi+1 = xi + F (xi ) ∆t +
√

2 ε∆t ξi

Iterate the Euler-Maruyama equation for a fixed time period.

I Plot a Histogram of the endpoints.

I For each trajectory, plot the value of the Osager-Machlup
function vs. the ending position.



OM functional is effectively ”flat”
Do many ”forward” integrations of Brownian Motion, fixed
starting point. Form many free trajectories and look at IOM as a
function of the endpoint.



Brownian Dynamics: sampling the Boltzmann distribution

Perform many ”forward” (numerical) integrations of Brownian
Dynamics (using the discrete SDE) with a fixed starting point.
Look at a histogram of the ending positions of these trajectories.



OM functional is effectively ”flat”
Perform many ”forward” integrations of Brownian Dynamics.
Look at IOM as a function of the endpoint of these trajectories.



What about short trajectories?

Do many ”forward” integrations of Brownian Motion, with a fixed
starting point. Compare values of IOM for trajectories that contain
at least one transition from those that do not contain any.

Clearly the values of IOM are distributed similarly for both types of
trajectories. IOM cannot be used to discriminate between the two.



Observations – for any iterative sequence with ∆t > 0

I The value of the OM functional is effectively flat.

I One cannot use the value of the OM function to differentiate
paths that contain a transition from those that do not.

I No path is more probable than another.

I The multiplicity determines the probability of ending at a
particular place - reproducing the Boltzmann distribution.

I For sampling doubly-constrained paths, the Ito-Girsanov
measure produces unphysical results.

Next: Explore the underlying mathematics.



Compare the OM functional with its continuous time limit.

IOM =
1

2 ε

∑
i

∆t

(
1

2

∣∣∣∆x

∆t
− F (xi )

∣∣∣2)

I IGOM =
1

2 ε

∑
i

∆t

(
1

2

∣∣∣∆x

∆t

∣∣∣2 + G (xi )

)
To understand what is going on, it is illustrative to concentrate on

how the cross term becomes proportional to the Laplacian of the
Potential in the continuous time limit.

When does
∑
i

∆t
∆x2

∆t
U ′′(xi ) become

< ∆x2 >

∆t

∑
i

∆t U ′′(xi ) ?

Answer: When ∆x is uncorrelated with the position of the particle.

In the continuous time limit, Ito proved that this is indeed the case.



Compare the OM functional with its continuous time limit.

IOM =
1

2 ε

∑
i

∆t

(
1

2

∣∣∣∆x

∆t
− F (xi )

∣∣∣2)

I IGOM =
1

2 ε

∑
i

∆t

(
1

2

∣∣∣∆x

∆t

∣∣∣2 + G (xi )

)

In the sampling process, a successful algorithm will generate paths
that minimizes IOM .
Using I IGOM the sampling algorithm evidently finds paths that are
similar to the ”MPP,” where the Laplacian of U dominates,
The multiplicity of such paths is large, and becomes infinite in the
continuous time limit.
The unphysical MPP-like paths differ from the uncorrelated paths
in (only) a small number of low frequency modes.
The expression for IOM does not contain such pathologies.



Consider free Brownian Motion.
I IOM diverges in the continuous time limit.

I The function P(x , t; x ′, t ′) is only conditionally convergent.

I Specifically P(x , t; x ′, t ′ > t) is conditionally convergent.

P =
( 1√

4π ε∆t

)Nt
∫
D[x ] exp

(
− 1

4ε

∑
∆t

∣∣∣∣∣∆x

∆t

∣∣∣∣∣
2)

I In the continuous time limit, both the numerator and
denominator diverge.

I One can get something sensible if one integrates over each
intermediate position in turn: forward integration.

I Interchanging the order of operations
⇒ one can get an indeterminate value.

The continuous time limit is singular!



What happens in the Continuous Time Limit ?

P∆t =
( 1√

4π ε∆t

)Nt
∫
D[x ] exp

(
− 1

4ε

∑
∆t

∣∣∣∣∣∆x

∆t
− F (xi )

∣∣∣∣∣
2)

I Both the numerator and denominator diverge.

I Integrating forward in time ⇒ the noise and the particle
position are uncorrelated ⇒ Ito’s Theorem holds.

I Interchanging the order of operations
⇒ one can get an indeterminate value.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Now consider:

P

P0
= lim

∏∫
dxi exp

(
− 1

2ε
∆t G (xi )

)
or this

P

P0
=

∫
D[x ] exp

(
− 1

2ε

∑
∆t G (xi )

)
Does changing the order of operations, change the answer?
This is the wrong question to ask.



Conclusions

I The Onsager-Maclup (OM) functional is the same for
for thermodynamically-allowed paths.

I The OM functional is not the Thermodynamic Action.
It cannot be used to differentiate paths that contain a
transition from those that do not.

I The continuous-time limit is only conditionally convergent.
(Not to be confused with the Radon-Nikodym derivative.)

I The continuous-time limit is singular; the limit sequence
has a noncommutative map.

I Ramifications in other areas: control theory, uncertainty
quantification (UQ), finance, etc..

I Double ended Quantum paths behave differently from their
classical analog.

I The quantum single particle propagator is better behaved
than the classical equivalent: P (x−, 0; x+, t)



What I would like you to take home

Here I presented a series of numerical calculations that make one
question some long-held ideas.

I The OM functional has the same value for each physically
allowed path. A MPP (most probable path) does not exist.

I Using a HMC algorithm with the Ito-Girsanov measure, we
found that an ensemble of paths that are similar in nature to
the mislabeled unphysical MPP.

The Crux of the Problem
The premise that the function P (x , 0; x ′, T ) exists.
When T > 0, P (x , 0; x ′, T ) is conditionally convergent.
When T < 0, P (x , 0; x ′, T ) has an indeterminant form.

The continuous time limit for path measures is singular.



Using a ”bimodal’ noise
Use sn = ±1: xn+1 = xn + ∆t F (xn) +

√
2ε∆t sn

Figure: Histogram of endpoints from iterating the above equation plotted
along with the Boltzmann factor (solid line) using the ”narrow-broad”
potential. Calculation used ε = 0.25, T = 100, and ∆t = 1 × 10−3.



Using the continuous time measure

Results from path sampling
Expected histogram
(partition function)


