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Abstract
I present calculations of doubly-constrained paths for a particle
undergoing Brownian dynamics and moving in an external
potential. Using the lens of the Metropolis algorithm, I
construct Onsager-Machlup-like functionals for a discrete time
mesh. I then use the path ensemble to estimate the free
energy difference between the starting and ending states.
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Outline

I Algebra: Brownian Dynamics and the OM functional

I HMC: review and connection to Brownian Dynamics

I Sampling paths
Auxiliary variables, Mass, Splitting, Error
Determining how long to integrate Hamiltion’s equations

I Results (two-dimensions) Paths and Free energy difference



The Framework

We look at a particle moving in an external potential, V (x),
where x denotes the position of the particle.

The components of the force are given by Fα(x) = − ∂V
∂xα

.

The temperature (in energy units) will be represented as ε.

The time increment along the path is ∆t.

The ”length” of the path is the integration time and is given by T .

The evolution of the path will be in steps of ∆τ = h̃ 2/2.



Brownian Dynamics – Stochastic Differential Equation
The usual discretization of the SDE is

xi+1 = xi + ∆t F (xi ) +
√

2 ε∆t ξi

where ξi is a Gaussian random variate (unit variance and mean zero).
The probability of the path starting at x0 and t = 0, with
T = Nt ∆t, is

P∆t(x0, T ) =
1√
2π

∏
i

exp
(
−
ξ2

i

2

)
The OM (Onsager-Machlup) functional is given by

IOM =
1

4 ε

∑
i

∆t

∣∣∣∣∣ (xi+1 − xi )

∆t
− F (xi )

∣∣∣∣∣
2

With the path probability

P∆t(x0, T ) =

(
1√

4π ε∆t

)Nt

exp
(
− IOM

)



Path Sampling

Hold the starting and ending positions fixed.

ĨOM =
1

2

∑
i

∆t

∣∣∣∣∣ (xi+1 − xi )

∆t
− F (xi )

∣∣∣∣∣
2

Use importance sampling with logP = C − 1
2 ĨOM/ε to create an

ensemble of paths.

Here we use a Hybrid Monte Carlo (HMC) algorithm using
auxiliary variables.

Next Steps:

I Derive various OM-like functions.

I Describe the HMC method employed.

I Display Results



Configuation Space Sampling using HMC

Boltzmann Probability: P ∝ exp
(
−V (x)/ε

)
Hamiltonian: H = 1

2v
2 + V (x)

Auxiliary (Gaussian-distributed) variable (velocity): v

Temperature: ε Starting position x0

Choose the velocity: v =
√
ε ξ Evolve Hamilton’s equation

Leap-frog (MD time step h)

MD step x1 = x0 + h v +
h2

2
F (x0)

Iterate ”MD step” a number of times, then accept or reject last
configuration using the Metropolis-Hastings-Green criterion.



Connection to Brownian dynamics

MD step x1 = x0 + h v +
h2

2
F (x0)

If we only take a single MD step and define ∆t = h2

2 , we arrive at

x1 = x0 + ∆t F (x0) +
√

2 ε∆t ξ,

which is the Euler-Maruyama equation.

This point explains why Brownian dynamics does such a
reasonable job of sampling the Boltzmann distribution for
sufficiently small time steps.



Using other quadratures in HMC
Temperature: ε Starting position x0

Choose the velocity: v =
√
ε ξ Evolve Hamilton’s equation

General MD step x1 = x0 + h v +
h2

2
F̃ (x0, x1)

Transformation {x0, v} ⇒ {x1, v
′} is not necessarily symplectic.

The acceptance criterion depends on the Jacobian as well as energy
conservation. The midpoint rule gives the highest acceptance rate
for a choice of h (of the four methods considered).

Method Average Force: F̃ (xi , xi+1) Jacobian ∆Et

Trapezoid 1
2

(
F (xi ) + F (xi+1)

)
J = 1 + O(h2) O(h3)

Midpoint F
(

xi +xi+1

2

)
J = 1 O(h3)

Simpson’s 1
6

(
F (xi ) + 4F

(
xi +xi+1

2

)
+ F (xi+1)

)
J = 1 + O(h2) O(h5)

Table: The average force F (xi , xi+1) that is acting as the system evolves
from xi to xi+1 for the three methods.



OM-like functionals: 1-dimensional case

For the transformation {x0, v0} ⇒ {x0, x1},
the Jacobian, J = ∂v0/∂x1 is given by

I Trapezoid:
√

2 ∆t J = 1− ∆t
2 F ′(x1)

I Midpoint:
√

2 ∆t J = 1− ∆t
2 F ′

(
xi +xi+1

2

)
I Simpson’s:

√
2 ∆t J = 1− ∆t

6

(
F ′(x0) + 2F ′

(
xi +xi+1

2

))
Note that 2ε

∆t log (J) ≈ c − εF′ which, when provides the Laplacian
term in the definition of G in the continuous time limit.

ĨQ
OM =

∑
i

∆t

(
1

2

∣∣∣∣∣(xi+1 − xi )

∆t
− F̃ (xi )

∣∣∣∣∣
2

+
2ε

∆t
log
∣∣∣ det(J)

∣∣∣)
For dimensions larger than 1 and for systems consisting of more
than a single particle, the Jacobian becomes a matrix. The
complexity of the calculation quickly increases as one changes
either.



Sampling Brownian paths using HMC

The OM functional

ĨQ
OM =

∑
i

∆t

(
1

2

∣∣∣∣∣(xi+1 − xi )

∆t
− F̃ (xi , xi+1)

∣∣∣∣∣
2

+
2ε

∆t
log
∣∣∣ det(J)
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Sampling Brownian paths using HMC

The OM functional

ĨQ
OM =

∑
i

∆t

(
1

2

∣∣∣∣∣(xi+1 − xi )

∆t
− F̃ (xi , xi+1)

∣∣∣∣∣
2

+
2ε

∆t
log
∣∣∣ det(J)

∣∣∣)

ĨQ
OM =

1

2
< X | L |X > + < 1 |Φ >

where the operator L is the discrete version of L = − ∂2 /∂t2.



Sampling Brownian paths using HMC

ĨQ
OM =

1

2
< X | L |X > + < 1 |Φ >

where the operator L is the discrete version of L = − ∂2 /∂t2.

Add Gaussian distributed auxiliary variables (free Brownian Bridge)

Heff =
1

2
< v | L | v > +

1

2
< X | L |X > + < 1 |Φ >

where the mass operator M has been chosen to be the same as L.



Hamilton’s equations

Mass operator Mop is L = − ∂2 /∂t2 (the discrete version).
And L−1 is defined with the appropriate boundary conditions.

Heff =
1

2
< v | L | v > +

1

2
< X | L |X > + < 1 |Φ >

L v̇ = −LX − Φ
′

v̇ = −X − L−1φ

Ẋ = v Ẍ = −X − L−1φ

For Φ = 0, these equations reduce to mixing of Brownian Bridges
with 100% acceptance.

For Φ = 0, all modes have the same frequency 2π.



Splitting Hamilton’s equations (symplectic)

equations of motion: v̇ = −L−1φ− X Ẋ = v

Half Step v̇ = −L−1φ vh − v0 = −1
2 h̃ L−1φ(X0)

Full Step v̇ = −X vh − wh = −1
2 h̃
(
X0 + X1

)
Crank-Nicolson Ẋ = v X1 − X0 = 1

2 h̃
(
vh + wh

)

Half Step v̇ = −L−1φ v1 − wh = −1
2 h̃ L−1φ(X1)

The middle step ensures that the quadratic variation is preserved,
as the step corresponds to mixing Brownian Bridges.



Hybrid Monte Carlo: ingredients

1. Need starting path – with ”correct” quadratic variation∑(
xi+1 − xi

)2
= 2 εT

2. Generate velocities – with ”correct” quadratic variation∑(
vi+1 − vi

)2
= 2 εT

3. Integrate Hamilton’s equations: iterate the above method

Picked number Ns of steps so that π/2 < Ns h̃ < 3π/2

4. Acceptance step: proposed path may be rejected

Symplectic property ensures that the error in the
effective energy is bounded (when h̃ is small).



Error in the ”Energy”

Remember that the OM function grows with the number of
intervals; thus as ∆t → 0, the value of the OM functional grows
without bounds.

One of the virtues of the numerical scheme is that the error in the
effective energy can be calculated without subtracting large
numbers.

And that the symplectic nature of the numerical scheme means
that this error is bounded.

The numerical scheme is particularly good at handling the high
frequency modes. The L−1 is a smoothing operator as it
corresponds to doubly integrating the function upon which it acts.
Thus the Fourier components of L−1φ become small beyond some
cutoff frequency. The numerical scheme is exact when Φ vanishes.



Error in the ”Energy”

∆Eeff

(
X0 → X1

)
= < 1 |Φ(X1) > − < 1 |Φ(X0) >

−1

2
< φ(X0) + φ(X1) |X1 − X0 >

− h̃2

8
< φ(X1)− φ(X0) |X0 + X1 >

+
h̃2

8

(
< φ(X1) | L−1φ(X1) > − < φ(X0) | L−1φ(X0) >

)

The overall error for the Ns MD steps is simply the sum of the
errors for each step. Note that the last term telescopes – and thus
leads to the error having an oscillating behavior when viewed as a
function of (time) step. This gives the bounded error that was
promised by the symplectic nature of the method.



Looking at the error in the effective energy

Error as a function of the number of integration time
(determinisitic segment) h̃ ≈ 10−4

time (multiples of π)



Path Evolution during the deterministic step
Distance as a function of the number of integration time
(determinisitic segment) h̃ ≈ 10−4

Blue: dX ∝
∑

i

(
xi (t)−xi (0)

)2
Gold: dY ∝

∑
i

(
yi (t)−yi (0)

)2

time (multiples of π)



Exploring a two-dimensional case

Potential Contours
Histogram
(results from forward integration)



Using the midpoint discrete time measure

Results from path sampling
Expected histogram
(partition function)



Using the continuous time measure

Results from path sampling
Expected histogram
(partition function)



Generating Free Energy differences

I Times - doesn’t work

P2

P1
=

T2

T1
=

Z2

Z1
∆F = −ε log

Z2

Z1

I Explicit Calculation - doesn’t work

∆F = −ε log

∑
2 exp (−U/ε)∑
1 exp (−U/ε)

I Quasi-Harmonic Approximation - promising

∆F =
∑

2

U −
∑

1

U − ε

2
log

(
detCoVar2
detCoVar1

)

Gibbs-Bogoliubov variational method Jensen’s inequality
Cross Entropy method Kullback-Leibler divergence



Generating Free Energy differences

Estimated Free Energy difference: −0.032, Standard Deviation 0.013
Actual Free Energy difference: −0.029
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Deep Narrow Well – Shallow Wide Well

36% 64%



Deep Narrow Well – Shallow Wide Well

Path Sampling

36% 64%



Generating Free Energy differences

Estimated Free Energy difference: −0.121, Standard Deviation 0.005
Actual Free Energy difference: −0.117



Path Sampling

Looked at two types of transitions:
Entropic Barrier and Energy Barrier

I Generated an ensemble of paths

I used a discrete time mesh in the original SDE

I used HMC with a specific choice for the mass matrix

I ensembles are consistent with the Boltzmann distribution

I Approximate Free Energy differences can be extracted

Sampling using the continuous-time limit of the OM functional:
generated unphysical results.


