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The General Problem

Consider molecules, or clusters of atoms: The Free-Energy
Landscape has many wells which are separated by barriers. Some
may be large and all may shift with temperature or external field.

Such transitions are rare when the barrier is large compared to the
available thermal energy. How do we find the paths that
describe the transitions to the new equilibrium state when
such events are rare? A possible solution: constrain paths to
make the desired transition, sample these paths in a
thermodynamic significant manner.

Here we use a Hybrid Monte
Carlo Method to sample
transitions in small clusters
interacting via two-body
Lennard-Jones potentials. 2.00.5 1.0 1.5
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Lennard-Jones: 13 atoms
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Jellinek, Beck and Berry, J. Chem. Phys., 1987.
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Starting Point - Brownian Dynamics

Sample Boltmann Distribution: PB ∝ exp (−V /T )

dx = F du +
√

2T dW = T D logPB du +
√

2T dW

F is the force F = −DV
T is the temperature
u is the time along the path
U is the time length of the path
dW is the standard Wiener Process

If a large energy barrier exists, the transition becomes a rare event.

The aim of this work is to find an efficient way of sampling the
transition paths themselves in a thermodynamically significant
manner.



Brownian Paths

Finite Representation of a path

xi+1− xi = Fi∆u +
√

2T ∆u ξi with PG (ξ) = 1√
2π

exp
(
− ξ2

2

)

Note: Path is continuous and almost nowhere differentiable.

Quadratic Variation

Qv =
∑

i

(
xi+1 − xi

)2
= 2T U

U is the length of the path and T is the temperature

The grid space ∆u must be sufficiently small to resolve the
quadratic variation.

The high-frequency modes are dominated by noise.



Onsager-Machlup Functional

xi+1 − xi = Fi∆u +
√

2T ∆u ξi with PG (ξ) = 1√
2π

exp
(
− ξ2

2

)
The path probability can be constructed (OM functional)

πpath ∝
∏
i

exp
(
−
ξ2
i

2

)
= exp

(
−∆u

4T

∑
i

(
∆x

∆u
− Fi

)2
)

Now consider a double ended path: fix both ends. These boundary
conditions are chosen so that the starting configuration lies in one
free-energy basin, and the other end lies in another basin.

The relative probability of such a path is expressed in terms of the
path positions themselves. The noise history is implicitly included
in the expression.



Continuum Limit

OM Functional: πpath ∝ exp
(
−∆u

4T

∑
i

(
∆x
∆u − Fi

)2)
Continuum Limit (The Measure – informally)

πpath ∝ exp
(
− I0

2T

)
where I0 = −1

2〈x , Lx〉+ 〈1, G (x) 〉

〈...〉 is the usual inner product,
L = d2/du2 (non-positive) and
G = 1

2 |DV |
2 − T 4V

The function G is sometimes denoted as the path potential.
In the continuum limit, G contains the Laplacian of the particle
potential. Note, that in equilibrium, E

(
|DV |2

)
= T E (4V ),

Need Girsanov’s theorem and Ito’s formula to justify these steps.



Langevin Sampling

Let the path evolve as a function of algorithmic time t:

∂x

∂t
= 2T D log πpath +

√
4T

∂w

∂t
=
∂2x

∂u2
+ DG +

√
4T

∂w

∂t

This is subject to the imposed Boundary Conditions.

Stiff: different modes have different relaxation times.

Use ”preconditioning,” to arrive at the SPDE:

∂x

∂t
= −x + L−1 DG +

√
4T

dB

dt

with the last term being the unit Brownian Bridge, and again
L = d2/du2

All modes evolve at the same rate (democratic).



Metropolis Adjusted - Smart Monte Carlo

We want to sample paths from the measure (almost surely infinite),

that we can write informally as πpath ∝ exp
(
− I0

2T

)
with I0 = −1

2〈x , L x〉+ 〈1, G (x) 〉

Use an approximation to ∂x
∂t = −x + L−1 DG +

√
4T B(t)

as a (biased) way of generating a proposed path evolution.
Use a Metropolis-Hasting criterion to accept or reject the proposal.

Set ∆t in the approximation of the SPDE to allow efficient
movement through path space.

Proposed moves using small values of ∆t tend to be accepted but
a large number of steps are needed to move appreciably far away
from current path.
Proposed moves using large values of ∆t tend to be rejected as
the integration errors become prohibitively large.



Hybrid Monte Carlo (HMC)

We want to sample paths from the measure

πpath ∝ exp
(
− I0

2T

)
and I0 = −1

2〈x , L x〉+ 〈1, G (x) 〉

Augment I0 to include ”Kinetic Energy” thereby forming I:
I = 1

2〈p, M
−1p〉 − 1

2〈x , L x〉+ 〈1, G (x) 〉
where M is the mass matrix.
The path p is composed of auxiliary variables, corresponding to
momenta: they are conjugate to x , they do not alter the stationary
distribution of paths and their (Gaussian) distribution is known.

HMC has four (4) ingredients.

1. Choice of mass Matrix M.

2. Hamiltonian Flow

3. Integrator that is reversible and volume conserving

4. Accept/reject criteria (based on ”energy drift”)



HMC - Mass Matrix

The effective Hamiltonian can be informally written as

I = 1
2〈p, M

−1p〉 − 1
2〈x , L x〉+ 〈1, G (x) 〉

We choose M = −L. (non-negative)

I = −1
2〈v , Lv〉 −

1
2〈x , L x〉+ 〈1, G (x) 〉

By inspecting the above equation for I, we see that we get the
desired feature that the modes evolve at the same rate in the
absence of G .

The paths x and v are conditioned bridges, both having the same
quadratic variation.



HMC - Hamiltonian Flow

The effective Hamiltonian can be informally written as

I = −1
2〈p, L

−1p〉 − 1
2〈x , Lx〉+ 〈1, G (x) 〉

Use Hamilton’s equations:

∂x

∂t
=
∂ I
∂p

= −L−1 p

∂p

∂t
= −∂ I

∂x
= L x − DG

We can combine these and get

∂2x

∂t2
= −x + L−1DG

Note: we have seen something similar to the above equation.



HMC - Integrator

Consider the second order equation and convert it to

v =
∂x

∂t
and

∂v

∂t
= −x + L−1DG

Splitting of the Verlet integrator:

1. Half step wi = vi + h
2 L−1DGi

2. Full step – Rotation(
xi+1

wi+1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
xi
wi

)
3. Half step vi+1 = wi+1 + h

2 L−1DGi+1

cos θ = cos h or
4− h2

4 + h2
sin θ = sin h or

4 h

4 + h2

Integration scheme is Reversible and Volume Conserving.
For finite representations, this Verlet splitting preserves the
Quadratic Variation of the evolving path.



HMC: Metropolis-Hastings Criterion

The value of I is almost surely infinite in the continuum limit.
Must devise a method to calculate differences in I as the path
evolves without subtracting large (possibly infinite) numbers.
At the end of MD step, i + 1, ∆I = Ii+1 − Ii can be tracked.

∆I = 〈1,Gi+1〉−〈1,Gi 〉+
h2

8

(
〈DGi , L

−1DGi 〉−〈DGi+1, L
−1DGi+1〉

)
− h

2 sin θ

(
〈DGi+1, xi+1 − xi 〉 − 〈DGi , xi − xi+1〉

)
Accumulate the changes as one performs MD integration.
Note the first terms in ∆I ”telescope.”
If step size, h, is small, drift in I is minimal, the evolved path will
be accepted. For large step sizes, the integration error will be
substantial, and the entire sequence of paths will be rejected.



Lennard-Jones: building the 13-atom cluster
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Lennard-Jones Clusters: kT/ε =0.13

For the 13-atom cluster, we considered the transition from its
ground state to a conformation where one atom sits on the
surface, and a ”dimple” exists on the opposite side.
For the 14-atom cluster, we considered the process that starts with
the ”extra” atom on one side of the cluster and ends with the
”extra” atom on the other side.
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Figure: LJ13: Energy along the path.
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Lennard-Jones cluster: inspecting the transition
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HMC - Some Numerical Aspects

The effective Hamiltonian for Np in Nd dimensions can be written

as I =
∑

i α

(
− 1

2〈vi α, Lvi α〉 −
1
2〈xi α , Lxi α〉

)
+ 〈1, G (x) 〉.

On a finite grid, using the quadratic variation of the conditioned
Brownian Bridges, both the first and second terms become Nu×T ,
where T is the temperature and Nu is the number of divisions
along the path. To keep the quadratic variation of the path nearly
constant, the last term must be small compared to the other two.
If one uses Ḡ as an average value of G , then ∆u = U

Nu
>> Ḡ

NpNdT
.

The value of Ḡ can be approximated by its equilibrium average.
Thus for these clusters we take ∆u ≈ 0.0001, with Nu ≈ 1

2 106.

For the time step h used in the deterministic integration, we have
chosen h = 0.00024 which gives an acceptance rate of over 90%.
We then integrate over NMD steps. We chose NMD ≈ 15000 to
give the product NMDh a value somewhere between 1 and 3.



Messages to take Home

I Discussed the general problem: sampling transition paths,
when the starting and ending configurations are known.

I Explained how to implement a Hybrid Monte Method in Path
Space to do such sampling

I Studied small Lennard-Jones clusters (13 and 14)

I Showed how the sampling was able to describe a transition,
even though the initial path was quite naive (expansion of the
belt of 10)

I The Lennard-Jones systems at low temperature are a severe
test of the method – the r−12 part of the potential is quite
steep: the resulting equations are very stiff

I Even for such simple systems: HMC in path space provides
new physical insights

I Next step: transitions in larger molecules (softer potentials)



Lennard-Jones Clusters: kT/ε =0.13

For the 13-atom cluster, we considered the transition from its
ground state to a conformation where one atom sits on the
surface, and a ”dimple” exists on the opposite side.
For the 14-atom cluster, we considered the process that starts with
the ”extra” atom on one side of the cluster and ends with the
”extra” atom on the other side.
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Figure: LJ14: Energy along the path.
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Lennard-Jones cluster: inspecting the transition
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