2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Facilitating End-User Developers by Estimating
Time Cost of Foraging a Webpage

Xiaoyu Jin, Nan Niu

Department of Electrical Engineering and Computer Science

University of Cincinnati
Cincinnati, OH, 45221, USA
jinxu@mail.uc.edu, nan.niu@uc.edu

Abstract—During programming, end-user developers con-
stantly go to search engines to seek for information. The search
engine is of significant help since it ranks the webpage links
according to relevance. However, the time cost of foraging a
webpage also affects if and how soon a developer can obtain
a satisfying answer. In this paper, we use operationalizable
constructs from Information Foraging Theory to identify two
features: information accumulation and information amount for
a webpage, which we hypothesize could assist developers in
selecting appropriate webpages. We then invited 20 participants
to perform a lab experiment of two software change tasks. The
results supported our hypothesis by two findings. When having
the tool support, the participants used less task completion time,
and tended to visit more easy-to-forage webpages.

I. INTRODUCTION

Developers, both novices and experts alike, constantly use
web search engine as an opportunistic approach to program-
ming, emphasizing speed and ease of development over code
robustness and maintainability [3]. The search engine is of
significant value since it not only filters oceans of information,
but also ranks webpage links according to relevance. However,
situation exists that a developer was sure that he selected a
webpage containing the needed information but it turned out
that he was overwhelmed by the large amount of info in the
webpage. This situation reflects that having only relevancy
may not be enough in identifying an optimal webpage link.
The cost of foraging a webpage can provide supplementary
information which could prevent developers from jumping into
trouble such as being overwhelmed and lost focus.

Recently, Piorkowski et al. [21] used Information Foraging
Theory [26] to study developers’ ability to predict the value
and cost of their investigation decisions. They found that over
50% of developers’ navigation choices produced less value
than they had predicted and nearly 40% cost more than they
had predicted [21]. Their study revealed open problems in
predicting the value and cost of navigation decisions. Related
to our study, they pointed out the cost estimation problem
regarding how to enable developers to more accurately predict
the foraging cost they will incur before they incur them [21].

Motivated by Piorkowski et al.’s [21] work, we focus on
analyzing time cost of foraging a webpage. We identify two
factors of information accumulation and information amount

978-1-5386-0443-4/17/$31.00 (©2017 IEEE

31

Michael Wagner
Division of Biomedical Informatics
Cincinnati Children’s Hospital Medical Center
Cincinnati, OH, 45229, USA
michael.wagner@cchmc.org

for a webpage, which could assist developers in selecting
appropriate webpage links. Our overall hypothesis is that by
comprehensively considering the webpage’s relevancy, infor-
mation accumulation, and information amount, developers can
find useful information easier and faster.

In this paper, we develop tool support to automatically
extract two features for a webpage: information accumulation,
and information amount. To evaluate our tool support, we in-
vite 20 end-user developers to perform a lab experiment of two
software change tasks. The results validated our hypothesis by
two findings. When having the tool support, the participants
used less task completion time, and tended to visit more easy-
to-forage webpages. The key contribution of our work lies in
the identification of two hints: information accumulation and
information amount for a webpage, which could facilitate end-
user developers’ web search process.

II. BACKGROUND AND RELATED WORK

In terms of web navigation and predication, the work by
Chi and Priolli er al. [4] has significant contribution, especially
the models of WUFIS (Web User Flow by Information Scent)
[6] and SNIF-ACT (Scent-based Navigation and Information
Foraging in the ACT architecture) [24]. They use information
scent construct from Information Foraging Theory to perform
rational analysis on users’ navigational behavior [5], [26].
They develop architecture and system for the analysis and
prediction of user behavior and web site usability, which
provides significant value in applications of personalized web
environments, web site design, and help identify parts of a web
site as bad designs [5]. Our work in this paper is supplemental
to their work in two perspectives: (1) we aim to serve web
users to help them navigate efficiently, while their work mainly
aim to assist web designers to identify bad design and develop
better website; (2) we consider reducing cost to achieve higher
efficiency, while their strategy mainly concerns about the value
of contents and information scents on webpage.

Holmes et al. [8] described their approach to finding source
code examples in which the structure of the source code that
the developer is writing is matched heuristically to a repository
of source code. Ten examples are returned to the users and
ranked according to structural similarity based on four heuris-
tics: inherits, calls, uses (a relaxation of the calls heuristic), and

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

references. The ranking and the returned knowledge of graph-
ical overview and textual rationale description can be used
by developers to quickly decide whether the recommended
example is worth examining more closely thereby achieving
cost evaluation and reduction. A few previous studies consider
humans as a valuable resource. Minto and Murphy [17] intro-
duced Emergent Expertise Locator (EEL) that uses emergent
team information to propose experts to a developer within their
development environment as the developer works. DeLine et
al. [7] introduced Team Tracks that rely on human further to
use the combined data across all team member. While this tool
is not to recommend members, it uses the team’s navigation
data to filter the typical hierarchical information about the
program. To summarize, these studies mainly focus on the cost
estimation and reduction for the source code level activities.
Our study is supplementary to these efforts since our study
focuses on the evaluation and reduction for the cost of foraging
webpages, which contain highly diverse information.

III. OUR APPROACH

Our overall hypothesis is that by comprehensively consid-
ering the webpage’s relevancy, information accumulation, and
information amount, developers can find useful information
easier and faster. Since relevancy has already been provided by
the search engines, our approach focuses on the remaining two
features of information accumulation and information amount.

The first feature of information accumulation is adopted
from Information Foraging Theory, which was originally in-
spired by appeals in the psychology literature for an ecological
approach to understanding human information-gathering and
sense-making [23]. Pirolli [23] laid out the basic analogies
between food foraging and information seeking: predator (hu-
man in need of information) forages for prey (the information
itself) along patches of resources and decides on a diet (what
information to consume and what to ignore). The theory has
been successfully applied in areas of software development [2],
[13], [14], [15], [20], code navigation [9], [12], [18], [19], and
website design and evaluation [6].

The patch model is a core component of information
foraging theory. For instance, imagine a bird that forages
for berries found in patches on berry bushes. A forager first
needs to expend some between-patch time getting to the next
food patch. Once in a patch, the forager needs within-patch
time to forage food and also needs to decide when to stay
or leave this patch for the next one [25]. A patch can be
constructed differently such as a book, a webpage, a source
code file, a code fragment, or even a line of code, etc. As
shown in Fig. 1, the Charnov’s marginal value theorem [25]
depicts that as the foraging time within the patch increases,
the cumulative amount of useful information (represented as
g(tw)) gained from the patch increases. The curve is increasing
but with a decreasing speed based on the assumption that there
will be diminishing valuable information gained in a patch as
time progresses. The assumption is based on the observations
that forager generally will prioritize to forage more valuable
information and forager may get redundant information in later

32

Gain
R
g(tw)

: » Within-patch
time

Between-patches 4

time tg

Fig. 1: Charnov’s marginal value theorem adopted from [25]:
the rate-maximizing time to spend in patch t* occurs when
the slope of the within-patch gain function, g, is equal to the
average of gain, which is the slope of the tangent line R. “tg”
and “tw” represent between patch time and within patch time
respectively.

Cumulative gain
9(tw)

I

-— ty

Within-patch time

ts

Between-patches time
Fig. 2: Foraging curve adopted from [25]: A linear, finite
cumulative within-patch gain function.

time which replicates information encountered earlier [25].
Further, Charnov’s marginal value theorem was developed to
predict that in order to achieve the maximum rate of foraging
information, a forager should remain in a patch so long as the
slope of g(ty) is greater than the average rate of gain, R, for
the environment, as shown in Fig. 1.

However, when applying the patch model to the webpages
in our study, we found a problem that the foraging curves
for webpages are not always like the shape in Fig. 1, which
increases with a decreasing speed, because the structures and
organizations of webpages could vary significantly. The patch
model assumed that the forms of patches are more or less
similar to each other, which is not the case for webpages. Our
observation is validated in Pirolli and Card’s paper [25] that
they described an example whose foraging curve is linearly
increasing as shown in Fig. 2. The example depicted that
an information forager who collects relevant citations from
a finite list of citations returned by a search engine, where the
relevant items occur randomly in the list.

Following the observation, we further analyzed more web-
pages and found two additional shapes of foraging curve and
summarized the foraging curves into four categories. The first
category was depicted in Fig. 1, meaning that the contents
of a webpage is ranked according to certain standard. Q&A
website is a typical example such as Stack Overflow, Quora,
Answers.com, and Yahoo Answers, because these webpages
ranked the answers according to users’ voting. We name the
first category as Ranked Foraging. The second category was
depicted in Fig. 2, indicating that the forager can linearly get
information from a webpage. The webpages containing listed
items belong to the second category. For instance, an API

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Gain Gain

Left Patch

Foraging Time

Foraging Time

(a) (b)

Fig. 3: Foraging curves: (a) Conceptual Foraging; (b) Answer
Seeking Foraging.

website for a software system, which lists the functions can
be used. The number of functions learned is roughly linear
to the time spent. We name the second category as Linear
Foraging. The third and fourth categories are shown in Fig. 3-
(a) and Fig. 3-(b) respectively. The third category represents
the situation when the goal of the forager is not to seek for in-
formation, but to study certain concept. The knowledge learned
is accumulated gradually and exponentially, and forager may
get to a tipping point to achieve an in-depth understanding.
Wiki and blog websites could be examples for such foraging
goal because they aims to convey knowledge comprehensively.
We name this category as Conceptual Foraging. The fourth
category represents the situation that the forager is seeking
a piece of specific information from a webpage. Before he
found the answer, the gain was always near to zero. For
instance, in a forum webpage, there are posts from many
people discussing a topic. The forager scans the webpage
and skips the unrelated discussions to his needs, and when
he finds the right answer and solves his problem, he would
leave the webpage without continuing reading the remaining
contents. We name this category as Answer Seeking Foraging.
We summarized the four categories of foraging curves as a
feature named information accumulation.

Another tool feature is to quantify the amount of informa-
tion in a webpage. We use number of words on a webpage
to estimate the amount of information since word is the most
important carrier for information. People can generally read
about 300 words in a minute [1]. Dividing the word count by
this speed, we obtain the approximate time needed to forage
a webpage. Having the two features, we then developed tool
support which will extract and return features of information
accumulation and information amount as shown in Fig. 4.
Fig. 4 displays the first five result links returned by Google
search engine when searching “java double to string”. From
the information accumulation and information amount infor-
mation in Fig. 4, first link and third link are two good options
to forage because the first link contains ranked information and
the third link contained the least information, which requires
only 0.5 minutes approximately to forage. This example can
somewhat reflect the value of our tool support, which is to
have another layer of information filtering besides relevancy.

IV. EVALUATION DESIGN

To evaluate our tool support and hypothesis, we performed
a lab experiment. Our independent variable was our designed

33

java - Converting double to string - Stack Overflow
stackoverflow.com/questions/5766318/converting-double-to-string *

. 1902 words (6.3 mins)

Apr 23, 2011 - 1 am not sure it is me or what but | am having a problem converting a .. double fotal =

44; String total2 = String valueOf(total).. This will convert

Java Double To String Examples - JavaDevNotes
javadevnotes com/fjava-double-to-string-examples *

- 1118 words (3.7 mins)

Feb 18, 2015 - Here are some examples for performing the conversion: Convert using

Double toString(double) Convert using String valueOf(double) Convert using new

Double(double) toString() Convert using String format() Convert using DecimalFormat. Convert using
StringBuffer or StringBuilder. Quick Solution.

Convert using Double toString .. - Convert using String valueOf

You visited this page

Convert double to string : Convert « Language Basics « Java - Java2s
www java2s.com > Java » Language Basics » Convert

. 149 words (0.5 mins)
Convert double to string : Convert « Language Basics « Java
Java - double to string conversion - BeginnersBook
beginnersbook.com/2015/05/java-double-to-string/ *

. 422 words (1.4 mins)
There are following two ways to convert double to String: Method 1: Using valueOf() method public
static String valueOf(double d): We can convert the doubl
Double (Java Platform SE 7) - Oracle Help Center

hitps://docs.oracle.com/fjavase/T/docs/apifjava/lang/Double.html ~

. 4307 words (14.4 mins)

parseDouble. Returns a new double initialized to the value represenied by the specified String , as
performed by the valueOf method of class Double . Returns: the double value represented by the
string argument.

Fig. 4: An example result with our tool support, which shows
the first five results links when searching “java double to
string” in Google.

tool support that we wanted to test in a controlled manner.
We named our tool as CostEstimator. We select bioinformatics
researchers who develop biomedical software as target group
of end-user developer [11]. Twenty participants took part
in our experiment. These participants were recruited from
the local community via email invitations. To be eligible to
participant in our experiment, each individual had to consider
writing software as an essential (as opposed to accidental) part
of their work. Our participants had a varied background: 13
had no professional software development experience, 1 had
less than a year professional experience, 3 had 1-5 years, and
3 had more than 5 years.

The participants were asked to perform two software change
tasks with direct biomedical relevance. The reason for using
software change tasks is because participants mainly perform
software change tasks in their daily work. The tasks were
designed based on the intent to best simulate bioinformatics
researchers’ actual programming tasks. For each task, an open-
source software acted as the target system where the software
change was expected to take place. The tasks were named
after the software as ImageJ and StochKit respectively [11].
The participants worked individually in a lab and began by
signing the consent form and completing a background survey.
Each participant performed one task with CostEstimator and
the other without it. We counterbalanced both CostEstimator-
treatment order and the task order.

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

TABLE I: Comparison of task completion time: “Median”
means the median task completion time, “SD” represents
standard deviation.

Task Without CpstEstimator With CqstEstimator
Median (SD) Median (SD)
Tmage] 60 min (3.4) 47.5 min (2.7)
StochKit 74.8 min (4.5) 68.3 min (4.7)

TABLE II: Distribution of webpages according to the four
categories of foraging curves. The data are averaged from 20
participants.

Categories | ImageJ-without | ImageJ-with | StochKit-without | StochKit-with
Total 326 2538 206 6.7
Ranked 10.7 (33%) 10.9 (42%) 6.9 (33%) 74 (44%)
Linear 9.2 (28%) 5.6 (22%) 53 (26%) 38 (23%)
?e’z("l’sg 8.8 (27%) 6.2 (24%) 6.1 (30%) 3.4 (20%)
Conceptual 39 (12%) 31 (12%) 23 (17%) 21 (13%)

V. RESULTS AND ANALYSIS

When performing the software change tasks, the computer
screen was recorded as a video for each participant. Our results
are generated by analyzing these videos. The result of task
completion time for the 20 participants is presented in Table I.
Generally speaking, developers spent less time on the ImagelJ
task than the StochKit task. When the median completion time
is compared, the tool support of CostEstimator facilitated both
tasks to be finished faster. For Imagel task, it is a 20.8%
reduction from 60 to 47.5 minutes, and for StochKit task, it
is an 8.7% reduction from 74.8 to 68.3 minutes. However,
the effect is statistically significant only on the ImageJ task
(Wilcoxon signed rank test: p=0.0020, a=0.05) but not on
the StochKit task (Wilcoxon test: p=0.1235, a=0.05). We
speculate this is because the complexity of StochKit task
lies more in the original source code comprehension, and the
function that the participants need to write is relatively simpler
than Image]J task. For the StochKit task, the participants need
less external information from websites.

To study what changes our tool has brought about, we
calculated the distribution of webpages according to the four
categories of foraging curves. In specific, for each participant,
we analyzed all the webpages that were accessed. We then
partitioned the webpages into two groups by checking whether
a webpage is found with or without tool support. Then we
classified these webpages according to the four categories of
foraging curves. We count the number of webpages for each
category per participant, and then calculated the average for
each category. Table II summarizes the results, which are the
distribution of the number of webpages in the four categories
of foraging curves. We can see a general trend that when
performing tasks with the tool CostEstimator, the number of
visited webpages is reduced. Our further analysis found that
this is because participants go to fewer webpages that are less
useful to their task with the tool support.

In order to compare the data generated having or not having
tool support, we transformed the data into percentage data (Ta-
ble II and generated Fig. 5. From Fig. 5, for both ImageJ and
StochKit tasks, when having tool support from CostEstimator,

34

DO without CostEstimator B with CostEstimator

o
S h O
>0 0

0.35

o o
[e S
NG W

Average # of visited webpages
ge
&k

o /i

StochKit StochKit

0

Image) StochKit Image) StochKit Image) Image)

Ranked Foraging Linear Foraging Answer Seeking

Foraging

Conceptual Foraging

Fig. 5: A trend shifting to the Ranked Foraging category when
having tool support.

participants used more webpages from the Ranked Foraging
category, and used less webpages from categories of Linear
Foraging and Answer Seeking Foraging. Our further analysis
reveals the reason. We found that participants have more ques-
tions about the details of implementations than the conceptual
level question, which is also reflected in Fig. 5 that only a
few webpages used are in category of Conceptual Foraging.
Therefore, having the tool support will lead participants to
access more webpages from Ranked Foraging, from which
answers can be easily found. This observation explains how
our tool helps improve the efficiency from one perspective.

VI. DISCUSSION

We identified the foraging cost as an important supplement
to relevancy regarding the selection of webpages. However,
this observation is not limited to selection of webpages. Other
kinds of information patches, such as source code files in IDE,
tutorial documents, books, etc., may also require cost estima-
tion. There should be multiple ways to model and estimate
the cost of foraging an information patch. Our approach of
foraging curve and information amount is only one attempt
to respond to the call for actions in [21]. We also found that
developers prefer to access webpages belonging to Ranked
Foraging category. From this viewpoint, we can collectively
consider the information needs [10], [11] with the information
accumulation to provide better suggestions to developers.

From the search engine perspective, our study helps gen-
erate an idea of advanced search engine: (1) search engine
should not limit to the accuracy as the only ranking factor,
but should consider other factors such as cost, authors, ratings,
and recency, etc. [16]; (2) user should have the power to
select which ranking strategy to use according to their specific
foraging goal. We speculate that different foraging goals can
alter the forager’s strategies and behavior: a forager wanting
a best answer probably values ratings; a forager wanting only
a working solution probably values minimizing the cost; a
forager wanting an authoritative answer may value who wrote
the content.

ACKNOWLEDGMENT

This research is supported by the U.S. National Science
Foundation (Award CCF-1350487).

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

REFERENCES
(1]
(2]

T. Bell, 2001. Extensive reading: Speed and comprehension. The Reading

Matrix, 1(1), pp.1-13.

T. Bhowmik, N. Niu, W. Wang, J.R.C. Cheng, L. Li, and X. Cao, 2016.

Optimal group size for software change tasks: A social information

foraging perspective. IEEE transactions on cybernetics, 46(8), pp.1784-

1795.

J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S.R. Klemmer,

2009, April. Two studies of opportunistic programming: Interleaving web

foraging, learning, and writing code. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (pp. 1589-1598).

ACM.

E.H. Chi, P. Pirolli, and J. Pitkow, 2000, April. The scent of a site:

A system for analyzing and predicting information scent, usage, and

usability of a web site. In Proceedings of the SIGCHI conference on

Human Factors in Computing Systems (pp. 161-168). ACM.

E.H. Chi, P. Pirolli, K. Chen, and J. Pitkow, 2001, March. Using

information scent to model user information needs and actions and the

web. In Proceedings of the SIGCHI conference on Human factors in
computing systems (pp. 490-497). ACM.

E.H. Chi, A. Rosien, G. Supattanasiri, A. Williams, C. Royer, C.

Chow, E. Robles, B. Dalal, J. Chen, and S. Cousins, 2003, April. The

bloodhound project: Automating discovery of web usability issues using

the InfoScentw simulator. In Proceedings of the SIGCHI conference on

Human factors in computing systems (pp. 505-512). ACM.

R. DeLine, M. Czerwinski, and G. Robertson, 2005, September. Easing

program comprehension by sharing navigation data. In /EEE Symposium

on Visual Languages and Human-Centric Computing (pp. 241-248).

IEEE.

R. Holmes, R.J. Walker, and G.C. Murphy, 2006. Approximate structural

context matching: An approach to recommend relevant examples. /EEE

Transactions on Software Engineering, 32(12), pp. 952-970.

X. Jin and N. Niu, 2017, May. Short-term revisit during programming

tasks. In Proceedings of the 39th International Conference on Software

Engineering Companion (pp. 322-324). IEEE Press.

[10] X. Jin, N. Niu, and M. Wagner, 2016, November. On the impact of
social network information diversity on end-user programming produc-
tivity: a foraging-theoretic study. In Proceedings of the 8th International
Workshop on Social Software Engineering (pp. 15-21). ACM.

[11] X. Jin, C. Khatwani, N. Niu, M. Wagner, and J. Savolainen, 2016,
June. Pragmatic software reuse in bioinformatics: How can social network
information help?. In International Conference on Software Reuse (pp.
247-264). Springer International Publishing.

[12] AJ. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung, 2006. An ex-
ploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions on
software engineering, 32(12).

[13] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, 2008, April. Using
information scent to model the dynamic foraging behavior of program-
mers in maintenance tasks. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 1323-1332). ACM.

[14] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S.D.
Fleming, 2013. How programmers debug, revisited: An information
foraging theory perspective. IEEE Transactions on Software Engineering,
39(2), pp.197-215.

[15] J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, and C. Swart, 2010,
April. Reactive information foraging for evolving goals. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (pp.
25-34). ACM.

[16] C. Martos, S.Y. Kim, and S.K. Kuttal, 2016, September. Reuse of
variants in online repositories: Foraging for the fittest. In [EEE Symposium
on Visual Languages and Human-Centric Computing (pp. 124-128).
IEEE.

[17] S. Minto and G.C. Murphy, 2007, May. Recommending emergent teams.
In Proceedings of the Fourth International Workshop on Mining Software
Repositories (pp. 33-40). IEEE.

[18] N. Niu, X. Jin, Z. Niu, J.R.C. Cheng, L. Li, and M.Y. Kataev, 2016. A
clustering-based approach to enriching code foraging environment. /EEE
transactions on cybernetics, 46(9), pp.1962-1973.

[19] N. Niu, A. Mahmoud, and G. Bradshaw, 2011, May. Information

foraging as a foundation for code navigation (NIER track). In Proceedings

of the 33rd International Conference on Software Engineering (pp. 816-

819). ACM.

(3]

(4]

(3]

(6]

(71

(8]

[9]

35

[20] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, 2013, May. Departures
from optimality: Understanding human analyst’s information foraging in
assisted requirements tracing. In Proceedings of the 2013 International
Conference on Software Engineering(pp. 572-581). IEEE Press.

[21] D. Piorkowski, A.Z. Henley, T. Nabi, S.D. Fleming, C. Scaffidi, and
M. Burnett, 2016, November. Foraging and navigations, fundamentally:
Developers’ predictions of value and cost. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (pp. 97-108). ACM.

[22] P. Pirolli, P,, 2005. Rational analyses of information foraging on the
web. Cognitive science, 29(3), pp.343-373.

[23] P. Pirolli, 2007. Information foraging theory: Adaptive interaction with
information. Oxford University Press.

[24] P. Pirolli, W.T. Fu, E. Chi, and A. Farahat, 2005, July. Information scent
and web navigation: Theory, models and automated usability evaluation.
In Proceedings of HCI International.

[25] P.Pirolli and S. Card, 1999. Information foraging. Psychological Review,
106(4), pp. 643-675.

[26] P. Pirolli, and S. Card, 1995, May. Information foraging in information
access environments. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 51-58). ACM Press/Addison-
Wesley Publishing Co..

