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ABSTRACT

Early aspects are crosscutting concerns that are identified
and addressed at the requirements and architecture level,
while code aspects are crosscutting concerns that manifest
at the code level. Currently, there are many approaches to
address the identification and modularization of these cross-
cutting concerns at each level, but very few techniques try to
analyze the relationship between early aspects and code as-
pects. This paper presents a tool for automating the process
of identifying traceability links between requirements-level
aspects and code aspects, which is a first step towards an
in-depth analysis. We also present an empirical evaluation
of the tool with a real-life Web-based information system
and a software product line for handling data on mobile de-
vices. The results show that we can identify traceability
links between early aspects and code aspects with a high
accuracy.

1. INTRODUCTION

Early aspects [2] are crosscutting concerns that are dealt
at early stages of the software life cycle, and aspect-oriented
programming (AOP) [15] aims to modularize these crosscut-
ting concerns as code aspects that are subsequently woven
at compilation time, loading time and runtime. There are
many approaches that can identify and modularize crosscut-
ting concerns at both levels, which can lead to a reduction
in the development time and maintenance effort [16] of a
software project. However, very few of these approaches pro-
vide means to analyze the relationship between early aspects
and code aspects. The benefits of such analysis are twofold.
Firstly, the stakeholder concerns can be linked at different
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stages of software development. Secondly, this analysis is im-
portant for a software developer to understand the eventual
modularization mismatch and inconsistencies [24] between
early aspects and code aspects.

This paper presents EA-Tracer, an automated tool for
identifying traceability links between early aspects within
a textual requirements document and code aspects within
an object-oriented implementation. The tool operates on
the outputs of EA-Miner [26] and FINT [17], two aspect
mining tools at the requirements and code levels, respec-
tively. These outputs are then utilized by a Bayesian learn-
ing method [18] to learn the nature of the relationship be-
tween requirements-level artefacts and code artefacts, and to
identify traceability links between early aspects and code as-
pects. We decided to use aspect mining tools instead of oper-
ating on an aspect-oriented specification and aspect-oriented
(AO) code, because of the following issues: (i) We do not
know what is the relationship between AO specification and
AO code; and, (ii) AO specification and AO code (and the
decomposition therein) can be rather subjective. Thus, we
used mining tools to have a common point of reference.

The key contributions of this paper are twofold. Firstly,
we describe in detail the method for identifying traceability
between early aspects and code aspects. The method utilizes
a machine learning technique, where the problem of identi-
fying traceability links is formulated as a text classification
problem. Secondly, we present an empirical evaluation of
the tool with a real-life Web-based information system and
a software product line for handling data on mobile devices.
We also show that it is possible to identify traceability links
between early aspects and code aspects with a high accuracy.

This paper is organized as follows. Section 2 presents some
motivating scenarios for EA-Tracer. Section 3 describes the
learning method for identifying traceability links and the
EA-Tracer tool. Section 4 presents the empirical evaluation
of the tool. Section 5 provides an overview of the related
work. Finally, the conclusions are presented in Section 6.

2. MOTIVATING SCENARIOS

We motivate our work with a set of scenarios for trac-
ing crosscutting concerns in software development. We use



Health Watcher [28] as our running example. The Health
Watcher (HW) system is a web-based health support system
where citizens can register health-related complaints. This
application is part of a real-world health care system used
by the city of Recife, Brazil. Previous analyses [10, 28] of
this application have asserted the presence of several kinds
of crosscutting concerns such as Persistence, Concurrency,
Distribution and Security.

2.1 Scenario 1: Verification and Validation

The purpose of Verification and Validation (V&V) is to
verify that code satisfies the specification, and validate that
requirements have been implemented and satisfied. If the
requirements are scattered and tangled, their validations be-
come more difficult, error-prone, and time-consuming.

For example, the “access control” requirement below cuts
across multiple Health Watcher services (such as registering
complaints and updating tables):

“To have access to the complaint registration fea-
tures, access must be allowed by the access control
sub-system. Employees have a login and pass-
word for using the system (e.g., updating com-
plaints and tables).” - Text from the Health Watcher
Specification.

Validating “access control” requires checking of multiple
modules in the Java code. EA-Tracer provides automatic
support for generating plausible traces to ease the V&V of
crosscutting concerns. For example, EA-Tracer identifies
the methods below that implement Health Watcher services
(such as updating tables) with method calls to the “access
control” requirement (i.e., the method call isAuthorized()).

Listing 1: Example of the HW code that adds new
information about a Complaint

package healthwatcher.view.command;

public class InsertDiseaseType

extends Command {

public void execute() throws Exception

PrintWriter out = response.getWriter (
DiseaseType diseaseType null ;
if (! request.isAuthorized ()) {

throw new InvalidSessionException ();

}

)

{
)

Listing 2: Example of the HW code that gets an
information about a Complaint

package healthwatcher.view.command;

public class UpdateEmployeeSearch

extends Command {

public void execute() throws Exception {

PrintWriter out = response.getWriter ();
if (! request.isAuthorized ()) {

throw new InvalidSessionException ();

}
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2.2 Scenario 2: Change Impact Analysis

The aim of change impact analysis is to assess how a
change of the fulfillment of one concern affects the fulfill-
ment of other concern(s). If the concern is crosscutting,
then any changes to it will impact multiple concerns.

In Health Watcher, “access control” is an early aspect [2]
since it is a broad scoped requirements-level concern that
directly affects other concerns. EA-Tracer helps specify and
evaluate the impact level the changing concern will have in
a particular implementation. For example, in an object-
oriented implementation, the change of an aspect is likely to
affect many other modules. To illustrate, Listing 3 presents
the method being called by the Health Wathcer services in
Listings 1 and 2. If “access control” is changed, e.g., by
augmenting parameters and type information to the method
declaration in Listing 3, then the impact is broad, namely,
all the methods that call this method have to be changed ac-
cordingly. In contrast, in an aspect-oriented implementation
as shown in Listing 4, the change may be localized.

Listing 3: Example of the HW code that implements
the access control requirement

package healthwatcher.view.servlets;

public class ServletRequestAdapter

implements CommandRequest {

public boolean isAuthorized () {
return request.getSession(false) !
}

}

null;

Listing 4: Example of a Security aspect that imple-

ments the access control requirement

public aspect Security {
pointcut accessControl ()
call (public void execute

0);

before () accessControl ()
if (!request.isAuthorized ()) {
throw new InvalidSessionException ();

}
}

}

2.3 Scenario 3: Reengineering

Reengineering is concerned with the examination and al-
teration of a system to reconstitute it in a new form [4], e.g.,
permitting the new software to be easier to evolve. Sup-
pose we want to reengineer a system using aspect-oriented
programming (AOP) to promote modularity and maintain-
ability, we can use aspect mining tools to identify aspects in
the code base. EA-Tracer helps to justify whether the code
aspect is required by some stakeholder or merely a refactor-
ing. As an example, Listing 4 uses aspect to reengineer the
scattered code segments shown in Listings 1, 2, and 3.

For reengineers, EA-Tracer enables the identification and
management of aspects throughout the life cycle, so that
every aspect that ends up in the implementation has a firm
pedigree. Either the implementers created it, or the archi-
tecture imposed it. Hence, EA-Tracer allows us to trace
every aspect throughout the system’s life cycle back to its
origins, thus providing the insight necessary to effectively
manage the aspect as the system evolves [2].



3. EA-TRACER

EA-Tracer is a tool for automating the process of identi-
fying traceability links between early aspects and code as-
pects. In our approach, the problem of identifying traceabil-
ity links is formulated as a classification problem, which is
a well-studied problem in machine learning [18].

The main elements of the architecture are an Early As-
pect Mining Tool, a Code Aspect Mining Tool and the Ma-
chine Learning technique. The process to identify traceabil-
ity links starts with the tools for mining early aspects and
code aspects. The output of these tools is then used as in-
puts to the machine learning technique, which is capable
of learning the nature of a traceability link between a code
aspect and an early aspect. This process is detailed in the
following sections.

3.1 Finding Early Aspects with EA-Miner

The first step of the process is concerned with the identifi-
cation of early aspects in a textual requirements document.
In EA-Tracer, we use an early aspect mining tool called EA-
Miner [26]. The tool uses a natural language processor to
identify key characteristics of the text via NLP techniques,
such as part-of-speech and semantic tagging, and then ap-
plies a set of heuristics to find base concerns, aspects and
relationships.

Table 1 presents some examples of textual requirements
that have been identified as Early Aspects in the Health
Watcher specification. For instance, the Security concern
has been identified as an Early Aspect, because every user
that needs to access complaint registration features must
have access rights to the system (i.e., this requirement cross-
cuts all requirements that use the complaint registration fea-
tures).

3.2 Finding Code Aspects with FINT

The second step of the process is focused on finding code
aspects in object-oriented code. This step is performed by
an aspect mining tool called FINT [17]. FINT identifies code
aspects by analyzing methods that are called from many dif-
ferent places, which is a symptom of crosscutting concerns.
The tool calculates the Fan-In metric [17] (i.e., the number
of callers for each method) and generates a list of candidate
aspects. Based on these candidate aspects, the tools helps
the user in the identification of the code aspects.

For example, Listing 3 presents a method in the Health
Watcher system that has a high fan-in value (calculated by
the FINT tool). Listing 1 shows an example of a caller of
the isAuthorized() method. The position of this caller would
typically indicate that this method could be refactored as an
aspect using a before advice (e.g., the aspect in Listing 4).

3.3 Learning Traceability Links Between Early

Aspects and Code Aspects

The third step of the process uses the outputs of the early
aspect and code aspect mining tools to identify traceability
links. In EA-Tracer, the problem of identifying traceability
links is formulated as a text classification problem, because
the code elements in the candidate aspects can be tokenized
into textual features. The tool is an application of the Naive
Bayes [18] classifier, which is an effective approach to the
problem of learning to classify text.

3.3.1 Generating Training Examples
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In order to identify traceability links with EA-Tracer, la-
beled examples are required to estimate a target function in
the machine learning technique. This estimated target func-
tion is used to map an input vector of features into classes.

In EA-Tracer, the features are extracted from the methods
of the candidate aspects . We use a tokenization process of
the method signature to generate these features. This tok-
enizer uses heuristics from commonly practiced naming con-
ventions in Java. For example, the method healthwatcher.
view.servlets. Serviet Request Adapter.isAuthorized() in Listing 3
will generate the following vector of features: <healthwatcher,
view, servlets, servlet, request, adapter, is, authorized>. This
vector is used by an estimated target function to map these
features into a set of classes.

In addition, each vector of features is assigned to a class,
namely the class of Early Aspect Trace, when a method sig-
nature can be traced to a specific Early Aspect (e.g., Secu-
rity), or the class of No Trace, when the method signature
cannot be traced to an Early Aspect. For example, the
method isAuthorized() in Listing 3 can be used as an exam-
ple of a traceability link between this code element and an
Early Aspect (i.e., Security).

3.3.2  Training EA-Tracer to ldentify Traceability Links

EA-Tracer utilizes a Bayesian learning method for clas-
sifying candidate aspects, because it is among the most
practical algorithms for the problem of learning to classify
text [18]. The tokenization process of the candidate aspects
in Section 3.3.1 generates a set of vectors of text features
for the learning method, which maps each vector of features
into the set of classes V = {EarlyAspectTrace, NoTrace}.

The aim of the Bayesian approach in EA-Tracer is to as-
sign the most probable target value, vyg, given the input
vector of features < a1, as, ..., an >:

HP(M’UJ)

K3

vnp = argmax P(vj)
v; €V

(1)

For example, the tokenization process of the method isAutho-
rized (in Listing 3) has generated the following vector of fea-
tures: <healthwatcher, view, servlets, servlet, request, adapter,
is, authorized>. Thus, in order to calculate the most prob-
able class (EarlyAspectTrace or NoTrace) for this vector
of features, we instantiate Equation 1 as follows:

vy = argmax P(a, = “healthwatcher” |v;) X

v EV
P(as = “view”|v;) X P(as = “servlets”|v;) x
P(as = “servlet”|vj) x P(as = “request”|v;) X
P(as = “adapter”|v;) x P(ar = “is”|v;) X

P(as = “authorized” |v;)

The Naive Bayes classifier has a learning step in which
the various P(v;) and P(a:|v;) terms are estimated. In the
text classification problem, these probabilities are estimated
based on the word frequencies over the training data. Equa-
tions 2 and 3 are used in EA-Tracer to estimate the proba-
bilities of Equation 1.

lcandidate aspects are methods with a fan-in value above a
threshold



Requirements

Early Aspects

The system must be capable to handle 20 simultaneous users.
The response time must not exceed 5 seconds.

To have access to the complaint registration features, access must be
allowed by the access control sub-system. Employees have a login and

password for using the system.

Performance
Performance
Security

Table 1: Examples of Early Aspects in the Health Watcher Specification

800 EA Tracer - Learning GUI

Ward PiWord | Early Aspect Trace) P(Word | No Trace) Piward | Early Aspect Trace) / PiWord | No Trace)
Authorized 0.13323962614830137 1.9530818948722414E-7 682201.941957058

is 0.13323962614830137 1.9530818948722414E-7 682201.941957058

|serviers 0.06662314389826318 0.0019532772030617282 34.108391678268994

Request 0.13323962614830137 0.00390635909793397 34.10839167826899

command 0.06662314389826318 0.00390635909793397 17.05504850629309

| Learn | | Save Probabilities |

Figure 1: The Learning GUI of EA-Tracer

Vil

P(v;) = 2

(vs) | Examples| @)
ni + 0

P(ailv;) =
(ailv;) n + 6.|Vocabulary|

®3)

where Examples is a set of Training Examples, V; is the
subset of Examples that are labeled as v;, Vocabulary is a
set of all distinct words wy from Examples, n is the number
of word positions in Vj, ns is the number of times a word
wy occurs in class V;, and 6 is the Laplacian smoothing
parameter.

In order to assess the quality of the estimation process,
EA-Tracer has an interface that displays all the words in
Vocabulary and the associated probabilities P(a;|v;). Fig-
ure 1 shows a table with the words sorted by the fraction
Plag ‘If(i:lﬁv’i?f:g)m“) , which is useful for analyzing the most
probable words in the Early Aspect Trace class. For exam-
ple, the estimated probabilities for the word “Authorized”
(while analyzing the traceability link of the Access Control
requirement) in Figure 1 are approximately P(a;| Early As-

pect Trace) = 0.13 and P(a;|NoTrace) = 1.95x 1077, Thus,

the fraction £(% Bi‘glf]’v’i;f’:iz;mw) is approximately 682201,

which means that the word “Authorized” is 682201 more
likely to occur in a method signature that has been labeled
as FarlyAspectTrace.

4. EMPIRICAL EVALUATION
4.1 Study Configuration

In order to conduct an effective evaluation of the EA-
Tracer tool, careful consideration was given to the study
configuration. Firstly, the application had to meet a number
of relevant criteria for our study, such as the existence of
crosscutting concerns at the requirements and code level.
Secondly, the application had to possess requirements and
implementation artifacts.

Therefore, we selected the following applications: (i) Health
Watcher (HW) [28], a web-based application that manages
health-related complaints, and, (ii) Mobile Media (MM) [30],
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which is a software product line for handling data on mobile
devices. Both applications have existing Java and AspectJ
implementations with around 7000 and 3000 lines of code
respectively. From previous analyses [10, 28, 9] of these ap-
plications, there are crosscutting concerns such as Exception
and Persistence.

In order to identify traceability links with EA-Tracer, the
requirements document and object-oriented source code had
to be processed by EA-Miner and FINT. Fortunately, the
HealthWatcher requirements had already been used in a pre-
vious study of EA-Miner [25]. Table 2 presents the early
aspects that have been identified in this analysis. In Mo-
bile Media, EA-Miner identified two early aspects, namely
Persistence and Exception Handling.

Early Aspects

Availability Distribution
Security Persistence
Performance Compatibility
Concurrency Usability

Exception handling Standards

Table 2: Early Aspects in the Health Watcher Spec-
ification

The code aspects in the Java source codes are identified
by the FINT tool. In this study, not only did we use the list
of code aspects, but also a selected list of candidate aspects
(i.e., methods with a fan-in value above a certain threshold).
The aim was to provide sufficient examples for the machine
learning technique of methods that can be traced to early
aspects and methods that cannot be traced. In the Health
Watcher system, we selected 77 candidate aspects for our
data set (out of 563 methods in the system). These candi-
date aspects have a fan-in value above 5. In Mobile Media,
we selected 48 candidate aspects (out of 287 methods). In
order to verify the accuracy of the identification process of
aspects with FINT, the output of this mining process was
also compared to previous studies [10, 28, 9] and the aspect-
oriented code.



In order to train the machine learning technique in EA-
Tracer, a data set with labeled examples was provided by a
human annotator. This set was manually created by com-
bining the output of EA-Miner and FINT, and adding the
labels to each example. The following classes of traceabil-
ity links (TL) between early aspects and code aspects were
selected for this study: Exception handling — Exception
handling (for HW and MM); Persistence — Persistence (for
HW and MM); Distribution — Distribution (for HW); and
Security — Security (for HW). We selected these classes of
traceability links, because they have been identified in pre-
vious studies [10, 28, 9]. Therefore, for each class of trace-
ability links and application, we created a separate data set
for the machine learning technique.

The hypotheses of this evaluation are twofold. Firstly,
we expect the tool to achieve a high classification accuracy
with different classes of traceability links. Secondly, we also
expect to achieve a high classification even when a small
set of labeled examples is presented to the machine learning
technique.

Therefore, we conducted two experiments to test the hy-
potheses above. Firstly, we performed cross-validation within
the entire data set by testing each example in turn as the
validation data and the remaining examples as the training
data (Section 4.1.1). This technique of evaluation is known
as leave-one-out cross-validation [3] and is commonly used
in machine learning to estimate the generalization error of a
learning technique on a data set. Secondly, we ascertained
the accuracy of EA-Tracer when attempting to use 5% of
the data set as the training examples and the remaining
examples as the validation data.

4.1.1 Cross-Validation

In a data set with N examples, each turn of the leave-
one-out cross-validation procedure utilizes N — 1 examples
to train a machine learning (ML) technique and then eval-
uates it on the remaining example. This procedure is then
repeated for each example, and the performance scores are
then averaged.

For instance, if our data set has three examples { E1, E2, Es},

then the leave-one-out cross-validation procedure is repeated
for each example:

e Run 1: Train the ML technique with {Es, E3} and as-
sess the performance with {F:1}. This generates per-
formance score Si.

e Run 2: Train the ML technique with {E1, E3} and as-
sess the performance with {E>}. This generates per-
formance score S3.

e Run 3: Train the ML technique with {E1, Ex} and as-
sess the performance with {E3}. This generates per-
formance score Ss.

The accuracy of the leave-one-out cross-validation tech-
nique is then computed as follows:

_S1+ 52+ 53
N 3

Tables 3 and 4 present the accuracy of the leave-one-
out cross-validation technique for each traceability link class
with a 95% confidence interval (i.e., we are 95% confident
that the interval contains the true population mean). All the

S
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results are compared to a baseline accuracy of 50%. This is
due to the fact that randomly assigned classes should yield
an approximate 50% accuracy. Overall, the results show
that the machine learning technique in EA-Tracer was able
to classify the candidate aspects (i.e., the method signature
of the candidate aspect) as Early Aspect Trace or No Trace
with an accuracy of 94.81% for HW (an average of the re-
sults in Table 3) and an accuracy of 94.79% for MM (an
average of the results in Table 4). Moreover, all the results
are above the 50% baseline accuracy.

It is important to note that misclassifying a candidate as-
pects as Farly Aspect Trace may have a different impact
than misclassifying a candidate aspect as No Trace. Thus,
we also report the rate of false positives (f,) and false nega-
tives (fn); False positive rate is the proportion of candidate
aspects that have No Trace but are classified as Farly As-
pect Trace, and the false negative rate is the proportion of
candidate aspects that have an Farly Aspect Trace but are
classified as No Trace. The results in Tables 3 and 4 show
low false positives (fp) and false negatives (f,) rates.

The cross-validation results show that EA-Tracer can learn
to identify traceability links with a high accuracy when dif-
ferent classes of traceability links are used.

4.1.2 Using 5% of the Data Set as Training Exam-
ples

This experiment is evaluating the classification accuracy
of the tool by utilizing a small set of examples as a training
set and the remaining examples as a validation set. This
experiment is closely related to the scenario where some-
one wants to recover traceability links but only has a few
examples to train the machine learning technique.

The training set is created by randomly selecting 5% of
the examples in the data set. Thus, the validation set is
created with the remaining examples of the data set (i.e.,
95% of the examples in the data set). In order to smooth
the variation of the selection process, we repeat this process
1000 times and calculate the averages with 95% confidence
intervals.

Tables 5 and 6 show the results of this experiment. On
average, the classification accuracy is 89.60% for HW and
85.10% for MM with a low false positive rate. Moreover,
all the classification results are above the 50% baseline ac-
curacy. Hence, these results also show that the tool can
achieve a high classification accuracy when a small set of
examples is utilized as a training set.

However, the false positive rates of the Exception handling
(HW) and Persistence (HW and MM) traceability links is
significantly higher than the other results. This could sug-
gest that small training sets (for certain classes of trace-
ability links) may lead to scenarios where some candidate
aspects with a No Trace label are classified as Farly Aspect
Trace.

4.2 Threats to Validity

When conducting a study of this nature, a variety of
threats exist which can invalidate the results collected. The
purpose of this section is to identify some of the potential
threats to validity and outline the steps undertaken to limit
their effect. It is inevitable that threats to validity can never
be eliminated completely, however, assurances can be given
that affect is minimal and they have been taken into account.

One of the most significant threats to validity of this ex-



TL Classes (Early Aspect — Code Aspect) | Accuracy £95% Conf.Int. Ip fn
Exception handling — Exception handling 92.21% + 6.03% 2.60% | 5.19%
Persistence — Persistence 94.81% =+ 4.99% 3.90% | 1.30%
Distribution — Distribution 94.81% + 4.99% 1.30% | 3.90%
Security — Security 97.40% =+ 3.58% 1.30% | 1.30%

Table 3: Cross-Validation - Health Watcher

TL Classes (Early Aspect — Code Aspect) | Accuracy £95% Conf.Int. o fn
Exception handling — Exception handling 97.92% + 4.80% 2.08% | 0.00%
Persistence — Persistence 91.67% + 7.90% 2.08% | 6.25%

Table 4: Cross-Validation - Mobile Media

TL Classes (Early Aspect — Code Aspect) | Accuracy £95% Conf.Int. fp fn
Exception handling — Exception handling 84.36% + 0.09% 15.61% | 0.03%
Persistence — Persistence 83.11% =+ 0.06% 16.89% | 0.00%
Distribution — Distribution 93.50% =+ 0.04% 6.50% | 0.00%
Security — Security 97.43% + 0.03% 2.57% | 0.00%

Table 5: Using 5% of the Data Set as Training Examples - Health Watcher

TL Classes (Early Aspect — Code Aspect) | Accuracy £95% Conf.Int. Io fn
Exception handling — Exception handling 93.61% + 0.05% 6.38% | 0.00%
Persistence — Persistence 76.59% =+ 0.08% 23.41% | 0.00%

Table 6: Using 5% of the Data Set as Training Examples - Mobile Media

periment is the quality of the output from the aspect min-
ing tools. It is possible that the early aspects and code as-
pects are not true crosscutting concerns. This could generate
traceability links that do not actually reflect links between
aspects at the requirements level and code level. Moreover,
this is a general threat of the EA-Tracer approach; how-
ever, tool support is available to improve and aid developers
when mining aspects in requirements documents and object-
oriented source codes. To ensure the quality of the outputs
of EA-Miner and FINT, the participants chosen to identify
aspects had an appropriate degree of proficiency in utilizing
the tools and the Health Watcher system. Moreover, the
output of the mining tools were also compared to previous
studies [10, 28, 9] and the aspect-oriented code.

4.3 Discussion of Results

The results in this section show that EA-Tracer can iden-
tify traceability links between early aspects and code aspects
with a high accuracy. This is due to the following facts: (i)
EA-Tracer uses mining tools as a pre-processing stage for
the machine learning technique, so that we can identify the
early aspects in the specification and create a data set with
examples of traceability links between code aspect and early
aspect; (ii) The tokenization process of the method signa-
tures is an important step for generating features for the
machine learning technique. In fact, these steps are com-
monly performed in machine learning problems so that the
classification problem is easier to solve.

5. RELATED WORK

Our work is related to several different efforts. We orga-
nize our discussion into two categories: traceability in gen-
eral and aspects tracing in particular.

5.1 Software traceability.
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Traceability refers to the property of software develop-
ment that makes it possible to link stakeholder concern to
the technical artifacts that address and implement it, and
conversely. In addition, the traceability link explains why
and how a particular design and implementation has been
chosen. Maintaining accurate traceability links supports
such critical software engineering activities as verification,
validation, risk assessment, change impact analysis, and sys-
tem level test coverage analysis [12].

The process of traceability is studied in [23], where two
reference models are introduced: a low-end model of trace-
ability and a high-end model of traceability for more so-
phisticated users. Ramesh and Dhar [22] also developed a
conceptual model that captures process knowledge to allow
one to reason about requirements and the effects of changes
in the system design and maintenance. Our approach pays
much attention to pretraceability [11] that discovers the ori-
gin of a concern; then further links stakeholder need to a
more formal representation in the code base [21].

Software engineers relate models at different stages of de-
velopment in order to ease maintenance tasks. Example
models are goal trees for requirements, UML diagrams for
design, and source code for implementation. When some
model elements change, it is necessary to synchronize the
change on related elements so that all models are kept con-
sistent [13]. Spanoudakis [29] traces requirements and de-
sign models using heuristic rules. The traceability relations
are identified based on the beliefs in rule correctness and
satisfiability.

A number of approaches rely on system executions to es-
tablish traceability. In [6], the authors propose an event-
based technique for tracing performance concerns. Data is
propagated speculatively into performance models that are
then re-executed to determine impacts from the proposed
change. In [8], the author takes known dependencies be-
tween software development artifacts and “common ground”



such as source code, then iteratively builds a graph based on
the common ground and its overlap with the artifacts. The
trace dependency, in this context, implies that two artifacts
relate to at least one common node in the graph. Although
we have yet to exploit execution information, it can be used
as a complementary heuristic in our framework for training
and further improving accuracy.

The application of Information Retrieval (IR) techniques
in traceability has gained much popularity in recent years.
IR allows to reduce software tracing problem to searching
similar information sources (e.g., textual requirements) ac-
cording to a particular query (e.g., identifier extracted from
source code). The work of [1, 12] and others show that IR
techniques, such as TF-IDF (term frequency-inverse doc-
ument frequency) and LSI (latent semantic indexing), can
automate the candidate links generation to a satisfactory de-
gree. EA-Tracer uses a machine learning technique to lever-
age linguistic clues when generating the traceability links.

5.2 Tracing and validating aspects.

Aspects are stakeholder concerns that cut across tradi-
tional abstraction boundaries. Non-functional requirements
are candidate aspects since they often represent global con-
straints that affect multiple system modules [19]. Cleland-
Huang et al. propose a probability-model based approach
to recover traceability links between functional and non-
functional requirements [7]. Our approach recovers the links
between aspectual requirements and code.

For secure and dependable software system development,
one must achieve as accurate traceability links as possible to
avoid unnecessary or invalid updates. In [31], a refactoring-
based approach is used to trace the crosscutting security
concerns between design and crypto-graphic protocol imple-
mentations. The case study reveals a significant vulnerabil-
ity bug in the implementation, and demonstrates the level
of accuracy and change resilience of the approach. However,
the level of manual effort is also high in order to determine
the appropriate refactoring steps. The automatic support
introduced in this work can be integrated into [31] to facili-
tate the candidate link generation.

The aspectual requirements can be verified by tracing
them to proof obligations about the implementation [14].
Their validation requires the explicit consideration of stake-
holder goals. In [20], a model-driven framework is proposed
for tracing aspects from requirements to implementation
and testing, where goal models become engineering assets
and straightforward model-to-code transformation bridges
the gap between domain concepts and implementation tech-
nologies. However, only one-to-one mapping between goal
aspect and code aspect is investigated in [20]. Our current
work is capable of tracing many-to-many relations among
different aspectual artifacts.

Chitchyan et al. [5] study how requirements-level aspects
and their compositions map on to architecture-level aspects
and architectural composition. Their approach is centred on
an aspect-oriented requirements description language that
enriches the usual informal natural language requirements
with additional compositional information derived from the
semantics of the natural language descriptions themselves.
They also provide a set of concrete mapping guidelines to
link aspects from requirements to architecture design.

Sénchez et al. [27] also describe an aspect mapping from
requirements to architecture to design: in particular, The-
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me/Doc (requirements), CAM (architecture) and Theme/UML

(design). The mapping includes heuristics to guide the spec-
ification of aspectual properties of different artifacts. In ad-
dition, they record decisions that capture the alternatives
considered and the decision justification. Our work mostly
differs from the above contributions by the relative higher
distance between software artifacts, namely, between aspec-
tual requirements and implementation. Moreover, complex
many-to-many tracing relations are examined.

6. CONCLUSIONS

Early aspects and code aspects are crosscutting concerns
at the requirements and code level, respectively. There are
many approaches to address the identification and modular-
ization of these crosscutting concerns at each level, but very
few techniques try to analyze the relationship between early
aspects and code aspects. Therefore, we believe that tools
for identifying traceability links between early aspects and
code aspects are essential for these type analyses, such as
Verification and Validation, Change Impact Analysis, and
Reengineering.

In this paper, we have presented two major contributions:
(i) a tool for automating the process of identifying trace-
ability links between early aspects and code aspects; and
(ii) an empirical evaluation of the tool with a real-life Web-
based information system and a software product line for
handling data on mobile devices. The tool is a novel appli-
cation of the Naive Bayes learning method, where the prob-
lem of identifying traceability links is formulated as a text
classification problem. Our empirical evaluation has shown
that it is possible to identify traceability links with a high
accuracy. Thus, we see this work as a promising avenue for
effort reduction in the identification process of traceability
links between early aspects and code aspects.

Our future work will focus on evaluating the tool with
other applications from different domains to validate the
generalization power of the Naive Bayes classifier. In this
evaluation, we will also test a number of other classifiers,
such as SVMs [3] and nearest-neighbor methods [3], to iden-
tify the best machine learning approach for identifying trace-
ability links. Also, we will investigate how other require-
ments artefacts and code artefacts can be supported by the
tool. In particular, we will make use of existing traceability
links identified at the method level by other traditional ap-
proaches. This could further improve the accuracy of trace-
ability links.
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