
ORIGINAL ARTICLE

On the role of semantics in automated requirements tracing

Anas Mahmoud • Nan Niu

Received: 4 December 2012 / Accepted: 26 December 2013 / Published online: 22 January 2014

� Springer-Verlag London 2014

Abstract In this paper, we investigate the potential benefits

of utilizing natural language semantics in automated trace-

ability link retrieval. In particular,we evaluate theperformance

of a wide spectrum of semantically enabled information

retrieval methods in capturing and presenting requirements

traceability links in software systems. Our objectives are to

gain more operational insights into these methods and to pro-

vide practical guidelines for the design and development of

effective requirements tracing and management tools. To

achieve our research objectives, we conduct an experimental

analysis using threedatasets fromvarious applicationdomains.

Results show that considering more semantic relations in

traceability link retrieval does not necessarily lead to higher

quality results. Instead, a more focused semantic support, that

targets specific semantic relations, is expected to have a greater

impact on the overall performance of tracing tools. In addition,

our analysis shows that explicit semantic methods, that exploit

local or domain-specific sources of knowledge, often achieve a

more satisfactory performance than latent methods, or meth-

ods that derive semantics from external or general-purpose

knowledge sources.

Keywords Information retrieval � Traceability �
Semantics

1 Introduction

Requirements traceability is defined as ‘‘the ability to

describe and follow the life of a requirement, in both a

forward and backward direction (i.e., from its origins to its

subsequent deployment and use, and through all periods of

ongoing refinement and iteration in any of these phases)’’

[44]. The availability of traceability information has been

proven vital to several software engineering activities such

as program comprehension [25, 71], impact analysis [59],

feature location [87], software reuse [98], and verification

and validation (V&V) [56].

Traceability is often accomplished in practice by linking

various software artifacts (e.g., requirements, design doc-

uments, code elements, and test cases) manually through a

matrix, known as requirements traceability matrix (RTM)

[89]. However, as software systems evolve over time, this

process becomes labor-intensive, boring, time-consuming,

and error-prone [29, 45, 56]. Consequently, effective

traceability is rarely established in practice, as practitioners

often fail to implement a consistent and effective manual

tracing process [23, 44].

To overcome the limitations of the manual approach,

modern traceability tools employ information retrieval (IR)

methods for automated support [6, 8, 17, 66, 70, 73, 81,

95]. These methods aim to match a query of keywords with

a set of objects in the software repository and rank the

retrieved objects based on how relevant they are to the

query using a predefined similarity measure [49]. The tenet

underlying IR-based tracing methods is that artifacts hav-

ing a high textual similarity probably share several con-

cepts, so they are likely good candidates to be traced from

one another [6, 24]. The main assumption is that a con-

sistent terminology has been used throughout the project’s

lifecycle. Such terminology is embedded in the set of

vocabulary used in naming code identifiers, comments, and

messages, and the textual content of other software artifacts

(e.g., requirements and design documents) [4]. These terms

serve as signs that can be traced to produce meaningful

A. Mahmoud (&) � N. Niu
Department of Computer Science and Engineering, Mississippi

State University, Mississippi State, MS 39762, USA

e-mail: amm560@msstate.edu

123

Requirements Eng (2015) 20:281–300

DOI 10.1007/s00766-013-0199-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-013-0199-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-013-0199-y&domain=pdf

tracks in the system [46]. In other words, IR methods

assume that the same words are used whenever a particular

concept is described [9]. However, as projects evolve, a

new and inconsistent terminology gradually finds its way

into the system [62], causing topically related artifacts to

exhibit a large degree of variance in their textual contents

[5, 12, 37]. This problem is known as the vocabulary

mismatch problem and is regarded as one of the principal

causes of declining accuracy in retrieval engines [40].

In an attempt to alleviate the problem of vocabulary

mismatch, researchers have started investigating semanti-

cally enabled IR techniques that look beyond the lexical

structure of software artifacts. Unlike lexical methods,

which deal with text as strings of tokens, semantic methods

capture similarity among various artifacts by exploiting the

semantic knowledge embedded in their contents. In

requirements engineering, several semantically enabled

methods have been exploited to support various related

tasks such as requirements discovery, analysis, modeling,

traceability, and reuse [13, 54, 58, 68, 78]. The underlying

assumption is that the overwhelming majority of require-

ments are written in natural language (NL) [67, 80].

Therefore, IR methods that exploit semantics in the NL

component of software artifacts should be able to discover

dimensions that lexical methods often overlook [54].

It is important at this point of our study to distinguish

between two kinds of semantics: programming language

semantics, which refer to the meaning of a program as a

state transformer from inputs to outputs, and natural lan-

guage semantics, which refer to the meaning inherent in the

natural language component of artifacts, such as code

identifiers’ names and comments [12]. In this paper, the

latter is our concern. In particular, the analysis in this paper

addresses several research questions related to the utiliza-

tion of semantics in traceability link retrieval. Such ques-

tions include how much semantics is needed? What specific

effects does semantics have on the performance? What are

the merits of different semantic enhancements? And what is

the scope of applicability of different methods? Our work

not only advances the fundamental understanding about the

role of semantics in supporting automated tracing, but also

enables principled ways to increase the practicality of

requirements tracing and management tools. In particular,

the contributions of this paper are as follows:

• A comprehensive statistical analysis of the merits of a

wide spectrum of semantically enabled IR methods in

identifying and capturing traceability links in software

systems.

• A systematic categorization of different semantically

enabled IR methods based on their internal operation,

the semantic relations they target, and scope of

application.

• A set of guidelines for using semantically enabled IR

methods in requirements traceability tasks, including

guidelines for optimizing, evaluating, and implement-

ing such methods.

To achieve our research objectives, we analyze the per-

formance of a plethora of semantically enabled IR methods

using three traceability datasets from various application

domains. These methods include basic vector space model

(VSM) [92], VSM with thesaurus support (VSM-T) [56],

Part-of-Speech-enabled VSM (VSM-POS) [17], latent

semantic indexing (LSI) [27], latent Dirichlet allocation

(LDA) [15], explicit semantic analysis (ESA) [41], and

normalized Google distance (NGD) [20]. These methods are

based on the standard VSM method which is used as a

baseline in our experiment.

The rest of the paper is organized as follows. Section 2

describes the various semantically enabled IR methods

investigated in this paper. Section 3 describes the research

methodology and experimental design. Section 4 presents

analysis results and study limitations. Section 5 discusses

the main findings of the paper and their potential impact.

Section 6 reviews related work. Finally, Sect. 7 summa-

rizes the paper and discusses directions for future work.

2 Semantically enabled IR

In our analysis, we experiment with various semantically

enabled IR methods that are based on the algebraic VSM.

Such methods transform textual documents into more

compact representations in the form of vectors. These

vectors can hold various types of information, representing

different aspects of the semantic knowledge embedded in a

text corpus (e.g., word counts in artifacts or latent topical

structures in a corpus [15]). Once the vector representation

of a document is generated, a simple similarity measure

(e.g., the cosine distance [106]) can be used to calculate the

similarity between these vectors, thus determining the

relevance of documents.

Based on the underlying IR model used, we identify

three categories of VSM-based semantically enabled IR

methods. These categories include semantic-augmented,

latent semantic, and semantic relatedness methods. In what

follows, we describe each of these categories, its main

methods, and their applications in greater detail.

2.1 Vector space model

Vector space model is an algebraic model that describes

and compares objects using N-dimensional vectors, where

each dimension corresponds to an orthogonal feature of the

object [92]. The standard VSM for IR encodes textual

282 Requirements Eng (2015) 20:281–300

123

documents and queries as vectors of terms’ weights. The

normalized inner product between two documents’ vectors

denotes the cosine similarity between them. The basic tenet

is that different words are used to express different topics.

Therefore, texts sharing many words are more similar than

texts with only a few words in common.

Using VSM, each document is represented as a set of

terms T = {t1,…, tn}. Each term ti in the set T is assigned a

weight wi. The terms in T are regarded as the coordinate

axes in N-dimensional coordinate system, and the terms’

weights W = {w1,…, wn} are the corresponding values.

Thus, if q and d are two artifacts represented in the vector

space, then their similarity can be measured as the cosine

of the angle between them (Eq. 1):

Simðq; dÞ ¼
P

qi � di
ffiP

q2
i �

P
d2

i

p ð1Þ

where qi and di are real numbers standing for the weights of

term i in q and d, respectively. Word counts or term fre-

quencies in documents are often used to assign weights to

terms in the document’s vector. While this method is

computationally efficient, it might represent a bias toward

long-text documents or frequent words in the corpus. To

mitigate this risk, another weighting scheme based on term

frequency and inverse document frequency (TFIDF) is

used. Using this approach, qi and di in Eq. 1 become qi ¼
tfiðqÞ � idfi and di ¼ tfiðdÞ � idfi; where tfi(q) and tfi(d) are

the frequencies of term i in q and d, respectively. idfi is the

inverse document frequency and is computed as idfi = -

log2(t/dfi), where t is the total number of artifacts in the

corpus, and dfi is the number of artifacts in which term

i occurs. TFIDF determines how relevant a given word is in

a particular document. Words that are common in a single

or a small group of documents tend to have higher TFIDF,

while terms that are common in all documents such as

articles and prepositions get lower TFIDF values. A higher

TFIDF implies a stronger relationship between the term

and the document it appears in, thus if that term were to

appear in a query, the document would probably be a

correct match.

Due to its conceptual and mathematical simplicity, basic

VSM has gained a considerable popularity in IR research

[13]. However, this over simplification often comes with

several limitations. For instance, the bag-of-words

assumption assumes term independence. This assumption

discards the punctuation information and the words

ordering. However, since there are strong inherent associ-

ations between terms in a language, this assumption is

never satisfied [106]. This often results in loss of infor-

mation and ambiguity problems as texts should ideally be

compared at their topic level and not based on the specific

words that were chosen to express these topics [60].

2.2 Semantic-augmented methods

This category includes IR methods that semantically aug-

ment the basic VSM by adding new information to the basic

document’s vector, thus integrating additional evidence into

retrieval. We identify two methods under this category,

including vector space model with thesaurus support (VSM-

T) and vector space model with Part-of-Speech tagging

(VSM-POS). Both methods have been investigated before

in automated tracing research [17, 56]. Following is a

description of these methods in greater detail.

2.2.1 Vector space model with thesaurus support

A very common occurring semantic relation in software

artifacts is synonymy, or equivalent words. As mentioned

earlier, as software projects evolve, developers tend to use

different vocabulary, including abbreviations and acro-

nyms, to refer to certain domain concepts [5, 28]. Basic

VSM fails to capture these relations as it assumes terms’

independence. A simple way to overcome this problem is

to equip VSM with a dictionary or a thesaurus that keeps

track of such relations (e.g., different acronyms used to

describe a certain concept). Documents are then matched

based on their matching keywords, as well as synonymy

relations found in the supporting thesaurus.

The integration of a thesaurus into VSM is relatively

simple. For each pair of synonyms identified (si, sj), a

perceived similarity coefficient aij can be assigned to

indicate their equivalence [56]. For each document in the

corpus, document vectors are expanded based on these

synonym pairs. A similarity coefficient of aij\ 1 is usually

assigned to distinguish a synonymy match from an exact

match (aij = 1). The similarity between two documents

can then be calculated as:

sðq; dÞ ¼
P

qidi þ
P

ðki;kj;aijÞ2T aijðqidj þ djqiÞ
ffiP

q2
i :
P

d2
i

p ð2Þ

Based on the type of the integrated thesaurus, two

methods of VSM-T can be distinguished under this

category:

• VSM with general-purpose thesaurus (VSM-T-WN):

This method uses general-purpose dictionaries, such as

WORDNET, to derive synonyms. WORDNET, introduced

and maintained by the Cognitive Science Laboratory of

Princeton University, is a large lexical database of

Requirements Eng (2015) 20:281–300 283

123

English verbs, nouns, and adjectives, grouped into sets

of cognitive synonyms, known as synsets [38]. The

main advantage of general-purpose dictionaries is their

high coverage of terms, and the fact that they are

constantly being maintained by highly trained linguists.

However, with no domain-specific knowledge (con-

text), relying on a general-purpose thesaurus to handle

abbreviations and acronyms in a software system can

become a challenge.

• VSM with domain-specific thesaurus (VSM-T-DT):

Such methods use a domain-specific thesaurus to

handle synonym pairs derived from the project

domain’s taxonomy. These domain-specific thesauri

can deal with cases such as acronyms and abbrevia-

tions. However, they can become quickly out-of-date,

as keeping track of the changes in the project’s

vocabulary over time can become an exhaustive task.

2.2.2 Vector space model with part-of-speech tagging

Part of speech (POS) refers to the syntactic role of terms in

written text (e.g., nouns, verbs, adjectives). Research in

natural language processing (NLP) has revealed that some

parts of speech carry more information value than others.

For instance, it has been reported that nouns and verbs are

better discriminators, or more descriptive, to the content of

a document than other parts of speech [19, 34]. These

observations have been recently integrated into the IR

paradigm. The main assumption is that favoring certain

parts of speech over treating all terms at the same level of

importance should improve the overall accuracy of retrie-

val engines [64, 84, 90].

We build upon these observations to derive a VSM

model with Part-of-Speech tagging support (VSM-POS)

for traceability link retrieval. To calculate the similarity

between two artifacts in the system (q and d), initially POS

analysis is conducted to identify different parts of speech

(e.g., verbs and nouns) in q and d. This process can be

achieved using various text tagging tools such as TreeT-

agger [94]. Only terms which belong to a particular part of

speech are then considered in retrieval.

In this paper, we only consider the two linguistic forms

of verbs (VSM-POS-V) and nouns (VSM-POS-N) in

building term vectors of software artifacts. These two

particular parts of speech have been found to carry higher

information values than other parts, capturing main actions

and objects in software artifacts [35, 57, 68, 96]. Therefore,

indexing based on these two linguistic forms is expected to

filter out unwanted noise resulting from keywords that do

not significantly contribute to the artifact’s topic.

Limitations of methods based on POS often stem from

the complications associated with text tagging, or

automatically identifying different parts of speech in a text.

While generating linguistic parse trees can be relatively

simple for artifacts expressed in natural language (e.g.,

requirements documents), this process can become more

complicated for semi-formal or formal artifacts, such as

source code or design documents [1, 14]. In addition,

selecting an optimal linguistic form or a combination of

forms that best achieves desired performance levels can be

computationally exhaustive [64].

2.3 Latent semantic methods

While semantic-augmented methods help to exploit basic

semantic aspects of artifacts, they reveal a little about the

inter- or intra-semantics in a corpus. To count for such

information, another set of methods are often used. Such

methods use statistical and probabilistic models to auto-

matically discover latent semantic structures in text cor-

pora. In particular, instead of representing a document as a

vector of independent terms, latent methods represent

documents and terms as combinations of implicit semantic

schemes that are often hidden from other methods. Two

methods can be identified under this category: LSI and

LDA. In what follows, we briefly introduce both methods

and discuss their limitations and applications in greater

detail.

2.3.1 Latent semantic indexing

Latent semantic indexing is a statistical method for

inducing and representing aspects of the meanings of words

and passages reflective in their usage. LSI is based on the

assumption that there is some underlying (latent) structure

in words that is partially concealed by the variability of

words used to express a certain concept [27]. In particular,

using statistically derived conceptual indices, LSI tries to

overcome the problem of vocabulary mismatch by cap-

turing the semantic relations of synonymy (equivalent

words) and polysemy (multiple meanings) in software

artifacts [91].

LSI is a corpus-based technique that uses singular value

decomposition (SVD) to estimate the structure in word

usage across documents in the corpus [30]. It starts by

constructing a term-document matrix (A) for terms and

documents in the corpus. This matrix is usually huge and

sparse. Word counts are often used to build this matrix.

SVD is then applied to decompose A into three new

matrices A = USVT where T stands for transpose. Dimen-

sionality reduction is then performed to produce reduced

approximations of \U, S, VT[by keeping the top

K eigenvalues of these matrices. A dimensionality reduc-

tion technique takes a set of objects that exist in a high-

dimensional space and represents them using low

284 Requirements Eng (2015) 20:281–300

123

dimensions, often in a 2D or 3D space. These reduced

matrices can be described as\Uk, Sk, Vk
T[. The best value

of K that fits a certain corpus can be obtained experimen-

tally; however, a value in the range of [100, 300] is fre-

quently used [27]. From the newly reduced space, the

equation V = ATUS-1 can be derived. Assuming A is a

matrix with n[1 documents, for a given document vector

d in A, d can be expressed as d = dTUS-1. In LSI, the

query is also treated as a document, which is the case in

traceability, where the query itself is a requirement or a

piece of code. The query q can be expressed in the new

coordinates of the reduced space as q = qTUS-1. In the K-

reduced space, q and d can be represented as d = dTUkSk
T

and q = qTUkSk
T, respectively. The similarity of q and d can

then be calculated as the cosine measure:

simðq; dÞ ¼ simðqT UkS�1
k ; dT UkS�1

k Þ ð3Þ

In other words, retrieval in LSI is performed using the

database of singular values and vectors obtained from the

SVD analysis. Therefore, a query and a document can have

a high cosine similarity even if they do not have any

overlapping terms, as long as their terms are semantically

similar in the latent semantic space.

LSI has been employed in a wide range of software engi-

neering activities such as categorizing source code files [71],

detecting high-level conceptual code clones [72], and

recovering traceability links between documentation and

source code [73]. The drawbacks of LSI include its huge

storage requirements, the computational costs of performing

SVD, and the assumption of normally distributed data, which

might be inappropriate for handling theword count data of the

term-by-document matrix. In addition, it is often difficult to

add new documents to the corpus, and determining the opti-

mal K can be computationally exhaustive [32].

2.3.2 Latent Dirichlet allocation

LDA was first introduced by Blei et al. [15] as a statistical

model for automatically discovering topics in large corpus

of text documents. The main assumption is that documents

in a collection are generated using a mixture of latent

topics, where a topic is a dominant theme that describes a

coherent concept of the corpus’s subject matter.

A topic model can be described as a hierarchical

Bayesian model that associates with each document d in

the collection D a probability distribution over a number of

topics K. In particular, each document d in the collection

ðdi 2 DÞ is modeled as a finite mixture over K drawn from

a Dirichlet distribution with parameter a, such that each

d is associated with each ðti 2 KÞ by a probability distri-

bution of hi. On the other hand, each topic t in the identified

latent topics ðti 2 KÞ is modeled as a multidimensional

probability distribution, drawn from a Dirichlet distribution

b, over the set of unique words in the corpus (W), where

the likelihood of a word from the corpus ðwi 2 WÞ to be

assigned to a certain topic t is given by the parameter /i.

LDA takes the documents collection D, the number of

topics K, and a and b as inputs. Each document in the

corpus is represented as a bag of words

d ¼ \w1;w2; . . .;wn [. Since these words are observed

data, Bayesian probability can be used to invert the gen-

erative model and automatically learn / values for each

topic ti, and h values for each document di. In particular,

using algorithms such as Gibbs sampling [85], a LDA

model can be extracted. This model contains for each t the

matrix / ¼ f/1;/2; . . .;/ng; representing the distribution

of t over the set of words \w1;w2; . . .;wn [, and for each

document d the matrix h ¼ fh1; h2; . . .; hng; representing
the distribution of d over the set of topics \t1; t2; . . .; tn [.

Once these matrices (vectors) are produced, a similarity

measure such as the cosine distance can be used to com-

pute the similarity of two documents by comparing their

topic distribution vectors to produce a ranked list of topi-

cally similar documents [53].

Selecting the number of topics (K) that best fits a certain

text corpus is computationally expensive. InNLP tasks, often

a heuristic of 50–300 topics is empirically specified

depending on the size of the collection [15, 48, 105]. In some

other cases, such values are determined automatically. For

example, Teh et al. [101] proposed a nonparametric model

known as hierarchical Dirichlet processes which extends

LDA and seeks to learn the optimal K automatically. How-

ever, while such heuristics and methods achieve satisfactory

performance in NLP tasks, they are not necessarily optimal

for software systems [74, 82].

Several methods have been proposed in the literature to

approximate near-optimal combinations of LDA parameters

(a, b, K) in software systems. Such methods can be

(a) manual, based on a domain expert understanding of the

system [3, 74], (b) experimentally determined, inwhich LDA

parameters are tuned until a configuration that achieves

acceptable performance over a certain quality measure is

reached [8, 11], or (c) automatically generated using statis-

tical methods or machine learning approaches [47, 82].

LDA has been used to support several software engi-

neering tasks, such as mining semantic topics from source

code [63], analyzing software evolution [103], and auto-

mated tracing [8, 81]. Several drawbacks of LDA stem

from its mathematical complexity. For example, it can be

easily misguided by uninformative words, and also the use

of the Dirichlet distribution limits LDA ability in modeling

data with high diversity [82]. Another limitation is the fact

that the number of topics that are naturally present in the

corpus should be specified ahead, which is, similar to

specifying the K in LSI, can be computationally exhaustive

[15].

Requirements Eng (2015) 20:281–300 285

123

2.4 Semantic relatedness methods

Semantic relatedness (SR)methods try to quantify the degree

to which two concepts semantically relate to each other by

exploiting different types of semantic relations connecting

them [9]. The main intent is to mimic the human mental

model when computing the relatedness of words. The human

brain establishes semantic relatedness between words based

on their meaning, or context of use [52]. For example, both

words\cow, horse[refer to a mammal that has four legs,

and thus they can be considered related. Also, the words

\horse, car[both refer to a means of transportation for

humans, thus they can be considered related from that per-

spective. Another aspect the brain examines is the frequent

association between words.Words that often appear together

are likely to be related. For example, the words\table, -

chair[appear together frequently, giving the human brain an

indication of relatedness.

A wide range of methods for measuring SR have been

proposed in the literature. These methods infer words

relatedness by exploiting massive amounts of textual

knowledge to leverage all the possible relations that con-

tribute to words similarity (e.g., Table 1). Such information

is usually available in external knowledge sources includ-

ing linguistic knowledge bases (LKB), such as WORDNET

[38], collaborative knowledge bases (CKB), such as the

online encyclopedia Wikipedia [99], or general Web search

results, such as Google search [36].

SR has been applied to several NLP applications such as

automated spelling correction [16], text retrieval [39], word

sense disambiguation [83], question answering [2], and

automatic speech recognition [88]. In what follows, we

describe two methods of semantic relatedness that have

been heavily investigated in related literature. These

methods include ESA and NGD.

2.4.1 Explicit semantic analysis

ESA represents the meaning of a text as a high-dimensional

weighted vector of concepts, derived from Wikipedia [41]. In

details, given a text fragmentT ¼ \t1; . . .; tn [, and a space

of Wikipedia articles (C), initially a weighted vector V is

created for the text, where each entry of the vector vi is the

TFIDF weight of the term ti in T. Using a centroid-based

classifier [51], all Wikipedia articles in C are ranked

according to their relevance to the text. Let kj be the strength

of association of term ti with Wikipedia article cj, where cj 2
\c1; c2; . . .; cn [(N is the total number of Wikipedia arti-

cles), the semantic interpretation vector S for text T is a vector

of lengthN, in which theweight of each concept is defined as:

Si ¼
X

wi2T

vi:kj ð4Þ

Entries of this vector reflect the relevance of the corre-

sponding articles to text T. The relatedness between two

texts can then be calculated as the cosine between their

corresponding vectors.

Among the different Wikipedia-based measures proposed

in the literature, ESA has been proven to achieve the highest

correlation with human judgment [76, 99]. In addition, ESA

compares text fragments. This makes it a suitable approach

for traceability tasks or even requirements engineering tasks

in general [70]. In fact, due to its flexibility, ESA has been

extended to work in cross-lingual retrieval settings, which

can be considered as an extreme case of vocabularymismatch

[97]. Limitations of ESA can stem from the complexity of its

implementation, as it requires downloading the whole Wiki-

pedia, which requires substantial space requirements, in

addition to the computational capabilities required for

indexing such a large amount of data [41].

2.4.2 Normalized Google distance

The fuzzy set theory suggests that the degree of keywords’

co-occurrence can be considered as a measure of their

semantic relatedness [9]. Based on that, the NGD provides

a method to estimate confidence scores between words

using words’ co-occurrences collected over Web search

results (e.g., Google).

Formally, for each two terms being matched, a Google

search query is initiated. The semantic relatedness between

two terms s(t1, t2) is then measured using the normalized

Google similarity distance (NGD) introduced by Cilibrasi

and Vitanyi [20] as:

sðt1; t2Þ ¼ 1� logðmaxðD1;D2ÞÞ � logðjD1 \ D2jÞ
logðjDjÞ � logðminðD1;D2ÞÞ

ð5Þ

where D1 and D2 are the numbers of documents containing

t1 and t2, respectively, and |D1 \ D2| is the number of

documents containing both t1 and t2. The assumption is that

pages that contain both terms indicate relatedness, while

pages that contain only one of the terms suggest the

opposite. The denominator is used to normalize the simi-

larity scores of vectors to fit in the range [0–1].

For example, the NGD between the two terms, patient and

hospital, can be calculated as follows, a Google search is

Table 1 Semantic relations

Relation Description Example

Synonymy Equivalent \sick, ill[
Polysemy Multiple meanings \charge[
Hyponymy Type-of \ambulance, car[
Antonymy Opposite \male, female[
Meronymy Part-of \room, hotel[
Statistical Co-occurrence \patient, hospital[

286 Requirements Eng (2015) 20:281–300

123

initiated for the terms patient and hospital separately. The

search process returns 573,000,000 and 1,200,000,000 hits

for both terms, respectively (i.e., D1 and D2). Next, a search

using the phrase patient hospital is requested. Google returns

335,000,000 hits (pages in which both patient and hospital

appear) representing |D1 \ D2|. Using Eq. 5, NGD

(patient, hospital) = 0.446, given thatGoogle search engine

indexes approximately ten billion pages (D = 1010).

In NGD, the smallest the distance, the closer the terms,

hence NGD(x, x) = 0, and the distance between two com-

pletely unrelated terms (e.g., |D1 \ D2 | = /) is equal to1:

To quantify the similarity between different artifacts in the

system, we initially calculate the pairwise NGD similarity

between all the unique terms in the corpus. These values are

normalized to fit in the interval [0–1], producing NGD‘. The

value sNGD = 1 - NGD‘(x,y) is then used to indicate the

pairwise term similarity rather than dissimilarity (i.e., 1

means an exact match) [43]. These values are stored in a

thesaurus similar to the synonyms thesaurus introduced ear-

lier (VSM-T). Similarity between any two artifacts in the

systemcan then be calculated usingEq. 2,where aij is equal to

the sNDG value between the terms ti and tj.

NGD has been successfully applied in several NLP tasks

such as search query prediction [18] and concepts mapping

[43]. However, the quality of NGD can be highly affected

by the noise usually returned by search engines due to the

inherent ambiguity of some terms, and the lack of context

when matching individual terms.

2.5 Summary

The collection of methods presented in this section covers a

wide spectrum of semantically enabled IR methods that

have been intensively used in software engineering

research in general, and traceability research in particular.

Some of these methods are focused on certain semantic

relations such as synonymy (e.g., VSM-T), while other

methods expand the range of relations to cover more

semantic relations such as polysemy, hyponymy, and mer-

onymy, and statistical associations such as co-occurrence of

terms (e.g., LDA, LSI, ESA, and NGD). In addition, some

of these methods use local knowledge sources, such as a

domain thesaurus or the internal textual structure of the

corpus, to derive their similarity scores (e.g., VSM-T-TD,

LSI, and LDA), while other methods use external sources,

such as WORDNET and Wikipedia, to estimate similarity

(e.g., VSM-T-WN, ESA, and NGD).

Furthermore, the presented methods can be divided into

explicit and latent. Explicit methods are explicit in the

sense that they manipulate concepts grounded in human

cognition (e.g., ESA and NGD) or import semantics

explicitly from an external source such as a domain the-

saurus (e.g., VSM-TD), or the grammatical structure of

documents (e.g., VSM-POS). On the other hand, latent

methods use statistical methods to derive latent semantic

structures hidden in the natural language component of the

system (e.g., LDA and LSI). Table 2 summarizes the

attributes of the different methods described in this section.

3 Experimental settings

The main objective of our experimental analysis is to

systematically compare the performance of the various

methods proposed earlier (Table 2) in capturing various

requirements traceability links in software systems.

Table 2 Categories of semantically enabled IR methods used in our analysis

Description Semantics Knowledge source Related work

Baseline

Vector Space Model VSM N/A N/A [92]

Semantic augmented with thesaurus

VSM with domain thesaurus VSM-T-TD Synonyms Domain Thesaurus [56, 104]

VSM with general-purpose thesaurus VSM-T-WN Synonyms WordNet

Semantic augmented with POS

VSM with Part-of-Speech tagging (nouns) VSM-POS-N Nouns OpenNLP [19, 57]

VSM with Part-of-Speech tagging (verbs) VSM-POS-V Verbs OpenNLP [19, 57]

Latent semantic

Latent Semantic Indexing LSI Synonyms, Polynyms Corpus [27]

Latent Dirichlet allocation LDA Topics modeling Corpus [15]

Semantic relatedness

Explicit Semantic Analysis ESA Synonymy, hyponymy Wikipedia [41]

Antonym, meronymy

Normalized Google Distance NGD Co-occurrence Google [20]

Requirements Eng (2015) 20:281–300 287

123

Figure 1 depicts our experimental procedure, which also

describes how the problem is formulated. In general, the

IR-based tracing problem can be described as a loop with

three main steps:

• Indexing: The indexing process starts by extracting the

textual content of software artifacts (e.g., comments, code

identifiers, requirements text). Lexical processing is then

applied to extract individual tokens from the text (e.g.,

splitting code identifiers into their constituent words). In

some cases, stemming is performed to reduce words to

their inflectional roots (e.g., ‘‘patients’’ ! ‘‘patient’’). In

our analysis, we use Porter stemming algorithm [86]. The

output of the process is a compact content descriptor, or a

profile, which is usually represented as keywords com-

ponents matrix or a VSM [69].

• Retrieval: The various semantically enabled IR meth-

ods described earlier are used to capture requirements

traceability links in the system. Links with similarity

scores above a certain threshold (cutoff) value are

called candidate links [56].

• Evaluation: A set of primary and secondary measures are

used to assess the different performance aspects of the

underlying IR methods [100]. In particular, the perfor-

mance of the various methods of each category is

compared to the VSM baseline, and the best performing

methods of different categories are compared to eachother.

3.1 Evaluation

3.1.1 Quality measures

Precision (P) and recall (R) are the standard measures often

used to assess the performance of IR methods. Recall

measures coverage and is defined as the percentage of

correct links that are retrieved. Precision, on the other

hand, measures accuracy and is defined as the percentage

of retrieved candidate links that are correct. Formally, if

A is the set of correct links and B is the set of retrieved

candidate links, then recall (R) and precision (P) can be

defined as:

R ¼ jA \ Bj=jAj ð6Þ
P ¼ jA \ Bj=jBj ð7Þ

3.1.2 Browsability measures

Browsability is the extent to which a presentation eases the

effort for the analyst to navigate the candidate traceability

links. For a tracing tool or a method that uses a ranked list

to present traceability links, it is important to not only

retrieve the correct links, but also to present them properly.

Being set-based measures, precision and recall do not

reflect any information about the list browsability. To

convey such information, other measures are usually used.

Assuming h and d belong to two sets of system artifacts,

where H ¼ fh1; . . .; hng and D ¼ fd1; . . .; dmg: Let C be

the set of true links connecting d and h, and

L = {(d, h)|sim(d, h)} is a set of candidate traceability

links between d and h generated by the IR-based tracing

tool, where sim(d, h) is the similarity score between d and

h. LT is the subset of true positives (correct links) in L, a

link in this subset is described as (d, h). LF is the subset of

false positives in L, a link in this subset is described using

the notion (d0, h0). Based on these assumptions, secondary

measures can be described as:

• Mean average precision (MAP) is a measure of quality

across recall levels [7]. For each query, a cutoff point is

taken after each true link in the ranked list of candidate

links. The precision is then calculated. Correct links

that were not retrieved are given a precision of 0. The

precision values for each query are then averaged over

all the relevant (correct) links in the answer set of that

query ðjCjÞ, producing average precision (AP). The

MAP is calculated as the average of AP for all queries

in each dataset [102]. MAP gives an indication of the

order in which the returned documents are presented.

For instance, if two IR methods retrieved the same

number of correct links (similar recall), then the

method that place more true links toward the top of

the list will have a higher MAP. Equation 4 describes

MAP, assuming the dataset has Q traceability queries.

MAP ¼ 1

jQj
XjQj

j¼1

1

jCjj
XjLTj

j

k¼1

PrecisionðLTjk
Þ ð8Þ

• DiffAR measures the contrast of the list. It can be

described as the difference between the average

similarity of true positives and false positives in a

Fig. 1 IR-based automated tracing loop

288 Requirements Eng (2015) 20:281–300

123

ranked list. A list with higher DiffAR has a clearer

distinction between its correct and incorrect links,

hence, is considered superior. Equation 7 describes

DiffAR.

DiffAR ¼
PjLT j

i¼1 simðhi; diÞ
jLT j

�
PjLF j

j¼1 simðh0
j; d0

jÞ
jLF j

ð9Þ

• Lag can be described as the average of the number of

false positives with higher similarity score that precede

each true positive in the ranked list. In other words, the

average number of incorrect links that appears before

each correct link in the list. Equation 8 describes Lag.

Lag ¼
PjLT j

i¼1 Lagðhi; diÞ
jLT j

ð10Þ

Lag gives an indication of how separated true positives

from false positives in a list. A higher lag means that true

links are scattered all over the list, which is considered a

sign of poor performance.

3.2 Datasets

Three datasets are used to conduct the experiment in this

paper: CM-1, eTour, and iTrust. Following is a description

of these datasets and their application domains.

• iTrust: An open source medical application developed

by software engineering students at North Carolina

State University (USA).1 It provides patients with a

means to keep up with their medical history and records

and to communicate with their doctors [75]. The dataset

(source code: v15.0, Requirements: v21) contains 314

requirement-to-code links. The links are available at

method level. To conduct our analysis, the link

granularity is abstracted to class level based on a

careful analysis of the system.

• eTour: An electronic tourist guide application devel-

oped by final-year students at the University of Salerno

(Italy).2 eTour was selected as experimental object in

this experiment because its source code contains a

combination of English and Italian words, which is

considered an extreme case of vocabulary mismatch.

The dataset contains 394 requirement-to-source code

links at class-level granularity.

• CM-1: Consists of a complete requirements (high-level)

document and a complete design (low-level) document

for a NASA scientific instrument. The project source

code was written in C with approximately 20 K lines of

code. It has 235 high-level requirements and 220 design

elements. The traceability matrix contains 361 actual

requirement-to-design traces.

Table 3 shows the characteristics of each dataset. The

table shows the size of the system in terms of lines of

source code (LOC), lines of comments (COM), source and

target of traceability links [e.g., use case (UC), source code

element (SC), or requirement (Req.)], and the number of

correct traceability links (Links).

3.3 Implementation

ESA implementation was guided through several online

implementations 3 including preprocessing tools for parsing

Wikipedia dumps (e.g., WikiPrep) and carrying out ESA

analysis. Wikipedia 2009 dumps were used in our imple-

mentation. To implement NGD, the client library Go-

ogle.NET 4 was used to initiate Google queries and interpret

returned responses. For the implementation of VSM-POS

we used SharpNLP,5 a port of the Java OpenNLP library

written in C#. For VSM-WN we used WordNet.Net,6 a free

open source. Net framework library for WORDNET written in

C#. For the implementation of LSI we used Bluebit Matrix

Calculator,7 a high performance matrix algebra for .NET

programming which provides routines for SVDs, eigen-

values, and eigenvectors problems. JGibbLDA,8 a Java

implementation of LDA is used for topic modeling. This

particular implementation uses Gibbs Sampling for

parameter estimation and inference [48].

4 Results and analysis

We use two sample artifacts (q, d) from the iTrust dataset

as an illustrative example to guide our analysis. These

artifacts are shown in Fig. 2a and b, respectively. q repre-

sents a requirement of the system (req. 3.1.1), and it

describes a basic login functionality. d is a method that

verifies user’s login information. There is a valid trace link

Table 3 Experimental datasets

Dataset LOC (K) COM (K) Source Target Links

iTrust 18.3 6.3 Req SC 314

eTour 17.5 7.5 Req SC 394

CM-1 20 N/A Req Design 361

1 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php.
2 http://www.cs.wm.edu/semeru/tefse2011/Challenge.htm.

3 http://www.cs.technion.ac.il/*gabr/resources/code/.
4 https://developers.google.com/gdata/client-cs.
5 http://sharpnlp.codeplex.com/.
6 http://opensource.ebswift.com/WordNet.Net/.
7 http://www.bluebit.gr/net/.
8 http://jgibblda.sourceforge.net/.

Requirements Eng (2015) 20:281–300 289

123

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
http://www.cs.wm.edu/semeru/tefse2011/Challenge.htm
http://www.cs.technion.ac.il/~gabr/resources/code/
https://developers.google.com/gdata/client-cs
http://sharpnlp.codeplex.com/
http://opensource.ebswift.com/WordNet.Net/
http://www.bluebit.gr/net/
http://jgibblda.sourceforge.net/

between q and d. Some methods require artifacts to be

indexed before matching them. Both q and d were indexed

using the indexing process described earlier [69]. The

output of the indexing process is shown in Fig. 2c and d.

Performance of different methods is presented in pre-

cision/recall curves over various threshold levels

(\.1, .2,…, 1[) [56]. A higher threshold level means a

larger list of candidate links, i.e., more links were consid-

ered in the analysis. Wilcoxon signed-rank test is used to

measure the statistical significance of the results. This is a

nonparametric test that makes no assumptions about the

distribution of the data [31]. This test is applied over the

combined samples from two related samples or repeated

measurements on a single sample (before and after effect).

The IBM SPSS Statistics software package is used to

conduct the analysis. We use a = 0.05 to test the signifi-

cance of the results. Note that different IR methods are

applied independently, so there is no interaction effect

between them.

4.1 Semantic-augmented methods

We start our analysis by examining the performance of the

semantic-augmented methods including VSM with the-

saurus support (VSM-T) and VSM with Part-of-Speech

tagging (VSM-POS).

4.1.1 Vector space model with thesaurus support

Two methods are investigated under his category: VSM-T-

DT and VSM-T-WN.We propose an optimization algorithm

in order to specify acceptable approximations for a in Eq. 2.
This algorithm is based on maximizing the recall. The main

assumption is that IR-based tracing tools favor recall over

precision. This is mainly because commission errors (false

positives) are easier to deal with than omission errors (false

negatives) [56]. The algorithm starts from a = 0, gradually

increasing this value by .05 each time, and monitoring the

recall over constant threshold levels. The value of a that

achieves the highest average recall at lowest threshold level

(i.e., highest possible precision) is considered a local maxi-

mum. We run this algorithm over our three experimental

datasets. Results show that average similarity coefficients of

a = .43 and a = .81 achieve the best recall in VSM-T-WN

and in VSM-TD, respectively. However, while this kind of

optimization achieves acceptable performance levels, more

sophisticated approaches, such as assigning different weights

based on human judgment or statistical similarity analysis

over WORDNET, can be used. However, such analysis is

beyond the scope of this paper.

Figure 3 shows the performance of the two methods in

comparison with the VSM baseline in all three experi-

mental datasets. Statistical analysis results are shown in the

Semantic-Augmented (Thesaurus) section of Table 5.

Analysis shows that the VSM baseline starts with relatively

higher precision and recall at lower threshold levels. VSM-

T-TD is able to catch up halfway through, keeping up the

good performance until almost achieving a 100 % recall at

higher threshold levels, while basic VSM stopped at

93.3 % recall. Figure 3 also shows the fast drop in the

precision of VSM, while VSM-TD shows a more gradual

decrease in the precision with the increase in the recall.

Results also show the poor performance of VSM-T-WN,

which performs significantly worst than VSM and VSM-T-

TD in all three datasets. While VSM-T-WN is able to hit a

100 % recall at higher threshold levels, it retrieves so many

(a)

(c) (d)

(b)

Fig. 2 Example 1: Traceability

link

290 Requirements Eng (2015) 20:281–300

123

false positives taking the precision down to significantly

lower levels.

The above analysis shows that the explicit introduction

of synonyms in VSM improves the overall recall. It also

has a positive effect on the accuracy by keeping acceptable

precision levels at higher recall levels. The poor perfor-

mance of VSM-T-WN in comparison with VSM-T-TD can

be explained based on the fact that WORDNET is a general-

purpose thesaurus; no domain knowledge is available to

guide the synonym extraction process. Therefore, this

method introduces a high noise-to-signal ratio that leads to

retrieving a large number of false positives. In contrast, the

domain thesaurus in WSM-T-TD was generated using

terms from within the corpus, so noise levels were kept

under control. Also, the domain knowledge helped to deal

with non-English words that the English dictionary

WORDNET fails to handle, especially in the eTour dataset

where Italian words were used.

To further confirm our findings, we refer to our example

in Fig. 2. The similarity scores between q and d given by

VSM, VSM-T-TD, and VSM-T-WN were .54, .63, and .47,

respectively. Using VSM-T-WN, q’s vector has been

expanded with the following synonyms:

• credential: certificate

• authenticate: formalize, corroborate

• validate: formalize, corroborate

• password: watchword, word, parole, countersign

• user: exploiter

• fail: miscarry, neglect, die, go, break, break, flunk,

bomb

• forget: bury, block, leave.

This list shows that WORDNET introduces so many

domain irrelevant terms (e.g., parole, miscarry). While

such enrichment might have a positive influence on the

recall, especially in retrieving some of the hard-to-trace

requirements [42], it often causes a significant drop in the

accuracy, which is reflected in the fast drop in the precision

values of VSM-T-WN at higher threshold levels. This is

also clearly shown by the DiffAR values in Table 4 which

show that VMS-T-WN was the least successful in distin-

guishing between true and false links.

In contrast, using VSM-T-TD, the following synonym

pairs were manually identified based on the domain’s

context: \password, credential[,\email, credential[,

\authenticate, validate[, and \patient, user[. It is

important to point out here that VSM-T-TD is also prone

to noise. For example, the synonym pair\patient, user[
might cause some confusion, as in the iTrust dataset, the

term user might refer to individuals other than patients,

such as visitors or doctors. However, regardless of that

small amount of noise, VSM-T-TD still gives a higher

similarity score between q and d, which is desirable

since (q, d) is actually a correct link. In addition, the

DiffAR values of VSM-T-TD, shown in Table 4, show

that this method achieves an acceptable distinction

between true and false links in comparison with VSM

and VSM-T-WN.

4.1.2 VSM with part-of-speech tagging

Under this category we analyze the performance of VSM-

POS-N, in which only nouns are considered in the indexing

process, and VSM-POS-V, in which only verbs are con-

sidered. POS is applied before indexing to preserve the

grammatical structure of the text. In case of source code,

this process depends heavily on the availability of free text

comments that can be correctly parsed. After indexing,

Fig. 3 VSM-T methods

performance

Table 4 DiffAR values taken at 0.7 threshold

Baseline Thesaurus support POS support Latent semantic Semantic relatedness

VSM VSM-T-TD VSM-T-WN VSM-POS-N VSM-POS-V LSI LDA NGD ESA

iTrust 0.3 0.21 0.17 0.33 0.33 0.01 0.01 0.02 0.11

eTour 0.22 0.16 0.1 0.39 0.32 0.01 0.01 0.07 0.12

CM-1 0.1 0.09 0.06 0.21 0.2 0.01 0.01 0.01 0.09

Requirements Eng (2015) 20:281–300 291

123

documents are matched using the standard cosine similarity

(Eq. 1).

Performance precision/recall curves for running the two

VSM-POS methods over our three experimental datasets

are shown in Fig. 4. Statistical analysis results are shown in

the Semantic-Augmented (POS) section of Table 5. Results

show that traceability link retrieval is heavily affected by

the grammatical filters. In both cases, considering only one

part of speech has a significantly negative effect on recall

in all three datasets. Even though considering only nouns

has relatively less negative impact on the performance than

considering only verbs, it still fails to match the baseline’s

recall. The relatively better performance of both methods

in CM-1 can be explained based on the fact that CM-1 is a

requirement-to-design dataset, and free text is used to

describe artifacts at both sides of the traceability link. This

allowed the POS tagger to generate more accurate lists of

candidate links for this particular dataset in comparison

with the two other datasets. Results also show that con-

sidering only nouns in the indexing process achieves a

significantly higher recall than indexing verbs only. This

suggests that nouns carry more information value when

retrieving traceability links. However, such information

value is not sufficient enough to achieve optimal recall

levels.

In general, it can be concluded that this kind of aug-

mentation fails to achieve a satisfactory performance in the

domain of automated tracing. However, if high precision

levels are favored over recall, these methods can be useful

as they tend to filter out a large portion of unwanted noise,

usually caused by some irrelevant terms generated by the

indexing process. This behavior is clearly reflected in the

DiffAR values (Table 4) which show that VSM-POS

methods generate the highest values in terms of distin-

guishing between true positives and false positives. How-

ever, this success does not give them an edge over the

baseline, as they significantly fail to outperform basic

VSM.

Considering our example in Fig. 2, VSM-POS-V redu-

ces q and d vectors to\login, Authenticate, forget[and

\login, validate, fail[, respectively. In contrast, VSM-

POS-N reduces q to\patient, credential, password[and

d to\patient, user, email, password[. Using VSM-POS-

V, q and d only match at \login[taking the similarity

down to 0.224, and VSM-POS-N has two matches

\patient, password[also taking the similarity score of the

true (q, d) link down to 0.336.

4.2 Latent semantic methods

Under this category, we analyze the performance of the

latent methods LSI and LDA. To approximate an optimal

value of K, LSI is ran iteratively while the K value is

gradually increased by 5 after each iteration. K values that

produce globally better precision/recall, averaged over all

the instances of each dataset, are kept. Running this opti-

mization procedure over our three experimental datasets

produced K values of 35, 40, and 45 for iTruts, eTour, and

CM-1, respectively.

We follow a similar experimental approach to approxi-

mate an optimal number of topics (K) for LDA. In par-

ticular, K is initially set to 40 topics. The document-topic

distribution matrix of each artifact in the system is then

generated. A cosine comparison (Eq. 2) is conducted to

capture matching in the latent topic structures of different

artifacts, generating candidate traceability links. The value

of K is then increased by 40, and the process is repeated.

This particular step size of 40 is the minimum value that

yields noticeable changes in the recall. As mentioned ear-

lier, we tie optimality to recall in our analysis. Therefore,

we follow a hill-climbing approach to monitor the changes

in the recall, and best recall values were detected at

K values of 160, 180, and 180 for iTrust, eTour, and CM-1,

respectively. At this range of K, topics tend to be more

distinguishable from each other, which makes these par-

ticular values nearly optimal for traceability analysis.

It is important to point out that the complexity of the

study grows exponentially with the inclusion of other LDA

parameters such as a and b. Therefore, at this stage of our

analysis, we fix these values. This strategy is often used in

related research to control for such parameters’ effect [47,

65, 103]. In particular, values of a = 50/K and b = 0.1 are

Fig. 4 VSM-POS methods

performance

292 Requirements Eng (2015) 20:281–300

123

used. These heuristics have been shown to achieve satis-

factory performance in the literature [48, 105].

The performance of LSI and LDA over our three data-

sets in comparison with the baseline is shown in Fig. 5.

Statistical analysis results are shown in the Latent

Semantics section of Table 5. The results show that, in

comparison with VSM, in all three datasets, both methods

achieve relatively better recall. However, the only statis-

tically significant improvement in recall over the baseline

is achieved by LSI over CM-1. The results also show that

this improvement in the recall has taken the precision down

to significantly lower levels in all three datasets. Further

more, a closer look at the recall and precision curves shows

that, in iTrust and CM-1, LSI manages to outperform LDA

at lower threshold levels. This difference in the perfor-

mance is more obvious in the iTrust dataset where LSI does

significantly better than LDA in terms of precision and

recall. In the eTour dataset, both LDA and LSI achieve an

interchangeably good performance before reaching the

maximum recall and minimum precision point, i.e., all the

links are retrieved (considered relevant).

Applying the latent methods over q and d in Fig. 2

shows that both methods produce relatively low similarity

scores. LSI returns a similarity score of .032, and LDA

returns a score of .007. These similarity scores were gen-

erated at class-granularity level. For instance, in LDA, the

topic distribution of the class that contains the function

Login_OnClick (Fig. 2a) was matched with the topic

distribution of requirement 3.1.3 (Fig. 2a).

The relatively higher score of LSI might be explained

based on its operation, such as a detected synonym relation

between \credential, password[. However, there is no

clear indication if that is actually the case, or just a

mathematical coincidence. In general, the poor perfor-

mance of latent methods can be ascribed to their internal

operation. When dealing with software artifacts, the

amount of knowledge available in a corpus is not expres-

sive enough to produce meaningful document-topic or

Table 5 Wilcoxon signed-rank test results (a = .05)

iTrust eTour CM-1

Recall Precision Recall Precision Recall Precision

(Z, p value) (Z, p value) (Z, p value) (Z, p value) (Z, p value) (Z, p value)

Semantic augmented

VSM 9 VSM-T-TD (-.357, .721) (-1.785, .074) (-.255, .799) (-1.580, .114) (-1.784, .074) (-1.785, .074)

VSM 9 VSM-T-WN (-2.293, .022) (-2.803,\.005) (-2.293, .022) (-2.803,\.005) (-2.191, .028) (-2.803,\.005)

VSM-T-TD 9 VSM-T-WN (-2.666, .008) (-2.803,\.005) (-2.666, .008) (-2.803,\.005) (-2.666, .008) (-2.803,\.005)

Semantic augmented

VSM 9 VSM-POS-N (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005)

VSM 9 VSM-POS-V (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005)

VSM-POS-N 9 VSM-POS-V (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005)

Latent semantic

VSM 9 LSI (-.866, .386) (-2.803,\.005) (-.459, .646) (-2.803,\.005) (-2.090, .037) (-2.803,\.005)

VSM 9 LDA (-1.478, .139) (-2.803,\.005) (-.051, .959) (-2.803,\.005) (-1.784, .074) (-2.803,\.005)

LSI 9 LDA (-2.490, .013) (-2.380, .017) (-1.599, .110) (-.652, .515) (-.652, .515) (-.178, .859)

Semantic relatedness

VSM 9 ESA (-1.580, .114) (-.765, .444) (-.866, .386) (-2.803,\.005) (-.968, .333) (-2.803,\.005)

VSM 9 NGD (-1.682, .093) (-2.803,\.005) (-.663, .508) (-2.803,\.005) (-1.479, .139) (-2.803,\.005)

ESA 9 NGD (-.652, .515) (-2.803,\.005) (-2.666, .008) (-2.803,\.005) (-2.547, .011) (-2.803,\.005)

Inter-category

VSM-T-TD 9 VSM-POS-N (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.701, .007) (-2.803,\.005)

ESA 9 VSM-T-TD (-2.429, .015) (-2.599, .009) (-2.666, .008) (-2.803,\.005) (-2.666, .008) (-2.803,\.005)

ESA 9 VSM-POS-N (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-1.988, .047)

LSI 9 VSM-T-TD (-2.192, .028) (-2.803,\.005) (-1.599, .110) (-2.803,\.005) (-.652, .515) (-2.803,\.005)

LSI 9 VSM-POS-N (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005) (-2.803,\.005)

ESA 9 LSI (-2.668, .008) (-2.803,\.005) (-2.547, .011) (-2.803,\.005) (-2.666, .008) (-2.803,\.005)

Requirements Eng (2015) 20:281–300 293

123

document-term matrices for LDA and LSI, which makes

these methods prone to mathematical noise. This behavior

was clearly reflected in the DiffAR values shown in

Table 4. In all three datasets, both latent methods are the

least successful in distinguishing between true and false

links, achieving the smallest DiffAR values among other

investigated methods.

4.3 Semantic relatedness methods

Under this category, the methods of ESA and NGD are

investigated. Performance of both methods in comparison

with the baseline is shown in Fig. 6. Statistical analysis

results are shown in the Semantic Relatedness section of

Table 4. Results show that in all three datasets, both

methods are able to hit a 100 % recall at higher threshold

levels. However, this improvement over the baseline’s

recall is statistically insignificant. On the other hand, the

precision is affected negatively due to the high number of

false positives, which is more obvious in NGD where the

precision at 100 % recall hits a minimum.

The diagrams also show that ESA achieves significantly

better precision and recall than NGD in all datasets. This

can be explained based on the fact that Wikipedia, being a

semi-structured source of knowledge, cancels a high ratio

of noise usually returned by search engines, thus achieving

a higher precision. Another potential reason for the rela-

tively poor performance of NGD is the oversimplification

of the problem. While ESA utilizes a smarter approach for

extracting relatedness measures, NGD simply relies on hit

counts to derive similarity, ignoring several inherent

problems related to term ambiguity.

To gain more insights into these methods, we refer to

our example in Fig. 2. ESA compares vectors of text, thus

the domain knowledge is somewhat preserved through the

context. For example, the word fail in the context

\user, login, fail[obviously refers to a failure in the login

process. In contrast, due to the lack of context in NGD,

terms such as user and fail can refer to so many types of

failure. This behavior was reflected in the DiffAR values

shown in Table 4, which shows that ESA is more suc-

cessful in differentiating between true links and false links.

4.4 Inter-category comparison

We conduct a comprehensive analysis to compare the

performance of the best performing methods from each

category. Results are shown in Fig. 7. Pairwise statistical

analysis is shown in the Inter-Category part of Table 5. In

terms of recall, in all three datasets, VSM-T-DT, ESA, and

LSI were able to reach a maximum recall at higher

threshold levels, with VSM-T-DT achieving significantly

higher precision, followed by ESA, which in turn signifi-

cantly outperforms LSI. In terms of precision, VSM-POS-

N achieves highest precision, outperforming all other

methods significantly. However, it fails to achieve an

acceptable recall.

In terms of browsability measures, Figs. 8 and 9 show

the MAP and Lag results of the best performing methods

from the different categories of semantically enabled IR

methods. In general, results show that methods that achieve

a reasonable performance in terms of quality, such as

VSM-T-TD and ESA, also tend to achieve a good perfor-

mance in terms of browsability.

Fig. 5 Latent semantic

methods performance

Fig. 6 Semantic relatedness

methods performance

294 Requirements Eng (2015) 20:281–300

123

In particular, in terms of MAP, Fig. 8 shows that VSM-

T-DT and ESA achieve an interchangeably good perfor-

mance over the experimental datasets, ESA outperforms

VSM-T-TD in iTrust and CM-1 while VSM-T-TD outper-

forms ESA in eTour. The results also show the constantly

poor performance of LSI and VSM-POS-N, achieving a

significantly lower MAP in all datasets. LSI tends to scatter

true positives all over the ranked list of candidate links, with

higher concentration of these links at the bottom of the list,

thus taking the average precision (AP) value down for each

query. VSM-POS-N, on the other hand, captured a smaller

number of correct links, thus increasing the number of links

with 0 precision (false negatives) in Eq. 8.

Similar patterns are observed in the Lag results, shown

in Fig. 9. The method that achieved the highest precision

(VSM-POS-N) acquired the lowest Lag values (i.e., smaller

number of false positives separate true positives). Results

also show that VSM-T-TD achieves a comparable perfor-

mance to the baseline, also outperforms ESA and LSI in all

three datasets. While ESA manages to keep very close

performance in both iTrust and CM-1, in the eTour dataset

ESA performance is significantly worst. In contrast, LSI

achieves the worst performance in all three datasets. This

means that LSI tends to scatter the correct links all over the

list with higher numbers of false positives separating them.

Finally, while identifying a winning technique is not a

main goal of our analysis, in terms of the primary and

secondary performance measures, our overall analysis

results lean toward announcing VSM-T-TD as the most

reliable semantically enabled IR method for traceability

link recovery.

4.5 Limitations

Several factors can affect the validity of our study. Con-

struct validity is the degree to which the variables accu-

rately measure the concepts they purport to measure [26].

In our experiment, there are minimal threats to construct

validity as standard IR measures (recall and precision),

which are used extensively in requirements traceability

research, are used to assess the different methods investi-

gated in our paper. These measures are also complemented

by another set of secondary measures (MAP, DiffAR, and

Lag) that are used to provide more insights into the

browsability of the generated lists of candidate traceability

links. We believe that these two sets of measures suffi-

ciently capture and quantify the different performance

aspects of the various methods evaluated in this study.

Threats to external validity impact the generalizability

of results. In particular, the findings of this study might not

generalize beyond the underlying experimental settings

[26]. A major threat to the external validity comes from the

datasets used in our experiment. In particular, two of these

datasets were developed by students and may not be rep-

resentative of a program written by industrial professionals.

Also, all three of our datasets are limited in size, which

raises some scalability concerns. However, we believe that

the use of three datasets, from different application

domains, helps to mitigate these threats. Finally, specific

design decisions and heuristics used during the experiment

can also limit the study’s applicability. Such decisions

include using Wikipedia 2009 in ESA, using TFIDF

weights in our baseline, the decision of only considering

verbs and nouns in VSM-POS, and the heuristic values of a
and b used in LDA.

Fig. 7 Overall performance

Fig. 8 MAP values in iTrust, eTour, and CM-1

Fig. 9 Lag values in iTrust, eTour, and CM-1

Requirements Eng (2015) 20:281–300 295

123

Internal validity refers to factors that might affect the

causal relations established in the experiment. A potential

threat to our study’s internal validity comes from our

specific implementation of the different methods investi-

gated in this paper. However, we believe that using freely

available open source tools and libraries in our imple-

mentations helps to mitigate this threat. It also makes it

possible to independently replicate our study. In addition,

an experimental bias might stem from the fact that some of

the procedures in our experiment were carried out manu-

ally. For instance, the local domain thesaurus in VSM-T-

TD was created manually by our researchers, based on their

understanding of the system, which might raise some

subjectivity concerns that can affect the internal validity of

our study.

5 Discussion and impact

Capturing and maintaining accurate lists of requirements

traceability links is vital to managing requirements in the

multiple phases of the software development process [44,

56]. In this paper, we investigated the performance of

several semantically enabled IR methods in bridging the

semantic gap that often appears in the system as a direct

result of software evolution [61, 62]. In particular, we

experimentally assessed the effect of different semantic

schemes on the performance of various IR-based trace-

ability methods.

Our results revealed that explicit semantic methods

(VSM-T, VSM-POS, ESA, and NGD) tend to do a better

job in recovering traceability links than latent methods

(LSI and LDA). Though latent methods able to achieve

higher recall levels, they often fail to compete with the

precision of other methods. This can be explained based on

the fact that lexicons and syntax of NL documents differ

from those of software artifacts. Source code is more

constrained and less varied than natural language, which

makes it more regular and repetitive [54, 63]. This limits

the ability of latent methods to extract hidden semantics

schemes using statistical and probabilistic models. In fact,

latent methods were initially developed to work with

contents of large document collections [15, 48, 77, 107].

However, software systems are often much smaller than

NL text corpora, depriving such methods of context, and

causing them to behave randomly, even when calibrated

using settings that usually achieve adequate performance

over natural language corpora [54, 93]. For instance, poor

parameter calibration or wrong assumptions about the

nature of the data often lead a method such as LDA to

generate several irrelevant or duplicated topics [82].

Probably the most interesting observation in our analysis

is that considering more semantic relations in retrieval does

not necessarily lead to a better tracing performance.

Instead, a local and a more focused semantic support is

expected to serve the automated tracing problem better.

This was clearly reflected in the performance of VSM-T

and ESA, while both methods achieved a relatively good

performance, VSM-T managed to keep a significantly

higher precision in all three datasets, also significantly

higher recall in both eTour and CM-1. In particular, our

analysis shows that methods, which only consider the

semantic relation of synonymy, tend to be the most reliable

for traceability link recovery. This can be explained based

on the fact that software artifacts are not as semantically

rich or complex as free text. In fact, it has been observed

that developers tend to shy away from using fancy lan-

guage when writing specifications. Instead, software arti-

facts are usually expressed in a simplified form of the

natural language, with a smaller vocabulary set and sim-

plified grammars [33]. In addition, source code developers

tend to abbreviate names; causing concepts to be denoted

through their full name as well as multiple abbreviations

[5, 28], thus increasing the density of synonymy relations

in software systems.

Our results also show that external sources of knowl-

edge such as Wikipedia or WORDNET tend to increase the

level of noise in retrieval. This can be explained based on

the fact that often a coherent vocabulary structure, derived

from the system application domain, is used through out

the project’s lifecycle. Therefore, as shown in our analysis,

using external and general-purpose sources of knowledge

to enrich the system’s vocabulary will most likely corrupt

that coherent structure with unrelated terms, thus causing a

significant decline in the precision of IR methods. In

addition, as observed earlier, synonyms generated by

abbreviating domain names seem to be the most occurring

semantic relation during software evolution. Being

domain-specific, such synonyms are often not included in

general-purpose dictionaries or knowledge sources.

Finally, in terms of tool support, our results reveal how

different methods, at different levels of semantic support,

might be useful in certain contexts of requirements man-

agement. For example, in tools where accuracy is the main

concern, methods that achieve significant precision levels

might be useful (e.g., VSM-POS). However, in safety-

critical systems, which imposes special demands on

ensuring quality and reliability of the system, methods that

achieve higher recall levels might be more appropriate

[21]. In addition, if practicality is a major concern, then

methods that utilize external knowledge sources such as

Wikipedia or WORDNET should be avoided. Such methods

require relatively higher time and space requirements to

function properly (e.g., initiating multiple Web search

requests or long search queries in NGD, or downloading

and indexing Wikipedia in ESA).

296 Requirements Eng (2015) 20:281–300

123

6 Related work

Several IR-based traceability link recovery methods have

been proposed in the literature. Next we selectively review

some of the seminal work in this domain over the last

decade. Initial work on IR-based traceability was con-

ducted by Antoniol et al. [6]. The authors used probabi-

listic network model (PN) and basic VSM to recover

traceability links between source code and free text docu-

ments. This work provided an initial evidence of the

practicality of IR methods as a potential solution for the

automated tracing problem. Marcus and Maletic repeated

the same case study using LSI [73]. They compared the

performances of LSI with VSM and PN. Results showed

that LSI can achieve a comparable performances without

the need for stemming.

Huffman-Hayes et al. [55] used two different variants of

VSM including retrieval with key phrases and VSM with

thesaurus support, to recover traceability links between

requirements. The former approach was found to improve

recall; however, it affected precision negatively. On the

other hand, VSM with thesaurus support resulted in

improved recall and precision. A more recent work by the

same authors addressed issues related to improving the

overall quality of the automated tracing process [56]. In

particular, the authors analyzed the performance of several

IR methods including VSM, VSM with thesaurus support,

and LSI, and incorporating relevance feedback from human

analysts in the retrieval process. Results showed that using

analysts’ feedback to tune the weights in the term-by-doc-

ument matrix of the VSM improved the final tracing results.

Settimi et al. [95] compared the performance of several IR

techniques in tracing UMLmodels. In particular, the authors

applied VSM and one of its variants that uses pivot normal-

ization to trace requirements to UML artifacts, code, and test

cases. The results raised someconcerns about the adequacy of

the IR-based paradigm in solving the traceability problem.

However, they found that such methods can be used to alle-

viate some of the manual effort in requirements tracing tasks.

Similarly, Oliveto et al. [81] compared the performance of

several IR-based traceability recovery methods including the

Jensen–Shannon (JS) method, VSM, LSI, and LDA. Results

showed that JS, VSM, and LSI were almost equivalent in that

they captured almost the same information. However, LDA

achieved lower accuracy.

Cleland-Huang et al. [22] introduced three enhancement

strategies (hierarchical modeling, logical clustering of

artifacts, and semi-automated pruning) to improve the

performance of the probabilistic network model. Results

showed that such strategies can be used effectively to

improve trace retrieval results and increase the practicality

of tracing tools. Similar to this work, in our previous work

[79], we proposed an approach based on the cluster

hypothesis to improve the quality of candidate link gen-

eration for requirements tracing. The main assumption was

that correct and incorrect links can be grouped into high-

quality and low-quality clusters, respectively. Result

accuracy can thus be enhanced by identifying and filtering

out low-quality clusters. Evaluating this approach over

multiple datasets showed that it outperformed a baseline

pruning strategy.

Lormans and van Deursen [66] used a new strategy, based

on LSI, to trace requirements to test case specifications and

design artifacts. Their experimental analysis on three case

studies provided an evidence that LSI can increase the

insight in a system by means of reconstructing the trace-

ability links between the different artifacts. Later, Asuncion

et al. [8] employed topic modeling through the use of latent

Dirichlet allocation (LDA) to recover different types of

traceability links. Results showed that the combination of

traceability with topic modeling can be useful in practice.

Gibiec et al. [42] used a Web-based query expansion

algorithm to bridge the vocabulary gap in the system.

Evaluating this approach over a group of healthcare data-

sets showed its ability to improve the traceability of hard-

to-trace requirements. Similarly, in our earlier work [70],

we introduced semantic relatedness as an approach for

traceability link recovery. Results showed that the Wiki-

pedia-based ESA achieves a balance between LSI and

VSM. It significantly outperforms the recall of VSM and

the precision of LSI in most cases, showing more stable

performance at different threshold levels. In addition, we

conducted a preliminary analysis of VSM with Part-of-

Speech tagging in recovering traceability links [68].

Results showed that POS could not beat basic VSM in

terms of precision and recall. However, a more recent work

on POS was conducted by Capobianco et al. [17]. Analysis

of this approach over five software artifact repositories

indicated that noun-based indexing of software artifacts

significantly improves the accuracy of IR-based traceabil-

ity recovery methods.

7 Conclusions and future work

7.1 Summary

In this paper, we conducted an experimental analysis to

assess the performance of various semantically enabled IR

methods, including semantic-augmented, latent semantic,

and semantic relatedness methods, in capturing require-

ments traceability links in software systems.

The performance of the different methods in terms of

results’ quality and browsability was compared to the basic

VSM as an experimental baseline. Results showed that

explicit semantic methods (VSM-T, VSM-POS, ESA, and

Requirements Eng (2015) 20:281–300 297

123

NGD) tend to outperform latent methods (LSA and LDA).

In addition, results revealed that methods that use selective

indexing based on the lexical form of terms (VSM-POS)

cancel a considerable amount of textual noise, thus achieve

the best precision. However, such methods often suffer on

the recall as a considerable amount of information is lost

when filtering out other parts of speech. Results also

showed that considering more semantic relations in

retrieval does not necessarily lead to improved perfor-

mance. Instead, a more focused explicit semantic support,

in particular synonyms from a domain-specific thesaurus, is

expected to achieve more adequate performance levels.

7.2 Future work

The line of work in this paper has opened several research

directions to be pursued in our future work. These direc-

tions can be described as following:

• Automated tracing methods: Our work in this paper is

limited to VSM-based methods. In our future work, we

are interested in exploring other semantically enabled

methods that apply different semantic schemes to the

problem. For instance, we are interested in assessing

the performance of ontology-based traceability tools

which have been shown to achieve satisfactory perfor-

mance in the domain of automated tracing [50, 108].

• Requirements engineering tasks: In this paper, we have

limited our analysis to the requirements traceability

problem. In our future work, we are interested in

studying the performance of semantically enabled

methods in supporting other requirements engineering

tasks in which the IR paradigm is often employed. Such

tasks include, for example, reusable requirements

retrieval [68], requirements discovery [13], and evolu-

tion [10].

• Tool support: Our analysis in this paper suggested several

guidelines for the design and development of practical

automated tracing tools. It is in the scope of our future

work to implement these findings in a working prototype

to support various requirements engineering tasks besides

traceability. In addition, a working prototype will allow

us to conduct human studies to assess the usability of

different methods in practice.

Acknowledgments This work is supported in part by the US NSF

(National Science Foundation) Grant CCF1238336.

References

1. Abebe S, Tonella P (2010) Natural language parsing of program

element names for concept extraction. In: International confer-

ence on program comprehension, pp 156–159

2. Ahn D, Jijkoun V, Mishne G, Mller K, de Rijke M, Schlobach S

(2004) Using Wikipedia at the TREC QA track. In: Interactive

poster and demonstration sessions, pp 73–76

3. Andrzejewski D, Mulhern A, Ben BL, Zhu X (2007) Statistical

debugging using latent topic models. In: European conference

on machine learning, pp 6–17

4. Anquetil N, Fourrier C, Lethbridge T (1999) Experiments with

clustering as a software remodularization method. In: Working

conference on reverse engineering, pp 235–255

5. Anquetil N, Lethbridge T (1998) Assessing the relevance of

identifier names in a legacy software system. In: Conference of

the centre for advanced studies on collaborative research,

pp 4–14

6. Antoniol G, Caprile B, Potrich A, Tonella P (2000) Design-code

traceability for object-oriented systems. Ann Softw Eng

9(1–4):35–58

7. Aslam J, Yilmaz E, Pavlu V (2005) A geometric interpretation

of r-precision and its correlation with average precision. In:

Annual international ACM SIGIR conference on research and

development in information retrieval, pp 573–574

8. Asuncion H, Asuncion A, Taylor R (2010) Software traceability

with topic modeling. In: International conference on software

engineering, pp 95–104

9. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information

retrieval. Addison-Wesley, Reading, MA

10. Ben Charrada E, Koziolek A, Glinz M (2012) Identifying out-

dated requirements based on source code changes. In: Interna-

tional requirements engineering conference, pp 61 –70

11. Biggers L, Bocovich C, Capshaw R, Eddy B, Etzkorn L, Kraft N

(2012) Configuring latent Dirichlet allocation based feature

location. Empir Softw Eng 1–36

12. Biggerstaff T, Mitbander B, Webster D (1994) Program under-

standing and the concept assignment problem. Commun ACM

37(5):72–82

13. Binkley D, Lawrie D (2010) Information retrieval applications

in software development. In: Computer technologies and infor-

mation sciences, chap 37

14. Binkley D, Lawrie D (2011) Maintenance and evolution:

information retrieval applications. In: Laplante PA (ed) Ency-

clopedia of software engineering, pp 454–463

15. Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation.

J Mach Learn Res 3:993–1022

16. Budanitsky A, Hirst G (2006) Evaluating wordnet-based mea-

sures of lexical semantic relatedness. Comput Linguist

32(1):13–47

17. Capobianco G, De Lucia A, Oliveto R, Panichella A, Panichella

S (2013) Improving IR-based traceability recovery via noun-

based indexing of software artifacts. J Softw Maint Evolut Res

Pract 25(7):743–762

18. Chen P, Lin S (2010) Automatic keyword prediction using

Google similarity distance. Expert Syst Appl 37(3):1928–1938

19. Chowdhury A, McCabe M (1998) Improving information

retrieval systems using part of speech tagging. Technical report,

ISR, Institute for Systems Research

20. Cilibrasi R, Vitanyi P (2007) The google similarity distance.

IEEE Trans Knowl Data Eng 19(3):370–383

21. Cleland-Huang J, Heimdahl M, Huffman-Hayes J, Lutz R,

Mäder P (2012) Trace queries for safety requirements in high

assurance systems. In: International conference on requirements

engineering: foundation for software quality, pp 179–193

22. Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing

supporting evidence to improve dynamic requirements trace-

ability. In: International conference on requirements engineer-

ing, pp 135–144

23. Cleland-Huang J, Settimi R, Romanova E (2007) Best practices

for automated traceability. Computer 40(6):27–35

298 Requirements Eng (2015) 20:281–300

123

24. De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering

traceability links in software artifact management systems using

information retrieval methods. ACM Trans Softw Eng Methodol

16(4):13–50

25. De Lucia A, Oliveto R, Zurolo F., Di Penta M (2006) Improving

comprehensibility of source code via traceability information: a

controlled experiment. In: International conference on program

comprehension, pp 317–326

26. Dean A, Voss D (1999) Design and analysis of experiments.

Springer, Berlin

27. Deerwester S, Dumais S, Furnas G, Landauer T, Harshman R

(1990) Indexing by latent semantic analysis. J Am Soc Inf Sci

41(6):391–407

28. Deibenböck F, Pizka M (2005) Concise and consistent naming.

In: International workshop on program comprehension,

pp 97–106

29. Dekhtyar A, Huffman-Hayes J, Antoniol G (2007) Benchmarks

for traceability? In: International symposium on grand chal-

lenges in traceability

30. Demmel J, Kahan W (1990) Accurate singular values of bidi-

agonal matrices. J Sci Stat Comput 11(5):873–912

31. Demšar J (2006) Statistical comparisons of classifiers over

multiple data sets. J Mach Learn Res 7:1–30

32. Dumais S (1993) Lsi meets trec: a status report. In: Harman D

(ed) The first text retrieval conference (TREC1), National

Institute of Standards and Technology Special Publication,

pp 137–152

33. Etzkorn L, Davis C (1995) An approach to object-oriented

program understanding. In: IEEE workshop on program com-

prehension, pp 14–15

34. Evans D, Zhai C (1996) Noun-phrase analysis in unrestricted

text for information retrieval. In: Annual meeting on association

for computational linguistics, pp 17–24

35. Falleri J, Huchard M, Lafourcade M, Nebut C, Prince V, Dao M

(2010) Automatic extraction of a wordnet-like identifier network

from software. In: International conference on program com-

prehension, pp 4–13

36. Fang J, Guo L (2011) Calculation of relatedness by using search

results. In: International workshop on intelligent systems and

applications, pp 1–4

37. Feilkas M, Ratiu D, Jurgens E (2009) The loss of architectural

knowledge during system evolution: an industrial case study. In:

International conference on program comprehension, pp 188–197

38. Fellbaum C (1998) WordNet: an electronic lexical database.

MIT Press, Cambridge, MA

39. Finkelstein L, Gabrilovich E, Matias Y, Rivlin E, Solan Z,

Wolfman G, Ruppin E (2002) Placing search in context: the

concept revisited. ACM Trans Inf Syst 20(1):116–131

40. Furnas G, Deerwester S, Dumais S, Landauer T, Xarshman R,

Streeter L, Lochbaum K (1988) Information retrieval using a

singular value decomposition model of latent semantic structure.

In: Annual international ACM SIGIR conference on research

and development in information retrieval, pp 465–480

41. Gabrilovich E, Markovitch S (2007) Computing semantic related-

ness using Wikipedia-based explicit semantic analysis. In: Interna-

tional joint conference on artificial intelligence, pp 1606–1611

42. Gibiec M, Czauderna A, Cleland-Huang J (2010) Towards

mining replacement queries for hard-to-retrieve traces. In:

International conference on automated software engineering,

pp 245–254

43. Gligorov R, Aleksovski Z, Kate W, Harmelen F (2007) Using

Google distance to weight approximate ontology matches. In:

International conference on world wide web, pp 767–776

44. Gotel O, Finkelstein A (1994) An analysis of the requirements

traceability problem. In: International conference on require-

ments engineering, pp 94–101

45. Gotel O, Finkelstein A (1995) Contribution structures. In:

International symposium on requirements engineering,

pp 100–107

46. Gotel O, Morris S (2011) Out of the labyrinth: leveraging other

disciplines for requirements traceability. In: IEEE international

requirements engineering conference, pp 121–130

47. Grant S, Cordy J (2010) Estimating the optimal number of latent

concepts in source code analysis. In: International working

conference on source code analysis and manipulation, pp 65–74

48. Griffiths T (2004) Steyvers M finding scientific topics. In: The

National Academy of Sciences, pp 5228–5235

49. Grzywaczewski A, Iqbal R (2012) Task-specific information

retrieval systems for software engineers. J Comput Syst Sci

78(4):1204–1218

50. Guo Y, YangM, Wang J, Yang P, Li F (2009) An ontology-based

approach for traceability recovery. In: International symposiumon

knowledge acquisition and modeling, pp 160–163

51. Han E, Karypis G (2000) Centroid-based document classifica-

tion: Analysis and experimental results. In: European conference

on principles of data mining and knowledge discovery,

pp 424–431

52. Hata M, Homae F, Hagiwara H (2009) Semantic relatedness

between words in each individual brain: an event-related

potential study. Neurosci Lett 501(2):72–77

53. Hazen T (2010) Direct and latent modeling techniques for

computing spoken document similarity. In: Spoken language

technology workshop, pp 366–371

54. Hindle A, Bird C, Zimmermann T, Nagappan N (2012) Relating

requirements to implementation via topic analysis: do topics

extracted from requirements make sense to managers and

developers? In: International conference on software mainte-

nance, pp 243–252

55. Huffman-Hayes J, Dekhtyar A, Osborne J (2003) Improving

requirements tracing via information retrieval. In: International

conference on requirements engineering, pp 138–147

56. Huffman-Hayes J, Dekhtyar A, Sundaram S (2006) Advancing

candidate link generation for requirements tracing: the study of

methods. IEEE Trans Softw Eng 32(1):4–19

57. Jurafsky D, Martin J (2000) Speech and language processing.

Prentice Hall, Englewood Cliffs NJ

58. Kit L, Man C, Baniassad E (2006) On finding duplication and

near-duplication in large software systems. In: Annual ACM

SIGPLAN conference on object-oriented programming systems,

languages, and applications, pp 383–396

59. von Knethen A (2002) Automatic change support based on a

trace model. In: International workshop on traceability in

emerging forms of software engineering

60. Kuhn A, Ducasse S, Gı́rba T (2007) Semantic clustering:

Identifying topics in source code. Inf Softw Technol

49(3):230–243

61. Lawrie D, Feild H, Binkley D (2007) Extracting meaning from

abbreviated identifiers. In: International working conference on

source code analysis and manipulation, pp 213–222

62. Lehman M (1984) On understanding laws, evolution, and con-

servation in the large-program life cycle. J Syst Softw

1(3):213–221

63. Linstead E, Rigor P, Bajracharya S, Lopes C, Baldi P (2007)

Mining concepts from code with probabilistic topic models. In:

International conference on automated software engineering,

pp 461–464

64. Lioma C, Blanco R (2009) Part of speech based term weighting

for information retrieval. In: Advances in information retrieval,

pp 412–423

65. Liu Y, Poshyvanyk D, Ferenc R, Gyimóthy T, Chrisochoides N

(2009) Modelling class cohesion as mixtures of latent topics. In:

International conference on software maintenance, pp 233–242

Requirements Eng (2015) 20:281–300 299

123

66. Lormans M (2006) Can lsi help reconstructing requirements

traceability in design and test. In: European conference on

software maintenance and reengineering, pp 47–56

67. Luisa M, Mariangela F, Pierluigi I (2004) Market research for

requirements analysis using linguistic tools. Requir Eng 9(1):40–56

68. Mahmoud A, Niu N (2010) Using semantics-enabled informa-

tion retrieval in requirements tracing: An ongoing experimental

investigation. In: Annual computer software and applications

conference, pp 246–247

69. Mahmoud A, Niu N (2011) Source code indexing for automated

tracing. In: International workshop on traceability in emerging

forms of software engineering, pp 3–9

70. Mahmoud A, Niu N, Xu S (2012) A semantic relatedness

approach for traceability link recovery. In: International con-

ference on program comprehension, pp 183–192

71. Maletic J, Marcus A (2000) Using latent semantic analysis to

identify similarities in source code to support program under-

standing. In: International conference on tools with artificial

intelligence, pp 46–53

72. Marcus A, Maletic J (2001) Identification of high-level concept

clones in source code. In: International conference on automated

software engineering, pp 107–114

73. Marcus A, Maletic J (2003) Recovering documentation-to-

source-code traceability links using latent semantic indexing. In:

International conference on software engineering, pp 125–135

74. Maskeri G, Sarkar S, Heafield K (2008) Mining business topics

in source code using Latent Dirichlet allocation. In: ISEC,

pp 113–120

75. Meneely A, Smith B, Williams L (2012) iTrust electronic health

care system: a case study, chap. software and systems trace-

ability. Springer, Berlin

76. Milne D, Witten I (2008) An effective, low-cost measure of

semantic relatedness obtained from wikipedia links. In: AAAI

workshop on wikipedia and artificial intelligence, pp 25–30

77. Nallapati R, Cohen W, Lafferty J (2007) Parallelized variational

EM for Latent Dirichlet allocation: an experimental evaluation

of speed and scalability. In: International conference on data

mining workshops, pp 349–354

78. Niu N, Easterbrook S (2008) Extracting and modeling product

line functional requirements. In: International requirements

engineering conference, pp 155–164

79. Niu N, Mahmoud A (2012) Enhancing candidate link generation

for requirements tracing: the cluster hypothesis revisited. In: IEEE

international requirements engineering conference, pp 81–90

80. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a

roadmap. In: Conference on the future of software engineering,

pp 35–46

81. Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2010) On the

equivalence of information retrieval methods for automated

traceability link recovery. In: International conference on pro-

gram comprehension, pp 68–71

82. Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De

Lucia A (2013) How to effectively use topic models for software

engineering tasks? An approach based on genetic algorithms. In:

International conference on software engineering, pp 522–531

83. Patwardhan S, Banerjee S, Pedersen T (2005) Senserelate::tar-

getword: a generalized framework for word sense disambigua-

tion. In: Interactive poster and demonstration sessions, pp 73–76

84. Pedersen J, Silverstein C, Vogt C (2000) Verity at trec-6: out-of-

the-box and beyond. Inf Process Manage 36(1):187–204

85. Porteous I, Newman D, Ihler A, Asuncion A, Smyth P, Welling

M (2008) Fast collapsed gibbs sampling for latent Dirich-

let allocation. In: ACM SIGKDD international conference on

knowledge discovery and data mining, pp 569–577

86. Porter F (1997) An algorithm for suffix stripping. Morgan Ka-

ufmann Publishers Inc., Los Altos, CA, pp 313–316

87. Poshyvanyk D, gal Guhneuc Y, Marcus A (2007) Feature

location using probabilistic ranking of methods based on exe-

cution scenarios and information retrieval. IEEE Trans Softw

Eng 33(6):420–432

88. Pucher M (2007) Wordnet-based semantic relatedness measures

in automatic speech recognition for meetings. In: Annual

meeting of the ACL on interactive poster and demonstration

sessions, pp 129–132

89. Ramesh B, Jarke M (2001) Towards reference models for

requirements traceability. IEEE Trans Softw Eng 27(1):58–93

90. Rao A, Lu A, Meier E, Ahmed S, Pliske D (2000) Query pro-

cessing in trec-6. Inf Process Manage 36(1):179–186

91. Rosario B (2000) Latent semantic indexing: an overview. IN-

FOSYS 240 Spring Paper, University of California, Berkeley

92. Salton G, Wong A, Yang C (1975) A vector space model for

automatic indexing. Commun ACM 18(11):613–620

93. Sarukkai R (2002) Foundations of web technology. The Springer

International Series in Engineering and Computer Science, New

York, pp 106–108

94. Schmid H (1994) Probabilistic part-of-speech tagging using

decision trees. In: International conference on new methods in

language processing, pp 44–49

95. Settimi R, Cleland-Huang J, Ben Khadra O, Mody J, Lukasik W,

DePalma C (2004) Supporting software evolution through

dynamically retrieving traces to uml artifacts. In: International

workshop on the principles of software evolution, pp 49–54

96. Shepherd D, Fry Z, Hill E, Pollock L, Vijay-Shanker K (2007)

Using natural language program analysis to locate and under-

stand action-oriented concerns. In: International conference on

aspect-oriented software development, pp 212–224

97. Sorg P, Cimiano P (2012) Exploiting wikipedia for cross-lingual

and multilingual information retrieval. Data Knowl Eng

74(0):26–45

98. Spanoudakis G, Zisman A (2004) Software traceability: a

roadmap. Handb Softw Eng Knowl Eng 3:395–428

99. Strube M, Ponzetto S (2006) Wikirelate! computing semantic

relatedness using wikipedia. In: National conference on artificial

intelligence, pp 1419–1424

100. Sundaram S, Huffman-Hayes J, Dekhtyar A, Holbrook E (2010)

Assessing traceability of software engineering artifacts. Requir

Eng J 15(3):313–335

101. Teh Y, Jordan M, Beal M, Blei D (2006) Hierarchical Dirichlet

processes. J Am Stat Assoc 101(476):1566–1581

102. Teufel S (2007) An overview of evaluation methods in trec ad

hoc information retrieval and trec question answering. In: Dy-

bkjaer L, Hemsen H, Minker W (eds) Evaluation of text and

speech systems, pp 163–186

103. Thomas S, Adams B, Hassan A, Blostein D (2010) Validating

the use of topic models for software evolution. In: IEEE working

conference on source code analysis and manipulation, pp 55–64

104. Tsatsaronis G, Varlamis I, Vazirgiannis M (2010) Text relat-

edness based on a word thesaurus. Commun ACM 37(1):1–40

105. Wei X, Croft B (2006) LDA-based document models for ad-hoc

retrieval. In: ACM SIGIR, pp 178–185

106. Wong S, Ziarko W, Raghavan V, Wong P (2012) On modeling

of information retrieval concepts in vector spaces. In: ACM
transactions database systems, pp 299–321

107. Zhai K, Boyd-Graber J, Asadi N, Alkhouja M (2012) Mr. LDA:

a flexible large scale topic modeling package using variational

inference in MapReduce. In: International conference on world

wide web, pp 879–888

108. Zhang Y, Witte R, Rilling J, Haarslev V (2006) An ontology-

based approach for traceability recovery. In: International

workshop on metamodels, schemas, grammars, and ontologies

for reverse engineering, pp 36–43

300 Requirements Eng (2015) 20:281–300

123

	On the role of semantics in automated requirements tracing
	Abstract
	Introduction
	Semantically enabled IR
	Vector space model
	Semantic-augmented methods
	Vector space model with thesaurus support
	Vector space model with part-of-speech tagging

	Latent semantic methods
	Latent semantic indexing
	Latent Dirichlet allocation

	Semantic relatedness methods
	Explicit semantic analysis
	Normalized Google distance

	Summary

	Experimental settings
	Evaluation
	Quality measures
	Browsability measures

	Datasets
	Implementation

	Results and analysis
	Semantic-augmented methods
	Vector space model with thesaurus support
	VSM with part-of-speech tagging

	Latent semantic methods
	Semantic relatedness methods
	Inter-category comparison
	Limitations

	Discussion and impact
	Related work
	Conclusions and future work
	Summary
	Future work

	Acknowledgments
	References

