
RE 2014

Leveraging topic modeling and part-of-speech tagging to support
combinational creativity in requirements engineering

Tanmay Bhowmik1
• Nan Niu2

• Juha Savolainen3
• Anas Mahmoud4

Received: 16 October 2014 / Accepted: 6 April 2015 / Published online: 28 April 2015

� Springer-Verlag London 2015

Abstract Requirements engineering (RE), framed as a

creative problem solving process, plays a key role in in-

novating more useful and novel requirements and im-

proving a software system’s sustainability. Existing

approaches, such as creativity workshops and feature

mining from web services, facilitate creativity by exploring

a search space of partial and complete possibilities of re-

quirements. To further advance the literature, we study

creativity from a combinational perspective, i.e., making

unfamiliar connections between familiar possibilities of

requirements. In particular, we propose a novel framework

that extracts familiar ideas from the requirements and

stakeholders’ comments using topic modeling, and auto-

matically generates requirements by obtaining unfamiliar

idea combinations by means of flipping the part-of-speech

of identified topics. We apply our framework on two large-

scale open-source software systems (Firefox and Mylyn)

and report two studies to assess the viability of combina-

tional creativity in RE. The results show that the creativity

merit of requirements generated by our framework judged

by human experts is comparable to that of requirements

created manually. Meanwhile, the cost of our framework is

significantly less than manual work, measured by time

spent generating requirements. Our work illuminates a

possible improvement toward interactive generation of

creative requirements using mechanism’s outputs.

Keywords Requirements identification � Creativity �
Stakeholders’ social network � Social clusters �
Topic modeling � Part-of-speech tagging

1 Introduction

Much of traditional requirements engineering (RE) has

considered that requirements exist in the stakeholders’

minds in an implicit manner [1], and has focused on

models and techniques to aid identification and documen-

tation of such requirements. Modern software industry,

however, has become extremely competitive as we find

multiple software products striving to serve the users in the

same application domain. In order to sustain, a software

system needs to distinguish itself from other similar

products and consistently enchant customers with novel

and useful features. As a result, requirements engineers

need to create innovative requirements in order to equip the

software with competitive advantage. To that end, RE,

framed as a creative problem-solving process, plays a key

role in innovating more useful and novel requirements,

thereby improving a software system’s sustainability [2, 3].

Creativity, a multidisciplinary research field, can be

considered as ‘the ability to produce work that is both novel

(i.e., original and unexpected) and appropriate (i.e., useful

and adaptive to task constraints)’ [4]. According to Maiden

et al. [2], creativity in RE is the capture of requirements

& Tanmay Bhowmik

bhowmikt@gmail.com; tb394@msstate.edu

Nan Niu

nan.niu@uc.edu

Juha Savolainen

JuhaErik.Savolainen@danfoss.com

Anas Mahmoud

mahmoud@csc.lsu.edu

1 Mississippi State University, Mississippi State, MS, USA

2 University of Cincinnati, Cincinnati, OH, USA

3 Danfoss Power Electronics A/S, Sydjylland, Denmark

4 Louisiana State University, Baton Rouge, LA, USA

123

Requirements Eng (2015) 20:253–280

DOI 10.1007/s00766-015-0226-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-015-0226-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-015-0226-2&domain=pdf

that are new to the project stakeholders, but may not be

historically new to humankind. It has been suggested that

stakeholders may obtain creative requirements by explor-

ing, combining, and transforming existing ideas in the

conceptual domain [2, 5]. Note that creativity may be more

related to novelty, while innovation also requires some

demonstrated value or utility. In this sense, our current

work focuses more on creativity.

In order to aid creativity in RE, recent research has

investigated several approaches. Maiden et al. [3, 6–8]

conducted creativity workshops on exploring technical and

psychological aspects of creativity and suggested inte-

grating these aspects in the RE process. Techniques, such

as generating requirements with scenario, have also been

proposed to support creativity while exploring information

analogical to the current context [9, 10]. In a recent study,

Hariri et al. [11] presented a framework to obtain re-

quirements by mining feature descriptions of similar

products from online product listings. These contemporary

approaches facilitate creativity by exploring a search

space of partial and complete possibilities of requirements.

To further advance the literature, we support creativity

from a combinational perspective, i.e., making unfamiliar

connections between familiar possibilities of require-

ments [5, 12].

In our previous work [13], we proposed a novel

framework to mine ideas familiar to the stakeholders and

create new requirements by obtaining unfamiliar connec-

tions. It has been suggested that people belonging to the

same social group are generally interested in similar ideas

and share common knowledge [14, 15]. Accordingly, in

order to extract familiar ideas, we mined the requirements

commonly discussed by distinct stakeholder groups. To

that end, we first grouped the stakeholders by clustering the

network created based on stakeholders’ social interaction.

Then, we obtained ideas in terms of dominant topics [16]

by applying Latent Dirichlet Allocation (LDA), the most

commonly used technique for topic modeling in natural

language processing [17]. We further achieved unfamiliar

combinations of the dominant ideas by exploiting part-of-

speech (POS) tagging [18]. The last phase of our frame-

work involved a human analyst who elaborated require-

ments from the unfamiliar idea combinations [13]. We

applied our framework on Firefox1 and Mylyn [19], two

large open-source software (OSS) systems, and further

conducted a human subject evaluation of our framework.

In this extension of our previous paper, we present a

further refined framework that eliminates the involvement

of the human analyst, thereby providing a fully automated

support for combinational creativity in RE. To assess via-

bility, we apply our refined framework on Firefox (see

Footnote 1) and Mylyn [19], and create new requirements

following an end-to-end automation. A human subject

evaluation of the created requirements shows promising

practical implications of our framework. In order to assess

the cost and effectiveness of our framework with those of

manual methods, we conducted a second study that in-

volves humans performing combinational creativity in RE.

Building upon the findings from the initial evaluation of

our framework, we provide a set of dominant topics from

Firefox (see Footnote 1) to three groups of developers. We

examine the processes followed by the developers while

creating requirements via combination of the given topics,

and also recruit two professionals to evaluate the creativity

merit of the generated requirements. The findings of these

studies suggest that our framework generates creative re-

quirements in a highly efficient manner, and further indi-

cate the prospect of the mechanism’s outputs in iterative

creative requirements generation.

The contributions of this extended work lie in an ad-

vancement of the current solutions that facilitate creativity

practice in RE. Our refined framework provides an end-to-

end automated support for combinational creativity and

complements existing approaches by generating original

and relevant requirements. Another important extension to

our previous paper is the human subject study involving

developers manually performing combinational creativity

in RE, and comparing the performance of our framework

against manual methods. This opens new avenues for au-

tomated supports to aid combinational creativity in RE.

The rest of the paper is organized as follows. Section 2

covers background information and related work. Section 3

introduces our framework. Section 4 describes the creation

of new requirements for our subject systems. Section 5

details the human subject studies that evaluate our frame-

work. Section 6 presents further discussion and the

limitations of the work followed by Sect. 7 concluding the

paper with an outline of our future work.

2 Background and related work

2.1 Creativity in RE

Creative ideas: Being novel and being appropriate are the

two intrinsic attributes of an idea to be creative [4]. An

idea can be novel from three different aspects: H-Creativ-

ity—new to a person-kind (i.e., historically creative) [5],

P-Creativity—new to a person but not to the person-kind or

others (i.e., psychologically creative) [5], and S-Creativ-

ity—idea for a specific task which is novel in the particular

situation or domain (also known as situated cre-

ativity) [20]. Meanwhile, an idea is appropriate if it is

useful to accomplish a task and can be adapted following1 http://www.mozilla.org/en-US/firefox/new/.

254 Requirements Eng (2015) 20:253–280

123

http://www.mozilla.org/en-US/firefox/new/

the task constraints [4]. According to Maher et al. [21],

from a design perspective, an idea can be creative if it

instigates surprise in terms of deviation in patterns of

outcomes. Maiden et al. [2], however, suggest creativity in

RE to be mostly situated creativity, i.e., creating require-

ments and other outcomes new to project stakeholders but

that need not be historically new.

Over the last decade, several techniques have been

proposed in order to measure the novelty of a new re-

quirement. Ritchie [22] posited a set of formal criteria that

could be applied to assess the creative behavior of software

programs. Measuring dissimilarity to existing domain ex-

amples could be a way of determining novelty of a re-

quirement [12]. In order to invent requirements from

software, Zachos and Maiden [10] exploited requirements

similarity matching engines and judged novelty by com-

puting dissimilarities among analogical matches. In the

creativity framework proposed in this paper, we exploit the

idea of measuring dissimilarity in finding unfamiliar idea

combinations.

Categories of creativity: Following Boden [5], creativity

in RE is categorized into three groups depending on the

techniques and heuristics used [12]. (1) In exploratory

creativity, creative requirements are obtained by exploring

partial and complete possibilities in the search space. This

exploration is guided by rules and task constraints specific

to the intended software system. (2) Combinational cre-

ativity is achieved by making unfamiliar connections be-

tween known requirements in a familiar setting. (3) The

third way of accomplishing creativity in RE is to challenge

the constraints on the search space and to enlarge the space

of possible requirements to be explored. Creativity attained

by this third way is known as transformational creativity.

Figure 1 presents a conceptual picture of the three

categories of creativity. Let us assume a creativity scenario

for a hypothetical software product S: ‘provide access

control’ is a current requirement and limitation on available

hardware is an initial constraint. Let XYZ be a search space

with possible requirements ‘log-in ID and password,’

‘finger print,’ and ‘facial recognition.’ Provided that they

satisfy the system constraints, using any of these options

for access control is an instance of exploratory creativity.

Combination of two apparently different access control

means, such as log-in ID and password along with finger

print, or log-in ID and password combined with facial

recognition, can be considered as combinational creativity.

Now, let us further consider that the initial constraint on

hardware limitation is relaxed and we enlarge the search

space toward the biometric direction, thereby obtaining the

new search space XY 0Z 0. Options, such as DNA and retina

scan, could also be available due to this expansion, illus-

trating instances of transformational creativity.

2.2 On the way to creative requirements

In recent years, creativity has been emphasized in the RE

literature. Most notably, researchers have conducted cre-

ativity workshops involving collaborative and brainstorm-

ing sessions among stakeholders. Several other frameworks

and tools have also been presented in order to incorporate

creativity techniques and heuristics in a direct or indirect

manner. In what follows, we provide an overview of the

research on creativity in RE.

Creativity workshops: Maiden and Gizikis [6] conduct-

ed creativity workshops encouraging brainstorming and

creative thinking among the stakeholders during the re-

quirements process. Maiden et al. [7, 8] further proposed

RESCUE, a scenario-driven RE process involving work-

shops that integrated creativity techniques with different

types of use case and system context modeling. A case

study was also conducted in which RESCUE creativity

workshops were used to discover stakeholder and system

requirements for a software system intended for managing

flight departures from major European airports [7]. Crea-

tivity workshops were organized in order to discover fea-

tures for a future air space management software system

for UK and European airspace [3]. These workshops

mostly followed exploratory creativity techniques during

the analysis of requirements and emergent system proper-

ties [3]. Creativity techniques incorporating such work-

shops require an end-to-end human involvement and

depend heavily on the ‘aha moments’ of the stakeholders

during the brainstorming and creative thinking sessions.

Furthermore, without any automated support, such tech-

niques are constrained in their scalability.

Frameworks and tools incorporating creativity tech-

niques: In order to support creative thinking for require-

ments, Zachos and Maiden [10] developed an algorithm

that retrieves web services in domains analogical to a

current requirements problem. Using this algorithm, they

performed an analogical mapping between hotel reserva-

tion and parking space booking and explored online hotel

reservation systems to create requirements for the Fiat real-

time parking space booking system. A tool-supported ap-

proach called Semantic Service Search & Composition

(S3C) was developed that explored existing solutions for

enterprise resource planning (ERP) systems and supported

consultants in creating requirements and relevant services

for ERP projects [23]. These algorithms and tools largely

depend on finding the right systems or existing solutions

and the requirements engineer’s ability to draw proper

connections between the requirements while performing

the analogical mapping.

Lutz et al. [24] presented an approach that performed

KAOS Obstacle Analysis to explore requirements in a

Requirements Eng (2015) 20:253–280 255

123

space defined by obstacles for a safety-critical, autonomous

system. Salinesi et al. [25] proposed a prototype tool that

performed requirement-based product configurations

within constraints. This tool discovered various permitted

features for a new product in a product line. The i�/TRO-

POS approach proposed by Fuxman et al. [26] exploited

model checking techniques on the explored space of

specification properties in an attempt to avoid unreasonable

requirements. All these frameworks and tools mostly in-

corporate exploratory creativity, directly or indirectly, and

are concerned with creating requirements for a new system

or a product line.

Sakhnini et al. [27, 28] applied the elementary prag-

matic model (EPM) [29] to support creative requirements

elicitation. Their approach focuses on two stakeholders’

viewpoints at a time and systematically enumerates the

possible combinations of the pair of viewpoints. Two

variants were developed: EPMcreate considers all 16 pos-

sible combinations and POEPMcreate does the optimiza-

tion by restricting the enumeration to only four steps which

are sufficient to cover the entire space of potential ideas

defined by the viewpoint pair [28]. Two controlled ex-

periments using student subjects revealed that

POEPMcreate is more effective than EMPcreate, which is

in turn, more effective than traditional brainstorming. In

both experiments, effectiveness was measured by quantity

(raw number of requirements generated) and quality (new

and useful). The EPM-based methods, however, rely on

requirements engineer’s intuition and experience to

manually identify the sensible input (namely, two stake-

holders) and have scalability concerns by combining only

two stakeholders’ viewpoints at a time.

Lately, the collaborative nature of creativity in RE has

been highlighted by Mahaux et al. [30]. Their research

shows that people often need to work collaboratively to be

creative and provides a framework characterizing the col-

laborative creative process in RE. Following their findings,

in our creativity framework, we consider the collaborative

attribute of creativity and take into account not only the

requirements descriptions but also the comments posted by

stakeholders during their collaboration. To that end, we

utilize the concept of stakeholders’ social network in

finding their collaboration groups. Moreover, our auto-

mated creativity framework reduces the constraints due to

human involvement and further improves scalability issues

in creativity with the existing approaches.

2.3 Stakeholders’ social network in software

engineering

Stakeholders and social networks based on their interac-

tions have been widely studied in RE and other software

engineering areas, e.g., software maintenance. Damian

et al. [31] presented the concept of requirement-centric

social network by defining social network among stake-

holders working on same or interdependent requirements.

Begel et al. suggested that people could ‘be friends’’ by

working on the artifacts they share among them [32]. In

order to create a visual representation for stakeholders’

socio-technical relationship, Sarma et al. [33] considered

both e-mails among developers and comments in Bugzilla

issue tracking system. Posting and reading comments by

stakeholders were also considered by Wolf et al. [34] as a

means to represent communication flow. Building on the

Fig. 1 Categories of creativity

based on techniques and

heuristics (adapted from [12])

256 Requirements Eng (2015) 20:253–280

123

prior research, we consider in our work posting comments

and artifacts on issue tracking systems as social interaction

among stakeholders, though our processing results (e.g.,

topics familiar to a stakeholder group) are clearly con-

strained by our data sources.

2.4 Topic modeling with Latent Dirichlet Allocation

(LDA)

LDA was first introduced by Blei et al. [17] as a statistical

model for automatically discovering topics in large corpora

of text documents. The main assumption is that documents

in a collection are generated using a mixture of latent

topics, where a topic is a dominant theme that describes the

concept of the corpus’s subject matter. LDA’s scalability,

language independency, as well as its ability to work with

incomplete text have made it an appealing analysis model

for several software engineering activities [35–37]. Be-

cause the requirements of a software system as well as

stakeholders’ comments typically contain textual descrip-

tions, LDA becomes particularly useful for our framework.

Such textual content can be analyzed to produce latent

topic structures for the requirements where every require-

ment description, associated with stakeholder comments, is

analogous to an individual document.

Mathematically, a topic model can be described as a

hierarchical Bayesian model that associates a document d

in a document collection D with a probability distribution

over a number of topics T . In particular, each document d

in the collection ðdi 2 DÞ is modeled as a finite mixture

over T drawn from a Dirichlet distribution with parameter

a, such that each d is associated with each ðti 2 TÞ by a

probability distribution of hi. On the other hand, each topic

t in the identified latent topics ðti 2 TÞ is modeled as a

multidimensional probability distribution, drawn from a

Dirichlet distribution b, over the set of unique words in the

corpus (W), where the likelihood of a word from the corpus

ðwi 2 WÞ to be assigned to a certain topic t is given by the

parameter /i.

LDA takes the document collection D, the number of

topics K, and a and b as inputs. Each document in the

corpus is represented as a bag of words

d ¼ hw1;w2; . . .;wni. Since these words are observed data,

Bayesian probability can be used to invert the generative

model and automatically learn / values for each topic ti,

and h values for each document di. In particular, using

algorithms such as Gibbs sampling [38], an LDA model

can be extracted. This model contains, for each t, the ma-

trix / ¼ f/1;/2; . . .;/ng, representing the distribution of t

over the set of words hw1;w2; . . .;wni, and for each docu-

ment d, the matrix h ¼ fh1; h2; . . .; hng, representing the

distribution of d over the set of topics ht1; t2; . . .; tni. The

topic with the highest probability of occurrence in d is the

most dominant topic for d. Therefore, for the document

collection D, the topic that becomes dominant the greatest

number of times is the most dominant topic for D.

Topic modeling in software engineering: Topic model-

ing has recently been used in several research areas of

software engineering, such as mining software repositories

(MSR) [16, 37, 39], requirements traceability [35], and

software evolution [40]. Linstead et al. [16] applied LDA

on the source code of different versions in order to analyze

software evolution. Linstead et al. [39] further used topic

modeling on Internet-scale software repositories, and

summarized program function and developer activities by

extracting topic-word and author-topic distributions. The

use of topic modeling over source code has been validated,

and it has been found that the evolution of source code

topics is indeed caused by actual change activities in the

code [37]. Asuncion et al. [35] proposed an automated

technique that combined traceability with topic modeling

and performed semantic categorization of artifacts during

the software development process.

The above efforts follow a common approach in that

they apply topic modeling on source code written in

computer programming languages. In the creativity

framework presented in this paper, one of the objectives is

to extract existing ideas from documents mostly written in

a natural language (e.g., English). To that end, we adopt

LDA, perhaps the most proven topic modeling technique

for NLP, thereby generating the underlying dominant

themes from requirements and comments posted by

stakeholder groups. In the next section, we present a de-

tailed discussion of our creativity framework.

3 Our creativity framework

Figure 2 presents an overview of our framework that ap-

plies a combinational creativity technique to obtain new

requirements for an existing system in a fully automated

manner. Being completely automated, rather than relying

on human analyst to formulate the new requirements, is a

fundamental enhancement of our prior work [13].

Our framework employs five phases to transform the

input to the output, which are new and useful requirements.

The transformations follow combinational creativity’s

definition in principle [5, 12], and therefore, carry out two

main functionalities: identifying familiar ideas and making

unfamiliar connections of those ideas. To that end, �: The

framework takes the software system’s existing require-

ments, together with stakeholders’ communication about

the requirements recorded in some repository (e.g., an issue

tracking system) as input. `: In order to identify familiar

ideas, our basic tenet is that stakeholders of the same social

group share common interests [14, 15]. Consequently, the

Requirements Eng (2015) 20:253–280 257

123

framework clusters stakeholders into separate groups. ´:

The thematic topics familiar to each stakeholder group

(i.e., familiar ideas) are identified using LDA. ˆ: In order

to make unfamiliar connections of the ideas, the familiar

topics’ POS (i.e., whether a topic word is being used as a

noun or a verb) are tagged. An unfamiliar combination of

the topic words are made by flipping their POS (i.e.,

treating a noun-tagged word as a verb and a verb-tagged

one as a noun). ˜: New requirements are generated from

the unfamiliar combination of the topic words using syn-

tactic templates. Next, we describe our framework’s five

phases in more detail.

1. Building the social network: The first phase of our

framework is to build a weighted connected graph repre-

senting the stakeholders’ social network. This network

should be built based on stakeholders’ communication, i.e.,

two people communicating among themselves should be

connected by an edge and how strongly (or frequently) they

communicate should be reflected by the edge weight. As

several communication means could be followed by

stakeholders (refer Sect. 2.3), our framework does not set

any restriction on what activities should be considered as

stakeholders’ social communication. Depending on the

practice followed in a specific software development en-

vironment, any set of well defined and properly recorded

communication means should be suitable.

Let us consider a hypothetical web browser B with 12

stakeholders (A–M). The issues of B are recorded in an

issue tracking system, and the stakeholders communicate

among themselves by posting comments and artifacts over

the issue tracker. Therefore, in this scenario, posting

comments and artifacts over the issue tracking system

Fig. 2 A framework for

combinational creativity

258 Requirements Eng (2015) 20:253–280

123

could be considered as the means of stakeholders’ social

communication. Based on such operationalization, let us

assume that Fig. 3 presents the stakeholders’ social net-

work for B with 12 nodes and 17 weighted edges. Here,

each node represents an individual stakeholder, an edge

represents the communication among two stakeholders,

and the weight of the edge indicates the number of times

those two stakeholders communicate among themselves.

Section 4.2 further details the operationalization we use in

our study.

2. Clustering the social network: This phase involves

clustering the social network in order to obtain stakehold-

ers’ social groups. The idea is that the members in the same

group have more frequent interaction, whereas there is

sparse communication among people belonging to different

groups [15]. Our framework is flexible from the perspec-

tive of clustering in that any suitable network clustering

algorithm [41] can be used as long as necessary informa-

tion required for the clustering algorithm is available for

the social network in concern. Tool supports, both com-

mercial and open source, are available that can be used to

perform this clustering activity [42, 43]. In the case of the

stakeholders’ social network for B (refer Fig. 3), a tool

such as Ucinet [42] could be used to obtain three social

groups as shown in Fig. 4.

3. Extracting familiar ideas: As people belonging to the

same social group are generally interested in similar

ideas [14, 15], this phase of our framework involves

identifying such ideas. In doing so, requirements and

comments posted by each member in a social group are

collected as text documents, one for each stakeholder. Let

us assume that i number of groups have been obtained after

the clustering phase. If there are Ni number of members in

the i-th group, there will be a collection of Ni documents.

LDA is applied on each document collection Ni in order to

obtain the topic-word distribution matrix / and document-

topic distribution matrix h. Irrespective of the size of the

document collection, LDA always generates t topics where

t is a positive natural number (often 100 [16]) chosen by

the user. As both / and h provide the probability distri-

bution of a large number of words and topics, respectively,

the number of words and topics should be considerably

reduced to avoid an explosion of idea combinations in the

later phases of our framework. To that end, the following

procedure is pursued for each document collection Ni.

• We use the five most probable words from each topic as

representatives of the topic’s subject; five to three

words were found to be sufficient to convey the topic’s

subject [44].

• We use the most probable (dominant) topic of each

document to represent the document. Formally, a

dominant topic can be described as: hi;j ¼ max

fhh;j; h ¼ 1. . .kg.

• The topics are sorted in descending order based on the

number of documents they are dominating.

• These numbers are plotted against the topics and the

cutoff is taken based on the trend, thereby obtaining a

smaller number of topics for the social group.

Figure 5 presents an illustration of determining the

cutoff for dominant topics. X-axis represents the topic ID

and Y-axis shows the number of times a topic becomes

dominant. Taken the cutoff point shown in the figure,

topics 0, 1, 5, 30, 41, and 46 are considered to be dominant

and familiar ideas. The cutoff line can be tuned based on

the trend and the preference of the engineer in order to

obtain a reasonable number of topics. Note that Fig. 5

serves as an aid to demonstrate the extraction of familiar

ideas in our framework. There should be one such figure

for (showing a trend similar to that in Fig. 5) each social

Fig. 3 Stakeholders’ social

network for the hypothetical

web browser B

Requirements Eng (2015) 20:253–280 259

123

group obtained in the previous phase. For example, while

working with our hypothetical web browser B, we will

obtain three different figures for the three social groups.

Following this procedure, the thematic topics familiar to

each social group are obtained that serve as an input for the

next phase of our framework.

In the case of our example with B, let hzoom, result,
browse, context, automatic i; hvote, file, block, include,

locate i, and hsum, mark, start, script, extension i be the

familiar ideas (i.e., topics) obtained for the social groups 1,

2, and 3, respectively. Note that we choose only one idea

for each group for simplicity. In theory, however, there

could be more than one familiar idea obtained for each

group.

4. Obtaining unfamiliar combinations of familiar ideas:

Extracted dominant topics provide us a search space of

familiar ideas (refer Fig. 2). Our objective is to make un-

familiar connections between familiar possibilities in the

search space. To that end, we aim to combine words from

two topics, one word from each topic, coming from two

different stakeholders’ groups. Our ultimate goal is to

combine these words in an unfamiliar manner, i.e., obtain-

ing word combinations uncommon to the stakeholders. If

there are 10 groups with five dominant topics per group and

five words per topic, there will be 10C2 � 25C1� 25C1 ¼
28; 125 unique word pairs. This will lead to a combinatorial

explosion problem for systems with a large number of di-

verse stakeholders. In order to tackle this issue, we follow

the work on semantic analysis in RE [45, 46] to tease out

the action-oriented theme of a requirement. Such theme,

according to Fillmore’s case theory [47], can be charac-

terized by the verb in a requirements description and the

direct object that the verb acts on. Building upon this

knowledge, we structure this phase of the framework with

two steps: (1) flipping the part-of-speech and (2) finding

system specific unfamiliar pairs. These two steps (illus-

trated in Fig. 6) are designed in such a way that they create

unfamiliar combinations of familiar topics with the help of

Fillmore’s case theory [47], and at the same time, keep the

total number of combinations at a manageable level.

• Flipping the part-of-speech: For each topic word, we

identify its common POS in the existing requirements

and comments over the original corpus using a POS

tagger. POS tagging is recently being used in text-based

software engineering tools, such as SWUM [48] and

Fig. 4 Stakeholders’ social

groups for a hypothetical web

browser B

Fig. 5 Dominant topic cutoff

260 Requirements Eng (2015) 20:253–280

123

POSSE [49]. We take the most common verb from a

topic and the most common noun (object) from another,

where two topics belong to two separate groups of

stakeholders, and consider the words as noun (object)

and verb, respectively. We identify all such verb-noun

pairs.

• Finding system specific unfamiliar pairs: To further

ensure unfamiliarity, we rank the verb-noun pairs based

on their average textual similarities [50] with the

current requirements. Then, we filter out the combina-

tions with higher similarity values following a relative

filtering approach [50], thereby reducing the search

space to most unfamiliar verb-noun pairs (refer Fig. 2).

Let us consider the three topics for browser B mentioned

in the previous phase. According to the first step in the

current phase, assume that we run a POS tagger on the

original corpus of existing requirements and comments,

and identify the common part-of-speech for each topic

word. Let the column ‘Common POS’ in Table 1 present

the common part-of-speech of the topic words. Therefore,

we get zoom, vote, and sum as the most common nouns;

and browse, block, and mark as the most common verbs for

the topics 1, 2, and 3, respectively. After flipping the POS

(i.e., considering the nouns as verbs and verbs as nouns),

the least common verbs are zoom, vote, and sum, whereas

browse, block, and mark become the least common nouns.

Thus, the unfamiliar verb-noun pairs are zoom-block,

zoom-mark, vote-browse, vote-mark, sum-browse, and

sum-block. Note that the verb and noun in a pair come

from two topics belonging to two separate groups of

stakeholders. At the second step of this phase, we calculate

the average textual similarity for each verb-noun pair (i.e.,

zoom-block, zoom-mark, etc.) with the existing require-

ments. After we filter out the combinations with higher

similarity values (following a relative filtering

scheme [50]), let us assume that we obtain zoom-mark as

the most unfamiliar verb-noun pair in our example. Sec-

tion 4.2 provides further details of the relative filtering

scheme.

5. Generating requirements from verb-noun pairs: In

our previous work [13], our framework included a human

analyst, preferably a stakeholder proficient in the soft-

ware’s functional attributes, in this phase. The analyst was

provided with all the word pairs obtained from the previous

Fig. 6 Finding the least

common verb-noun pairs: the

leftmost box in the picture

contains three topics,

represented by three circles,

with fivewords each

Table 1 Unfamiliar

combinations of familiar ideas

for the hypothetical web

browser B

Topic no. Topic words Common POS Most common Least common (flipped POS)

Noun Verb Verb Noun

Topic 1 zoom noun zoom browse zoom browse

result noun

browse verb

context noun

automatic adjective

Topic 2 vote noun vote block vote block

file noun

block verb

include verb

locate verb

Topic 3 mark verb sum mark sum mark

sum noun

start verb

script noun

extension noun

Bold fonts indicate topic words

Requirements Eng (2015) 20:253–280 261

123

phase as well as some semantic and contextual information

about the words. The role of the analyst was to use the

word pairs and contextual information (optional) to ela-

borate requirements in her own words preferably preserv-

ing the ideas provided by the verb-noun pairs. Our

approach was limited in that this phase was likely to be

dependent on the analyst’s skill and her preconceived

knowledge about the system. Mentally processing a verb

and a noun that actually looked like a noun and a verb,

respectively, was often inconvenient, and working with a

good number of apparently discrete words turned out to be

exhausting for a human.

Building upon the previous work [13], in our current

study, we further eliminate human involvement from this

requirements generation phase in order to incorporate

complete automation in our framework. To that end, for the

noun in each verb-noun pair, we mine the existing re-

quirements and comments and obtain an additional object

that most frequently appears along with our noun. Thereby,

we extend each verb-noun pair to a verb-clause pair where

the clause contains the noun and the object we just mined.

Ultimately, the generated requirements will be read by a

requirements engineer. Therefore, in the final step, these

verb-clause pairs are put into a syntactic template, e.g.,

subject ? verb ? clause, in order to generate new

requirements.

In the case of our example with browser B, let ‘area’ be

the object that appears most frequently along with the word

‘mark.’ Therefore, ‘mark area’ is the clause for the verb-

clause pair. In order to make the clause further parseable,

we add ‘ed’ after mark, and obtain the requirement

‘Browser B zoom marked area’ using the template subject

? verb ? clause. Note that the verb could also be expanded

to a clause using, e.g., adverb and/or frequently used

phrases. Our framework remains flexible in that the origi-

nal verb-noun pair is open to expansion as we have just

discussed, and more sophisticated linguistic rules can be

applied and a more complex syntactic template can be used

to generate the final requirements. Further technical details

of the framework are presented in the next section.

The final outcome of our framework is a set of auto-

matically generated requirements. For example, consider-

ing the working example discussed in this section,

‘Browser B Zoom marked area’ is a concrete outcome.

Table 6 presented in the next section provides a complete

set of outcomes when we use Firefox and Mylyn as the

subject systems for our framework.

It should be noted that our framework utilizes infor-

mation recorded in the issue tracking system (including

existing requirements and comments) to create new re-

quirements. In their seminal work on just-in-time RE, Ernst

and Murphy [51] emphasize on the extensive use of issue

tracking systems in requirements elicitation and

elaboration for OSS systems. Such a use of issue trackers

has also been corroborated by other studies involving OSS

systems [52–55]. However, our approach is general

enough, and other sources of information, such as e-mail

and IRC, could also be used in our framework.

4 Creating requirements using our framework

This section explains our procedure of examining how the

proposed framework supports combinational creativity in

RE. Note that this section no longer dispossesses any

working example, rather it details an actual study that we

carry out by applying our framework to create require-

ments for two large-scale OSS systems. In particular, we

detail the activities we perform to tease out original, un-

expected, useful, and adaptive requirements following the

specific phases discussed in Sect. 3.

4.1 Methodology

In order to test our framework, we select two OSS systems:

Firefox and Mylyn [19]. We select these projects as our

subject systems for a number of reasons. First, they are

large OSS systems and were previously studied in software

engineering research [19, 56]. Second, they are very suc-

cessful applications and can be considered representatives

of their own domains. Third, the relevant data about these

systems, required to conduct this study, are freely available

online over Bugzilla. This enables other researchers to

replicate our study. Next is a brief description of our

chosen systems.

• Firefox: A very successful open-source project and a

dominating Web browser since its first release in 2004.

From November 2004 to June 2011, Mozilla released

Firefox stable versions 1:0 through 5:0 and after that

made some rapid releases.2 We collect data about the

closed requirements (feature requests) of the stable

versions.

• Mylyn: A stable plug-in that monitors programmer

activity in the Eclipse IDE [19]. It was first started as a

part of the PhD thesis supervised by Gail Murphy at the

Software Practices Lab at UBC.3 We consider the

implemented requirements (closed feature requests) of

Mylyn from its starting in 2005 till February 2012.

For every requirement, we collect information as follows:

requirement ID, description, comments, proposer (i.e.,

stakeholder who proposed the requirement), and stake-

holders posting comments and artifacts. All the

2 http://www.mozilla.org/en-US/firefox/releases/.
3 http://www.eclipse.org/mylyn/about/.

262 Requirements Eng (2015) 20:253–280

123

http://www.mozilla.org/en-US/firefox/releases/
http://www.eclipse.org/mylyn/about/

information, directly available from the requirements page,

is collected by running a Web scraping tool written in Java.

Figure 7 illustrates a typical page for a requirement in the

Bugzilla issue tracking system. Table 2 presents the col-

lected data that we analyze for the subject systems. Note

that we observe many requirements marked as duplicates

(especially in the case of Firefox), and exclude them from

our study.

4.2 Creative requirements via idea combinations

Building the social network: For each subject system, the

social network is a weighted graph where each node rep-

resents a stakeholder. An edge in the graph represents the

communication among two stakeholders, and the weight of

this edge indicates the total instance of communications

between them. To define the weighted edges, we adopt the

approach presented by Wolf et al. [34]. Let X and Y be two

stakeholders and R be a requirement that both X and

Y contribute to. We identify an edge XY representing

communication between X and Y if (1) X is the proposer of

R or has posted a comment or artifact about R that is read

by Y or (2) Y is the proposer of R or has posted a comment

or artifact about R that is read by X. As issue trackers do

not keep direct trace of a stakeholder’s reading activity,

following Wolf et al. [34], we assume Y read the infor-

mation posted by X about R if and only if Y also made a

posting. We aggregate such communication instances be-

tween X and Y over the analyzed history and obtain the

weight of an edge XY.

Obtaining stakeholders’ groups: In order to identify

stakeholders’ groups, i.e., people who interact more fre-

quently among themselves, we cluster the social networks

built in the previous phase. To that end, we use Uci-

net [42], which provides social network clustering and re-

lated features. Ucinet [42] takes the total number of

expected clusters k as input and applies hierarchical clus-

tering algorithm based on node similarities. In our context,

a higher edge weight means higher similarity between

nodes. The output is a text file that elicits the clusters and

also provides a fit value where a lower fit value indicates

better cluster quality [42]. For both Firefox and Mylyn, we

start the clustering process with k ¼ 2, observe the fit

values by gradually increasing k, and stop further cluster-

ing when there is no more reasonable decrease in the fit

value. Table 3 presents the clustering results.

Familiar ideas from stakeholders’ groups: Phase 3 of

our framework applies LDA [17] on the requirements and

comments from all the stakeholders in a social group. For

this activity, we use JGibbLDA.4 This particular imple-

mentation uses Gibbs sampling for parameter estimation

and inference [57]. From the topic-word matrix and

document-topic matrix produced by JGibbLDA, we extract

the dominant topics following the heuristics presented in

Sect. 3. Along with these matrices, JGibbLDA also pro-

duces a topic-word file from which we pick the top five

words for each topic as topic words. It should be noted that

we filter out common key words, such as Firefox and

Mylyn, based on the system’s context along with fre-

quently used English stop words to avoid noise. However,

we find some words appearing in multiple topics, such as

‘Web’ in the case of Firefox and ‘task’ in the case of

Mylyn. In such cases, the word is assigned to the topic

where it shows the highest probability of occurrence. For

instance, the word ‘browse’ appears in seven different fa-

miliar ideas in the case of Firefox. A useful feature of

JGibbLDA is that it provides the probability of occurrence

for each word in a topic. We compare seven such prob-

abilities for ‘browse’ and assign the word to the topic

where its probability of occurrence is the highest. The re-

sults after this phase are summarized in Table 4.

The column ‘Possible unique word pairs’ in Table 4

presents the number of unique word pairs considering one

word per topic from two different stakeholder groups. The

high number of possible combinations makes it apparent

that without further filtering, elaborating requirements from

the word pairs will be very daunting. Furthermore, not all

word pairs will make much sense so that a meaningful

requirement could be generated. The filtering phase that we

go through next is specifically designed to tackle this issue.

Unfamiliar idea combinations for Firefox and Mylyn:

This phase first uses Brill’s tagger [18] to identify the most

common POS for every topic word in the existing re-

quirement descriptions over the original corpus. This al-

lows us to find the most common noun (object) and the

most common verb based on the word probabilities in the

topic-word file produced in the previous phase. We con-

sider them as least common verb and least common noun,

respectively, thereby producing the least familiar verb-

noun pairs (from the system’s perspective) for both Firefox

and Mylyn.

Next, following the experience presented in our previous

work [58], we calculate TF-IDF cosine similarities be-

tween a verb-noun pair and the existing requirements. We

average the similarity values obtained for every pair and

operationalize a relative filtering scheme to filter out the

pairs with higher average similarities. To that end, we

extract the verb-noun pairs with average similarity

� 0:15�highest similarity and consider them as the final set

of verb-noun pairs. Note that the level of this cutoff is

subject to calibration depending on the estimated number

of requirements an engineer would like to generate using

our framework. For example, in [13], we used 20 % of the

highest similarity as the cutoff line. However in this paper,4 http://jgibblda.sourceforge.net/.

Requirements Eng (2015) 20:253–280 263

123

http://jgibblda.sourceforge.net/

Fig. 7 A Firefox requirement in

Bugzilla—some contents are

omitted, truncated, and

rearranged. 1 Requirement ID. 2

Proposer. 3 Description. 4

Comment. 5 Stakeholder

posting comment. 6 Stakeholder

posting artifact

Table 2 Data collection of subject systems

System Application domain Analyzed history # of reqs. Avg. # of comments

per req.

of code files Written in

Firefox Web browser 2004–2011 983 18 1968 (C/C??) C/C??, JavaScript

Mylyn Eclipse plug-in 2005–2012 445 11 2321 Java

Table 3 Clustering results
System # of stakeholders

in social network

of clusters (groups) Avg. group sizea Fit value

Firefox 783 36 22 (�8.29) 0.783

Mylyn 136 9 16 (�6.82) 0.817

a The average value rounded to the next round number

Table 4 Topics obtained
System # of clusters Total # of topics Avg. # of topics

per clustera
Possible unique

word pairs

Firefox 36 318 9 (�4.15) 1,239,150

Mylyn 9 48 6 (�3.72) 29,864

a The average value rounded to the next round number

264 Requirements Eng (2015) 20:253–280

123

we follow a more conservative approach and keep the total

number of requirements relatively low to better manage the

human subject evaluation discussed in Sect. 5. Figure 8

demonstrates the filtering scheme for Mylyn. Table 5

summarizes the results after this phase.

Generating requirements from pairs: The initial objec-

tive of this final phase is to extend the noun in each verb-

noun pair to a clause. In doing so, for both Firefox and

Mylyn, the existing requirements and comments are ana-

lyzed using Brill’s tagger [18], and the object/noun most

frequently appeared around each noun being considered is

picked. The noun along with the associated object consti-

tutes a clause, thereby obtaining a verb-clause pair. Then,

in the final step, a syntactic template is used to generate a

requirement formulated from each verb-clause pair.

Figure 9 demonstrates the generation of a new require-

ment of Firefox from a verb-noun pair. The words ‘zoom’

and ‘mark’ were obtained from the topics hresult, browse,
context, zoom, automatic i and hsum, start, script, exten-
sion, mark i respectively. The dotted box contains the

additional object ‘area’ that has been obtained for the noun

‘mark.’ Thus, ‘mark area’ becomes the clause, thereby

obtaining zoom-mark-area as the verb-clause pair. The next

step is to put this verb and clause in a linguistic template to

formulate a requirement parseable to humans. Figure 9

details the template we use in this study. Note that our

initial template is ‘Firefox ? shall ? verb ? clause.’

However, in order to obtain a better parseable wording of

the requirements, we further formulate the clause in two

different ways. The first is adding ‘ed’ after the noun fol-

lowed by the object, and the other is ‘noun ? of ? object.’

Our intuition is that a requirement worded in either way

could be easier to perceive when it is read by a human.

Following this heuristic, the final requirement generated by

our framework for the pair zoom-mark is ‘Firefox shall

zoom marked (mark of) area,’ in other words, ‘Firefox

shall provide a feature that allows the user to zoom in/out

an area she has marked or selected.’ At the end of this

phase, our framework finally generates 14 requirements for

Firefox and seven for Mylyn, as shown in Table 6.

Compared to our previous work presented in [13], Table 6

is a new contribution in this paper. Here, the last column

contains the final requirements generated by our current

framework. We observe that some requirements do not sound

meaningful and in many cases, the use of ‘noun ? of ?

object’ in order to elaborate the clause seems to be overkill.

Sections 5 and 6 provide further discussion on these issues.

Next, we present the evaluation of our framework.

5 Empirical evaluation of our framework

The overall objective of this section is to assess the via-

bility of combinational creativity in RE. To that end, we

describe two controlled studies we performed examining

the effectiveness of our framework. In the first study, we

evaluated the quality of the requirements generated by the

framework. In the second one, we recruited software

engineers to manually perform combinational creativity in

RE, and further compared the performance of our frame-

work with the manual methods.

5.1 Evaluating requirements generated by our

framework

5.1.1 Study setup

The objective of this study was threefold. First, we wanted

to obtain an evaluation of the generated requirements.

Second, as our current framework provides an end-to-end

automation, we wanted to get an assessment of its perfor-

mance compared to the semi-automated version of the

framework presented in our previous work [13]. Third, we

wanted to obtain further insights about the effectiveness of

our framework through the eyes of a professional. To that

end, we recruited a professional software engineer named

Bob (pseudonym), working at a local software develop-

ment company. He possesses about 10 years of

Fig. 8 Finding the least

common verb-noun pairs for

Mylyn

Table 5 Unfamiliar idea combinations

System Possible idea combinations

Initial After POS tagging Final

Firefox 1,239,150 2,436 17

Mylyn 29,864 128 7

Requirements Eng (2015) 20:253–280 265

123

professional experience in software engineering. As part of

his current job, Bob performs requirements analysis-related

activities at a regular basis. At work, he executes most of

his development activities in Java using Eclipse IDE, and

has been using both Firefox and Mylyn for several years.

Note that Bob had also been the human analyst who

elaborated requirements from the verb-noun pairs during

the requirement elaboration phase in our earlier work [13].

We expected that Bob’s experience during our previous

study would enable him to make a fair assessment of our

current framework with respect to its previous version.

Furthermore, our past experience working with Bob made

us optimistic about obtaining constructive feedback in light

of his professional experience.

We provided Bob with a hard copy of Table 6 and asked

him to rate how creative each requirement was by using a

5-point Likert scale: 1 = least innovative, 2 = not inno-

vative, 3 = neutral, 4 = innovative, 5 = most innovative.

It was explained that being innovative in this context meant

(1) Novel and new, as well as, (2) Relevant and useful for

the intended software product. The study turned out to be a

sort of interview session where a researcher was present to

explain the overall objective of the study, to encourage Bob

to think aloud while he rated the requirements, to take

notes, and to obtain his insight about our framework along

various dimensions. It was approximately a 1.5-h session

with Bob. In what follows, we detail our findings from this

study.

5.1.2 Evaluation results

Figure 10 plots the ratings reflecting how creative Bob

perceived the requirements to be. The ratings vary from

being least innovative (e.g., F5;F9;F10;F11;M5, and

M7) to most innovative (e.g., F3 and F8) based on the

5-point Likert scale (refer Sect. 5.1.1). Overall, however,

five out of 14 (36 %) Firefox requirements and two out of

seven (29 %) Mylyn requirements can be considered in-

novative based on the ratings provided by Bob. Despite

several requirements with very low creativity ratings, the

overall picture depicted in Fig. 10 demonstrates the

promising outcome of an end-to-end automation for com-

binational creativity in RE. In what follows, we detail some

further insight we obtained about our framework from this

human subject evaluation.

5.1.3 Further insight from evaluation

On generated requirements: Bob indicated that a couple

of requirements did not make any sense to him even

though he went over them over and over (e.g.,

F5;F9;F10, and F11), and in a few cases, he perceived

the requirements to be already existing, and he provided

lower ratings for those requirements. Such an outcome

was not very surprising as the requirements were gener-

ated by our framework in a fully automated manner

without any human intervention. In other words, our

current framework had not controlled how meaningful the

wording of a created requirement was supposed to be. We

posit that the same might be the reason for requirements

which turned out to be already existing (or not new). Bob

also indicated that he provided a relatively higher rating

in the case of a few requirements (e.g., F4), even though

they did not sound meaningful at the beginning. Ac-

cording to him, revisiting those requirements revealed that

they could be reworded in a more clear way, thereby

identifying the requirements to be innovative. In his own

words:

Fig. 9 Example for requirements elaboration

266 Requirements Eng (2015) 20:253–280

123

When I first read F4, ‘Firefox shall arrow browsed

(browse of) tab,’ I struggled to understand what it

meant, even though the terms ‘browse tab’ caught my

attention. Later on I realized that it could be reworded

as ‘Firefox shall provide an arrow button that will

allow the users browse the tabs instead of just

scrolling through the tab bar.’ I find this to be a pretty

cool new requirement.

Table 6 Generated

requirements for Firefox and

Mylyn

System Verb Noun Additional object from context Generated requirement

Firefox inform match password F1: Firefox shallinform matched

(match of) passwords

float browse tab F2: Firefox shall float browsed

(browse of) tab

note annoy user F3: Firefox shall note annoyed

(annoy of) user

arrow browse tab F4: Firefox shall arrow browsed

(browse of) tabs

total drag browser F5: Firefox shall total dragged

(drag of) browser

differ browse tab F6: Firefox shall differ browsed

(browse of) tab

result document site F7: Firefox shall result documented

(document of) site

zoom mark area F8: Firefox shall zoom marked

(mark of) area

button scroll window F9: Firefox shall button scrolled

(scroll of) window

result activate account F10: Firefox shall result activated

(activate of) account

sum match password F11: Firefox shall sum matched

(match of) password

inform change setting F12: Firefox shall inform changed

(change of) setting

float mark area F13: Firefox shall float marked

(mark of) area

button save selection F14: Firefox shall button saved

(save of) selection

Mylyn person set environment M1: Mylyn shall person seted

(set of) environment

widget post issue M2: Mylyn shall widget posted

(post of) issue

product cross platform M3: Mylyn shall product crossed

(cross of) platform

window manage query M4: Mylyn shall window managed

(manage of) query

e-mail develop task M5: Mylyn shall e-mail developed

(develop of) task

plug comment developer M6: Mylyn shall plug commented

(comment of) developer

patch update software M7: Mylyn shall patch updated

(update of) software

Bold fonts indicate topic words

Requirements Eng (2015) 20:253–280 267

123

In a couple of cases, Bob recalled striking similarity

between a requirement (e.g., M1) generated by this

framework and a requirement he elaborated during our

previous work [13] (e.g., Mylyn should provide options to

personalize settings). We noticed Bob providing a higher

creativity rating (i.e., 4) for M1. While pointed out the fact

that both the requirements are generated from the same

verb-noun pair, person-set, Bob indicated that probably he

paid more attention to the contextual information our

framework provided while elaborating that requirement.

That explains why both requirements expressed similar

meanings to him.

We asked Bob about his opinion on using both ‘noun ?

ed ? object’ and ‘noun ? of ? object’ in order to for-

mulate the requirements. He indicated that in most of the

cases, the use of ‘noun ? of ? object’ seemed to be

overkill. In his opinion, however, it was a good approach to

have the requirements written in both ways as sometimes

one formulation made better sense than the other. Ac-

cording to him:

I think it is a good thing that you formulated the

requirements in both ways. Although more often the

‘noun ? ed ? object’ approach looks sufficient, in

some cases I think the other way of formulation

makes the requirements more promising. For exam-

ple, when I read the requirement generated from note-

annoy pair as ‘Firefox shall note annoy of user’ in-

stead of ‘Firefox shall note annoyed user,’ I instantly

realize that probably Firefox can have a security re-

lated add-on feature that can help the user selectively

block pop-ups and ads that she would like to get rid

of.

On our creativity framework: Compared to the earlier

version [13], the elimination of human involvement from

the framework presented in this paper tends to generate

relatively higher number of less meaningful requirements.

When asked about his opinion about the two versions of

our framework, Bob initially indicated this limitation of the

current version. However, he provided some further

Fig. 10 Ratings by the analyst

for the created requirements

268 Requirements Eng (2015) 20:253–280

123

insights based on his experience with our framework which

we find enlightening. First, in our previous work [13], the

requirements generated by the framework were largely

dependent on the Bob’s skill and ability, whereas our

current version is not constrained with such dependency.

Second, requirements presented in our earlier paper [13]

were also influenced by the Bob’s preconceived knowl-

edge, and sometimes it had been difficult for Bob to find a

work around. Third, being human, elaborating require-

ments from a large number of apparently unrelated word

pairs might often be exhausting and sometimes frustrating,

even though the calibration mechanism in our framework

could be used to control the total number of word pairs, in

Bob’s own words:

I would prefer analyzing some already elaborated

statements rather than striving to formulate require-

ments from scratch.

Bob indicated that in his professional work, he never

applied the combinational creativity approach in RE per se.

However, in his opinion, any such endeavor by humans

should have a baseline to start with. As one of leading

goals of any automation is to help humans with exhausting

and frustrating repetitive tasks, the testimonials from Bob

provide evidence that: (a) our framework works and (b) the

extracted common and familiar topics are extremely useful.

This indicates the automated support’s potential for com-

binational creativity in RE.

So far in this paper, we have discussed the working

mechanism of generating requirements using our cre-

ativity framework and presented an empirical evaluation

of the quality of the requirements by an expert practicing

software engineer. However, this initial evaluation in-

volved only one expert (i.e., Bob), and no other creativity

methods were considered and compared with our frame-

work. In addition, lack of sufficient statistical inference

limited the generalizability of the findings from the initial

study. These limitations indicated the necessity of a fur-

ther in-depth empirical evaluation of our framework. The

rest of this section presents the details of our second

study.

5.2 Comparing our automated support against

manual methods

In this section, we described our second study that in-

volved software engineers manually performing combi-

national creativity in RE. We collected data about the

quantity and quality of the requirements generated, and

further performed quantitative and qualitative analyses

comparing the performance of our framework with the

manual methods.

5.2.1 Study setup

We recruited nine developers with experience in Java and

C#, including both undergraduate and graduate students

and staff programmers from one of our institutes. The de-

velopers participated voluntarily by responding to an

e-mail invitation. We made a confidentiality agreement

with the participants to respect their anonymity. The de-

mographic information was also collected at this stage

through a pre-study survey. The information included

software development experience, familiarity with the

subject systems, and the primary and secondary program-

ming languages. The recruits reported a median of 3 years

of software development experience. All the participants

had experience with Firefox (eight users only and one

contributor) and four had knowledge about Mylyn. Be-

cause of the domain unfamiliarity of Mylyn, in order to

help the developers keep better focus while performing the

activities, we considered Firefox as our subject system for

manually generating requirements. Irrespective of experi-

ence, a tutorial on the latest versions of Firefox was

presented.

As RE naturally involves substantial collaboration

among stakeholders, following Paulus and Nijstad [59], we

decided to study groups of collaborating developers con-

ducting combinational creativity instead of individuals. To

that end, we randomly assigned the developers to three

different groups. In this paper, we refer to the groups as

A;B, and C respectively. As the initial baseline, we in-

tended to provide the dominant topics our framework used

in generating those 14 requirements for Firefox (refer

Table 6). Note that the way we operationalized an unfa-

miliar verb-noun combination, the verb and the noun were

originated from two different dominant topics (refer

Sect. 3). As a dominant topic could provide one such verb

and noun, our framework would require at least two

dominant topics to generate two unfamiliar verb-noun

pairs. Furthermore, the same verb or noun could be paired

with a different noun or verb, respectively, originated from

different topics, thereby contributing different verb-noun

pairs. As a result, when we traced back the verbs and nouns

presented in Table 6, we obtained ten topics associated

with those words. Each group of developers were provided

with a hard copy of those ten topics detailed in Table 7

where each topic contains five words.

Each group was asked to elaborate creative require-

ments, as many as they could, by combining words picked

from different topics. Note that we did not put any re-

striction on how many topics the developers could com-

bine. A researcher conducted a tutorial session

demonstrating what creativity means in RE and explaining

our study to the participants. Each group worked

Requirements Eng (2015) 20:253–280 269

123

separately. They were allowed to have as many discussion

sessions or group meetings as they liked. We asked every

group to keep a detailed record of their group meetings and

different strategies they followed while formulating re-

quirements from topics. Each group was also requested to

mark the requirements they perceived to be more innova-

tive than the rest. The developers were given a time win-

dow of one week. At the end of the week, each group

submitted a report to a researcher providing the require-

ments they generated along with a detailed account of their

group sessions and different strategies they followed.

We wanted to further compare the cost and effectiveness

of our framework with those of the manual approach. Our

objective was to investigate if the framework generated

creative requirements with a significantly lower cost

compared to manual methods. In particular, we aimed to

test the following two hypotheses:

• H1: Time required to create requirements using our

automated framework is significantly less than that of

the manual approach.

• H2: The quality (i.e., creativity merit) of the auto-

matically generated requirements is significantly higher

than that of the manual approach.

Note that in the case of H1 is supported, H2 is stronger than

needed. That is, if we find evidence that supports H1, what

we really need is the quality (i.e., creativity merit) of the

automatically generated requirements to be at least as ef-

fective as (or comparable with) the manual approach.

However, in formulating H2, we take a more aggressive

approach than required.

In order to test H1, for both the automated and manual

approaches, we collected data for the following measures.

• time: time spent in generating new requirements

• total: total number of new requirements generated

• creative: total number of creative requirements

generated

We monitored the total amount of time our framework

required to created requirements in order to get the value of

time for the automated support. In the case of the manual

methods, we obtained the measurements from the report

submitted by each group.

H2 deals with the creativity merit of the generated re-

quirements. In an attempt to test H2, we recruited two

professional software engineers, named Jim and Sara

(pseudonym), working at a local software development

company. They possessed, in total, 12 years of professional

experience in developing software. As did Bob (refer

Sect. 5.1), they both performed requirements analysis-re-

lated activities at a regular basis, and were familiar with

both Firefox and Mylyn. Jim and Sara were provided with a

hard copies of both the automatically generated and

manually created requirements. They were asked to rate

how creative each requirement was by using a 5-point

Likert scale as described in Sect. 5.1. Jim and Sara worked

individually and spent, on an average, about an hour in

rating the requirements. The study ended with a researcher

conducting an informal exit interview with the participants,

and presenting a $10 gift card to each of them as a token of

our appreciation.

5.2.2 Manually performing combinational creativity in RE

We analyzed the reports provided by developer groups as

well as the data collected through exit interviews. Two

researchers spent, in total, 7 h going through the reports

and interview records, and extracting important attributes

about the processes developers followed in generating re-

quirements. According to our analysis, each group fol-

lowed a different process in combining topics and

elaborating requirements. In what follows, we present a

detailed discussion on each process we identified. In this

section, we use the terms participants and developers in a

synonymous manner.

5.2.3 Divide-and-Trade

Figure 11 provides a general overview of the process group

A followed while elaborating requirements from topics.

The participants in this group first started with reviewing

the given topics and obtaining a better understanding of the

topic words. We name this review phase as preprocess.

While preprocessing, group members came to an agree-

ment that each member working with a subset instead of all

the topics would help them manage the total number of

topics as a group in a more convenient manner. Thereby, in

their next phase, the group divided the given topics into

three disjoint subsets, and each member picked one subset

to start topic combinations. We noticed that, after picking a

subset of topics, the group members typically followed two

Table 7 Firefox topics for developer groups

Topic no. Topic words

Topic 1 reply, float, progress, link, comment

Topic 2 display, skin, tab, difference, match

Topic 3 flash, button, reproduce, activate, add-on

Topic 4 password, account, option, save, result

Topic 5 blank, approach, document, inform, scroll

Topic 6 sum, start, script, extension, mark

Topic 7 statement, arrow, annoy, processor, application

Topic 8 result, browse, context, zoom, automatic

Topic 9 drag, move, note, expect, query

Topic 10 total, special, higher, provide, change

270 Requirements Eng (2015) 20:253–280

123

different methods while creating new requirements which

are discussed next.

Combine-trade-formulate: Following this method, the

developer attempted different combinations of the topic

words and tried to make an intuitive sense. A promising

idea generated from such combinations were noted down,

shared and discussed with others, and eventually got

elaborated and refined into a new requirement, if possible.

We call the phase involving elaboration and refinement as

formulate. This process got repeated until the participant

ran out of promising options. According to the report

submitted by group A, while performing such combina-

tions, each developer chose at least one topic from the

subset she was working with, while being free to choose

the other topics from the rest of the subsets. After the

participants exhausted all their options, they traded their set

of topics, and repeated the combining and formulating

activities with the new topics.

Organically develop and formulate: Sometimes, in-

spired by some topic words, a participant started devel-

oping a requirement organically with the help of her

preconceived idea about a scenario. If a requirement de-

veloped in this manner looked promising, it was shared

with the other group members. Then, the group reformu-

lated and refined the requirement using specific words from

the given topics. Group A reported that such organically

developed requirements sometimes originated from the

group discussions during the combination and formulation

of some other requirements.

One interesting finding from the activities of this group

is that whenever a participant perceived a topic word to be

related to some sort of nonfunctional attribute, she con-

sidered that topic word along this line and tried to come up

with a relevant nonfunctional requirement. For example,

the word ‘account’ was widely attached with security- and

privacy-related concepts by the group members, and the

requirements created using this word (e.g., R3) support our

observation. In Fig. 11, we name such topic words as ‘NFR

Indicators.’ As dividing and trading requirements among

the group members play a vital role in the creativity ap-

proach followed by group A, we identified this process as

Divide-and-Trade.

5.2.4 Individual-Interleaved-with-Group

After analyzing the process pursued by group B, we iden-

tified two interleaved sets of activities performed by the

participants. Figure 12 details different activities in the

process. The procedure followed by this group started with

each member working individually and handling all ten

topics in an isolated manner. In this paper, we call it the

preparation phase. The participants tried different combi-

nations of the topic words and elaborated a requirement

when identified an apparently promising combination.

According to the report and the exit interview, the par-

ticipants heavily used external resources while performing

this activity. For example, they browsed Web sites such as

YouTube and tried to think about some requirements cor-

relating with the topic words while having a first hand

experience with the browser. Each participant recorded

every requirement she came up with and prepared for the

group meeting.

After all the group members were done with their in-

dividual efforts, they set up a meeting to discuss their in-

dividual outcomes and to finalize the set of requirements

identified as most promising. In doing so, the group further

Fig. 11 Divide-and-Trade

approach, followed by Group A

Requirements Eng (2015) 20:253–280 271

123

combined the promising topic words, if required, in a

collaborative manner, and formulated the final set of re-

quirements through elaboration and refinement. As we

observe two distinct phases of activities conducted by

group B, we call their creativity process as Individual-In-

terleaved-with-Group.

5.2.5 Group-Heavy

After analyzing the activities performed by group C, we

identified that an end-to-end collaboration among the par-

ticipants played the dominant role in their creativity ap-

proach. We call this process Group-Heavy (presented in

Fig. 13). As one participant mentions during the exit

interview:

Our approach was mostly collaborative. Activities

starting from topic discussion to requirements

elaboration, we did everything capitalizing on our

effort as a group.

The group started with reviewing and discussing the

terms in each topic and noted down any insight about the

topic the group members perceive to be useful. We indicate

these activities as preprocess. Then, the group pursued

either of the following two different approaches based on

their initial insights about the topics.

Combine and formulate: When some topics looked

promising to the group, different combinations of the topic

words were discussed among the members. The group went

through several trials until a potentially meaningful

combination is obtained. After a suitable was found, the

group expanded the combination in natural language, re-

formulated, elaborated, and refined the wordings, thereby

formulating a complete requirement.

Organically develop, retrofit, and formulate: Some-

times, another approach group C followed started with

organically developing a requirement based on some pre-

conceived idea. In the case of such development, the theme

of the requirement was maintained along the theme of

some potential topics. Then, terms and phrases were re-

placed by most suitable topic words keeping the theme of

the requirement intact. We name this particular activity as

retrofit. This version of the requirement was further

elaborated and refined, in order to obtain the final

formulation.

One interesting attribute about the process followed by

this group was that they tried to utilize the concept of some

inconvenience the group members have experienced in

their real life. No matter what elaboration approach the

group followed, utilizing the concept of inconvenience was

recurrent in their process. This finding was also attested by

the participants during our exit interview session.

So far, we have discussed the three different processes

our human participants followed while obtaining new re-

quirements through combinational creativity. In what fol-

lows, we analyze the data collected for different

quantitative and quantitative measures, and test the hy-

potheses we formulated to compare the cost and effec-

tiveness of our automated framework with those of the

manual approach.

Fig. 12 Individual-Interleaved-

with-Group approach, followed

by Group B

272 Requirements Eng (2015) 20:253–280

123

5.2.6 Results and analysis

Table 8 summarizes the collected data regarding the au-

tomated and manual approaches of generating require-

ments along with the evaluations by Jim and Sara. The

columns ‘Time spent (time)’ and ‘Total no. of new re-

quirements (total)’ represent the data for measures time and

total, respectively (refer Sect. 5.2.1). We use these two

measures to test our first hypothesis, H1. Recall from

Sect. 5.2.1 that each group was also requested to mark the

requirements they perceived to be more innovative than the

rest. According to the reports submitted by the groups, the

number of such innovative requirements are 10, 5, and 11

for the groups A, B, and C, respectively. Tables 9, 10,

and 11 detail these innovative requirements indicated by

the groups.

In order to test H2, we need to compare the quality of

the requirements generated by our automated framework

with that of the manual process. To that end, we need data

for the measure creative as discussed in Sect. 5.2.1. In the

case of the manual process, considering the number of

innovative requirements indicated by the groups could be

an option. However, such a choice imposes two major

limitations on the analysis. First, these numbers could be

highly biased as the requirements were rated by their cre-

ators themselves. Second, we do not have any such explicit

classification made by the groups on the automatically

generated requirements, thereby making any statistical

analysis infeasible. Therefore, we consider the ratings

provided by Jim and Sara for both the automated and

manually generated requirements in order to obtain data for

the measure creative. Our operationalization is as follows.

• We consider the individual creativity rating for each

requirement.

• As the requirements are rated at a 5-point Likert scale,

we pick any requirement with a rating � 3 and classify

it as a creative requirement.

Fig. 13 Group-Heavy

approach, followed by Group C

Table 8 Comparing our automated approach with manual methods

Approach System or group Time spent (time)a Total no. of new

requirements (total)

No. of reqs. above threshold according

to

Avg. no. of reqs.

above threshold (creative)

Jim’s ratings Sara’s ratings

Automated System: Firefox 37 14 8 7 7.5 (53.57 %)

Automated System: Mylyn 22 7 4 4 4 (57.14 %)

Manual Group: A 150 15 7 9 8 (53.33 %)

Manual Group: B 300 13 5 4 4.5 (34.62 %)

Manual Group: C 270 17 9 7 8 (47.06 %)

a Measured in minutes

Requirements Eng (2015) 20:253–280 273

123

The fifth and sixth columns in Table 8 indicate the number

of such creative requirements according to the ratings from

Jim and Sara, respectively. In order to assess the agreement

among raters on their ratings, we adopt kappa statistic ðjÞ,
a widely used measure of inter-rater reliability [50]. Kappa

statistic returns a value in ½0; 1�, where j ¼ 0 shows no

agreement and j ¼ 1 suggests complete agreement. We

find the average j to be 0.71 and 0.68 for Firefox and

Mylyn, respectively, in the case of the automatically gen-

erated requirements. For the manually generated require-

ments, average j for groups A, B, C and are 0.72, 0.67, and

0.7, respectively. According to the magnitude guideline

provided by Manning et al. [50], these values indicate

substantial agreement between Jim and Sara. Based on this

analysis, we further simplify our data and consider the

average number of creative requirements according to

Jim’s and Sara’s rating as the values for creative (refer the

last column in Table 8). In what follows, we test the two

hypotheses we formulated for this study.

H1: Time required to create requirements using our

automated framework is significantly less than that of the

manual approach. Our automated framework generated 14

new requirements in 37 min for Firefox and seven new

requirements in 22 min for Mylyn. Note that major portion

of this time was required to create stakeholders’ social

network which is the most computationally demanding

phase of our framework. In the case of the manual ap-

proach, groups A, B, and C generated 15, 13, 17 new re-

quirements in 150, 300, and 270 min, respectively. As

Firefox and Mylyn are two different systems and the

manual requirements generation was performed only for

Firefox, we normalize the data in order to make a statistical

analysis viable. To that end, we consider the average time

spent per requirement. Our data show that the automated

framework generated a new requirement for Firefox and

Mylyn in 2.64 and 3.14 min, respectively. In the case of the

manual approach, the groups A, B, and C spent on an

average 10, 15.88, and 23.1 minuets, respectively, to

Table 9 Innovative requirements (above threshold) according to Group A

Requirements above threshold as indicated by Group Aa No. of

topics used

A1: The browser shall provide similar web pages to the one currently being viewed by matching the content on the web

pages

2

A2: Loading a new webpage shall automatically execute scripts that check an account-based list of banned words and

removes them and their context from the text on the new page
5

A3: Marking items on a page shall move their source to an ignore list that is saved to the user account and then user will

no longer receive any content from that source

3

A4: The execution of a malicious script shall cause the skin of the browser to flash in an alerting manner 3

A5: The browser shall be able to determine the difference between the necessary and unnecessary pop-ups based on the

context of the web page

2

A6: The web browser shall link to the user account calendar and the skin will flash automatically when a calendar event

is approaching
4

A7: When the user highlights text and presses a special button the browser shall create a blank document and move the

highlighted text to the document

5

A8: User accounts shall be able to save personal comments on a webpage 3

A9: Dragging a link to the ‘new tab’ button shall start a new tab at the address of the link 6

A10: Clicking and dragging an item to a specific icon on the UI shall save the selection to a directory on the local machine 2

a Topic words are in bold fonts

Table 10 Innovative requirements (above threshold) according to Group B

Requirements above threshold as indicated by Group Ba No. of

topics used

B1: The web browser shall provide add-on to enable text to speech compatibility while reading in documents on

the web (this will allow the user to continue reading or browsing different tabs)

3

B2: The web browser shall fix the context and provide an appropriate result depending on parental control options 2

B3: The web browser shall provide an option to have a split view to browse two documents simultaneously 4

B4: The web browser shall provide a float option to view content on top of any current tab being used 3

B5: The web browser shall provide an option to change the view to color-blind mode 3

a Topic words are in bold fonts

274 Requirements Eng (2015) 20:253–280

123

generate a new requirement. This information is presented

in Fig. 14.

Following [27], we perform a two-sample t test for

unequal variances [60] in order to test H1. According to the

t test, there is a significant difference between the time

required to create requirements using our automated

framework ðM ¼ 2:89; SD ¼ 0:35Þ and that of the manual

approach ðM ¼ 16:32; SD ¼ 6:55Þ where t ¼ 	3:54,

p ¼ 0:04. In other words, H1 is accepted at a ¼ 0:05, i.e.,

our automated framework requires significantly less time

than manual approach.

H2: The quality of the automatically generated require-

ments is significantly higher than that of the manual ap-

proach. Following the rationale discussed while testing H1,

we further use normalization in testing H2. To that end, we

consider the percentage of the total number of generated

requirements being creative instead of the raw number. In

the case of our framework, 53.57 and 57.14 % of the gen-

erated requirements are creative for Firefox and Mylyn,

respectively. Considering manual approach, this measure

for the groups A, B, and C is 55.33, 34.62, and 47.06 %,

respectively (refer Table 8 and Fig. 15). A two-sample t test

for unequal variances [60] indicates that at a ¼ 0:05, the

quality of the automatically generated requirements ðM ¼
55:36; SD ¼ 2:53Þ is not significantly higher than that of the

manual approach ðM ¼ 45:00; SD ¼ 9:52Þ where t ¼ 1:8,

p ¼ 0:11. Therefore, following [27], we conclude that the

quality of the requirements generated by our automated

framework and that of manual approach is comparable.

5.3 Threats to validity

Construct validity is the extent to which the empirical study

and its various measures test and measure what they claim

to test and measure [61]. This kind of validity applies

mainly to our second study where we formulated two

specific hypotheses. The aim of our second study was to

test the cost-effectiveness of our approach. Therefore, the

core constructs that we used were time for cost and cre-

ativity merit for effectiveness. These measures are in line

with Sakhnini et al.’s study [28] where the authors

evaluated a creativity enhancement technique for require-

ments generation. Although the sheer number of generated

requirements was considered part of effectiveness in [28],

Table 11 Innovative requirements (above threshold) according to Group C

Requirements above threshold as indicated by Group Ca No. of

topics used

C1: Drag videos out from web pages, make it float on the top of screen 2

C2: Comment box in browser to copy/paste text/documents for clipboard synchronization across devices 3

C3: If a user has shopped at a website with security breach, inform them that their recent purchase from their account may

have been compromised and provide a link to details about the breach

3

C4: Add-on that expects your next move such as opening a new tab, starting an application by analyzing your account
activity

6

C5: Social media button that opens a scrollable-drop down with all your accounts that will allow you to view texts,

comments and reply to them

6

C6: Drag text to other pages and reproduce a new html page for compared reading 3

C7: Reply to text messages on your phone via a synced account 3

C8: A custom password settings suite that ensures your password meets certain user-defined criteria (i.e., text, numbers,

special characters), ensures that both the entered password and the confirm password fields match, and prevents

document/form submission when the password fields are blank

5

C9: Use multiple processors on the CPU and GPU to provide higher-quality flash and video content 3

C10: Auto-fill data that are user-editable and location aware for automatic, contextual form data predictions that are

synced to your account
2

C11: A button for saving information to an offline tab with a link for later viewing which is available on startup 5

a Topic words are in bold fonts

Fig. 14 Average time required to generate a requirement for both the

automated and manual approaches

Requirements Eng (2015) 20:253–280 275

123

we valued quality judged by experts in a similar way

as [28] more than quantity.

Internal validity refers whether one can conclude the

causal relationship that is being tested by the empirical

study [61]. Again, the validity applies mostly to our second

study. As our results show support for H1, we claim that

the differences in the adopted methods caused the observed

differences in the time spent generating requirements. For

the nine subjects participating in our second study, we

randomly assigned them into groups with the intention to

balance their domain familiarities and experience levels.

Although some team spent less time than others (refer

Fig. 14), all manual work was more costly than our auto-

mated framework. In the future, we plan to take into ac-

count factors like individual creativity [28] to better

control the confounding variable related to personal or

even group differences.

External validity concerns how much the results can be

generalized to other cases [61]. Clearly the small number of

data points stands in the way of generalization. While we

chose two open-source projects to apply our framework,

systems from other domains or of proprietary natures may

exhibit different characteristics. Our reliance on human

evaluators (e.g., Bob) presents another threat to external

validity. One way to address the threat is to devise some

objective way for evaluation, e.g., using random combina-

tion of uncommon words as a baseline. Finally, our par-

ticular selection of tools and parameters, such as the POS

tagger and the threshold for determining dominant topics,

may limit how the results could be generalized to other

cases.

6 Discussion

So far, we have discussed how our combinational creativity

framework can be applied to create new requirements for

Firefox and Mylyn, and a study evaluating our framework

by a professional software engineer (i.e., Bob). We have

further discussed a second study involving humans

manually performing combinational creativity, and com-

pared the cost and effectiveness of our framework with those

of the manual approach. In this section, we shed light on

some observations and lessons learned throughout this

research.

6.1 On our framework

Compared to the possible idea combinations initially found

(1,239,150 for Firefox and 29,864 for Mylyn), our framework

has come up with a substantially smaller number of unfa-

miliar idea-pairs used during the final phase (refer Table 5).

Furthermore, we completely eliminate human intervention

and automatically generate requirements from idea-pairs us-

ing linguistic templates. Note that human intensive activities

to generate creative requirements can be time consuming and

considerably exhausting, especially for someone who is not in

her creative moments. Thereby, we consider the end-to-end

automation to be the greatest strength of our framework. In

addition, handling a large number of potential ideas, pre-

sented in any form, can be overwhelming for humans,

whereas our framework does an excellent job of limiting the

total number of likely possibilities.

One issue of our framework concerns the data sources of

the input. When applying our framework to Firefox and

Mylyn, we took advantage of the requirements and stake-

holders’ clarifications about the requirements stored in the

project repositories. Using repository mining methods to

detect the patterns of requirement clarifications can also

lend support to project managers to assess the state of

discussions around a requirement and promptly react to

potential requirements problems [52]. The repository data,

however, cannot be complete or even representative in

terms of capturing stakeholders communications. Re-

searchers have exploited other means such as e-mails [62]

to build stakeholders social network in software engineer-

ing. As far as creativity is concerned, informal personal

interactions, if leveraged, may provoke even more inno-

vative ideas (topics) to be generated in our framework.

Another issue with our framework, also pointed out by

Bob (refer Sect. 5), is that there is always a chance of cre-

ating some statements that may not make any sense to hu-

mans (e.g., F5;F9;F10, and F11 in Table 6). However, we

observe that an apparently less meaningful statement can

ignite creative thinking among humans as happened with

Bob when he read the requirement F4. When asked about

his feedback on our framework during the exit interview,

one comment from Bob substantiates our observation.

I do not think a less meaningful statement will always

be completely useless.... Sometimes, paying a little

more attention to it may provide an aha moment....

Fig. 15 Percentage of generated requirements being creative

276 Requirements Eng (2015) 20:253–280

123

Expanding noun to a clause in multiple ways (refer

Sect. 4) may seem to be excessive in some cases. We

would like to emphasize at this point that this is an op-

erationalization we follow for our demonstration. Our

framework is flexible to support other linguistic approaches

to formulate such a clause.

6.2 On innovative requirements

Requirements generated by our framework: After analyz-

ing the ratings provided by Jim and Sara, we observe lower

ratings ðj ¼ 0:71Þ for some framework-generated re-

quirements compared to the ratings our analyst provided

(refer Sect. 5.1.2). However, the innovative aspects of

these requirements are still perceived to be above neutral

based on their average ratings. One reason behind these

requirements receiving relatively lower rating is that they

are presented in very short statements. Note that Jim and

Sara were asked to rate the requirements as they appeared

without making any modification. Given them an oppor-

tunity for further modification, we might have a different

story for our automated requirements.

Requirements generated manually: Data presented in

Table 8 indicate that considerable number of manually gen-

erated requirements obtained higher ratings from Jim and

Sara. However, according to the information presented in

Tables 9, 10, and 11, it is evident that most of the manually

generated requirements are created using far more than two

topic words and combining more than two topics. Our

framework, on the other hand, combines exactly two topics.

Such a flexible combination of topics during the manual

process enabled the developers create reasonably elaborated

requirements. We posit this aspect played an important role

behind the ratings of the manually generated requirements.

Furthermore, the participants performed combinational cre-

ativity using the topics generated through our framework.

Therefore, the impact of the first three phases of our frame-

work on the manually generated requirements cannot be ig-

nored. A potential improvement, thus, is to combine

automated and manual efforts toward interactive generation

of creative requirements using mechanism’s outputs.

6.3 On cost and effectiveness of our framework

Speed-wise, our automated framework generates creative

requirements much faster than any manual approach (refer

Sect. 5.2.6). While testing H1, we find clear statistical

evidence at a ¼ 0:05 level of significance that our frame-

work generates requirements far quickly than a manual

method. We consider it to be one of the most powerful

attributes of the framework, and we expect our framework

to be faster than any manual method for combinational

creativity.

While testing H2, we did not find enough statistical

evidence of our framework generating higher-quality re-

quirements than the manual approach at a ¼ 0:05 level of

significance (refer Sect. 5.2.6. t ¼ 1:8; p ¼ 0:11). Note that

our participants had the liberty of combining more than two

topics, thereby generating more elaborated requirements.

Considering these aspects, we conclude that the quality of

the requirements generated by our framework is compa-

rable to the manually generated requirements. Thus, our

study shows evidence of the effectiveness of our

framework.

6.4 On the identified creativity processes

In Sect. 5.2.2, we identified three different creativity pro-

cess: Divide-and-Trade, Individual-Interleaved-with-

Group, and Group-Heavy followed by three different

groups of developers in elaborating requirements from

topics. Results presented in Table 8 indicate further dif-

ference among these processes in terms of their perfor-

mances. In what follows, we provide some additional

insights along this line.

Interesting attributes of Divide-and-Trade: The

uniqueness of this process is in its divide and conquer

approach where each group member works with a subset of

topics that leads to a better management and organization

of the overall collaborative effort. In addition, using the

concept of NFR indicators is a very interesting attribute of

this approach.5 These NFR indicators helped generate not

only original requirements but also inspired organically

generated ones.

On Individual-Interleaved-with-Group: Table 8 indi-

cates that this process generates 13 requirements spending

300 min (maximum time spent) with just 34.62 % being

creative. The reason lies in the way the process handles

creativity activities. Recall that each participant worked

individually with all the topics and generated their own

requirements before the discussion phase (refer Fig. 12).

As a result, each individual initially became overprotective

about her requirement that delayed the final formulation

and eventually led to a less efficient collaborative effort.

The following comment by a participant demonstrates this

fact.

....Sometimes we argued for a requirement we for-

mulated before coming to the meeting. Although such

conflicts were eventually resolved, it took some of

our energy.

5 The participants have not mentioned anything about NFR indica-

tors. We identified this strategy while analyzing the requirements they

generated.

Requirements Eng (2015) 20:253–280 277

123

We therefore believe automatically formulating creative

requirements like our framework can be valuable for in-

dividual requirements engineers and their collaborations.

6.5 Limitations

The work presented in this paper contains the development

and demonstration of a conceptual framework, as well as

an exploratory study involving humans conducting com-

binational creativity activities. We discuss the limitations

from both the framework and exploratory study-related

aspects.

From the framework perspective: Our framework is

limited to its dependency on a large number of existing

requirements preferably contributed by a diverse groups of

stakeholders. The framework, as it is currently outlined,

may not be applicable for a completely new software

system in an emerging application domain. Furthermore,

applying this framework to a system still at an infant stage

may result in fairly limited outcomes. However, existing

requirements and artifacts from a similar system, knowl-

edge and ideas stored in online knowledge repositories, etc.

can be used in such case, and our framework can be ex-

tended or modified accordingly.’

Our framework also largely depends on creating stake-

holders’ social network that presents a reliable projection of

their social interaction. As there exist several social network-

building techniques (refer Sect. 2.3), choosing the right

means may be tricky. Our framework does not apply any

restriction on how the social network should be built, and we

expect no further limitation along this line. Similar reasoning

is also applicable for the network clustering techniques.

Clustering the requirements and comments directly

(e.g., [63]), instead of the social network, could be an alter-

native. We believe, however, considering the social network

better reflects the collaborative nature of RE [30] and better

supports the definition of combinational creativity [12].

The limitations of topic modeling and POS tagging [17,

18] are also relevant to our framework. However, neither of

these techniques uses parsing, and the POS tagger can

tolerate poor English. This is a strength of our framework

in dealing with requirements and stakeholder communica-

tions as these descriptions may not follow perfect gram-

matical rules in practice. We also filter out unnecessary and

most frequently used words before applying topic model-

ing. Therefore, we do not expect additional limitations

when applying these techniques. The practical implemen-

tation of our framework revealed a small number of re-

quirements for the subject systems. This is mainly due to a

more conservative filtering criterion we applied during

requirements generation using our framework (refer

Sect. 4.2). Further relaxed approach during these activities

should help identify a higher number of new requirements.

Another limitation of our framework is that it does not

modify the word itself to convert it into a traditional verb

or noun. However, we believe the automatically generated

requirements statements are complete enough for a human

to ignite brainstorming and further understand the ideas

conveyed by the statements.

In our opinion, the most important limitation of our

framework is the possibility of generating some less-

meaningful requirements at the end. Although more so-

phisticated linguistic templates can be used, we admit our

framework will always have some limitation in this area.

However, this limitation is not due to the construction of

our framework per se, but because of the AI-complete

problem of natural language understating in a mechanical

manner [64]. We have demonstrated that the less mean-

ingful statements may have the merit to ignite creative

thinking among humans. Thus, we expect our framework to

be useful to requirements engineers in general.

From the evaluation perspective: In order to compare the

performance of our framework with manual approach, we

conducted a study involving three groups of developers

performing combinational creativity in RE. A more direct

evaluation may involve comparing our POS-based combi-

nation of topics with some random combinations of unusual

words. Such an evaluation may serve as a baseline to help

contextualize to what degree our framework supports nov-

elty. We recognize the limitation due to recruiting one ex-

pert during the first evaluation (see Sect. 5.1). However, the

automated framework is built upon the positive evaluation

results from 29 evaluators in our previous work [13]. Fur-

thermore, the automated requirements are also evaluated by

two more experts in the second study (see Sect. 5.2.6).

Therefore, we posit that our findings are reliable.

In order to compare the creativity merit of the automated

and manually generated requirements, we obtained

qualitative ratings from two professionals (Jim and Sara).

Whether conducting our study with additional groups or

recruiting more experts to evaluate requirements would lead

to a different conclusion is still an open question. In addition,

our study focuses on humans conducting creativity activities

in a collaborative setting. Exploring how solitary humans

would perform require further studies. However, RE is in-

herently a highly collaborative process justifying the col-

laborative settings in our study. Furthermore, the average j
statistic showed a substantial agreement between the

raters [50], thereby improving the reliability of our findings.

7 Conclusion

In this paper, we have contributed a novel framework that

provides an end-to-end automated support for innovating

requirements from a combinational creativity

278 Requirements Eng (2015) 20:253–280

123

perspective [2, 5]. A human subject evaluation shows

promising practical implications of our framework. We

further conduct a second study involving humans per-

forming combinational creativity in RE, thereby investi-

gating the cost and effectiveness of our framework with

those of manual methods. Although there remain some

limitations, the findings of these studies suggest that our

framework generates creative requirements in a highly ef-

ficient manner. Our research further indicates the prospect

of the mechanism’s outputs in iterative creative require-

ments generation.

In the future, we plan to investigate the effectiveness of

our framework against an objective baseline, such as ran-

dom combinations of unusual words. We also plan to re-

duce our framework’s dependency on existing

requirements in order to expand its applicability to new

software systems and live projects. Finally, we intend to

push our research toward the dimension of transformational

creativity in RE [12].

References

1. Lemos J, Alves C, Duboc L, Rodrigues GN (2012) A systematic

mapping study on creativity in requirements engineering. In:

Proceedings of the annual ACM symposium on applied com-

puting (SAC), pp 1083–1088

2. Maiden N, Jones S, Karlsen K, Neill R, Zachos K, Milne A

(2010) Requirements engineering as creative problem solving: a

research agenda for idea finding. In: Proceedings of the interna-

tional requirements engineering conference (RE), pp 57–66

3. Maiden N, Ncube C, Robertson S (2007) Can requirements be

creative? Experiences with an enhanced air space management

system. In: Proceedings of the international conference on soft-

ware engineering (ICSE), pp 632–641

4. Sternberg RJ (1999) Handbook of creativity. Cambridge

University Press, Cambridge

5. Boden MA (2003) The creative mind: Myths and mechanisms.

Routledge, London

6. Maiden N, Gizikis A, Robertson S (2004) Provoking creativity:

imagine what your requirements could be like. IEEE Softw

21(5):68–75

7. Maiden N, Manning S, Robertson S, Greenwood J (2004) Inte-

grating creativity workshops into structured requirements pro-

cesses. In: Proceedings of the ACM conference on designing

interactive systems: processes, practices, methods, and tech-

niques, pp 113–122

8. Maiden N, Robertson S (2005) Integrating creativity into re-

quirements processes: experiences with an air traffic management

system. In: Proceedings of the international requirements engi-

neering conference (RE), pp 105–114

9. Karlsen IK, Maiden N, Kerne A (2009) Inventing requirements

with creativity support tools. In: Requirements engineering:

foundation for software quality. Springer, Berlin, pp 162–174

10. Zachos K, Maiden N (2008) Inventing requirements from soft-

ware: an empirical investigation with web services. In: Pro-

ceedings of the international requirements engineering

conference (RE), pp 145–154

11. Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J,

Mobasher B (2013) Supporting domain analysis through mining

and recommending features from online product listings. IEEE

Trans Softw Eng 39(12):1736–1752

12. Maiden N (2013) Requirements engineering as information

search and idea discovery (keynote). In: Proceedings of the in-

ternational requirements engineering conference (RE), pp 1–1

13. Bhowmik T, Niu N, Mahmoud A, Savolainen J (2014) Auto-

mated support for combinational creativity in requirements

engineering. In: Proceedings of the international requirements

engineering conference (RE), pp 243–252

14. Burt RS (2004) Structural holes and good ideas. Am J Sociol

110(2):349–399

15. Pirolli P (2009) An elementary social information foraging

model. In: Proceedings of the SIGCHI conference on human

factors in computing systems (CHI), pp 605–614

16. Linstead E, Lopes C, Baldi P (2008) An application of Latent

Dirichlet Allocation to analyzing software evolution. In: Pro-

ceedings of the international conference on machine learning and

applications (ICMLA), pp 813–818

17. Blei D, Ng A, Jordan M (2003) Latent Dirichlet Allocation.

J Mach Learn Res 3:993–1022

18. Brill E (1992) A simple rule-based part of speech tagger. In:

Proceedings of the workshop on speech and natural language,

pp 112–116

19. Kersten M, Murphy G (2005) Mylar: a degree-of-interest model

for ides. In: Proceedings of the international conference on

aspect-oriented software development (AOSD), pp 159–168

20. Suwa M, Gero J, Purcell T (2000) Unexpected discoveries and

S-invention of design requirements: important vehicles for a

design process. Des Stud 21(6):539–567

21. Maher ML, Brady K, Fisher DH (2013) Computational models of

surprise in evaluating creative design. In: Proceedings of the in-

ternational conference on computational creativity (ICCC),

pp 147–151

22. Ritchie G (2001) Assessing creativity. In: Proceedings of the

AISB-01 symposium on AI and creativity in arts and science,

pp 3–11

23. Nöbauer M, Seyff N, Maiden N, Zachos K (2011) S3c: using

service discovery to support requirements elicitation in the erp

domain. In: Proceedings of the international conference on ad-

vanced information systems engineering, pp 18–32

24. Lutz R, Patterson-Hine A, Nelson S, Frost CR, Tal D, Harris R

(2007) Using obstacle analysis to identify contingency require-

ments on an unpiloted aerial vehicle. Requir Eng J 12(1):41–54

25. Salinesi C, Mazo R, Diaz D, Djebbi O (2010) Using integer

constraint solving in reuse based requirements engineering. In:

Proceedings of the international requirements engineering con-

ference (RE), pp 243–251

26. Fuxman A, Pistore M, Mylopoulos J, Traverso P (2001) Model

checking early requirements specifications in tropos. In: Pro-

ceedings of the international requirements engineering confer-

ence (RE), pp 174–181

27. Sakhnini V, Berry DM, Mich L (2010) Validation of the effec-

tiveness of an optimized epmcreate as an aid for creative re-

quirements elicitation. In: Proceedings of the 16th international

working conference on requirements engineering: foundation for

software quality, pp 91–105

28. Sakhnini V, Mich L, Berry DM (2012) The effectiveness of an

optimized epmcreate as a creativity enhancement technique for

web site requirements elicitation. Requir Eng 17(3):171–186

29. Lefons E, Pazienza M, Silvestri A, Tangorra F, Corfiati L, De

Giacomo P (1977) An algebraic model for systems of psychically

interacting subjects. In: Proceedings of the IFAC workshop in-

formation & systems, pp 155–163

Requirements Eng (2015) 20:253–280 279

123

30. Mahaux M, Nguyen L, Gotel O, Mich L, Mavin A, Schmid K

(2013) Collaborative creativity in requirements engineering:

analysis and practical advice. In: Proceedings of the international

conference on research challenges in information science (RCIS),

pp 1–10

31. Damian D, Marczak S, Kwan I (2007) Collaboration patterns and

the impact of distance on awareness in requirements-centred

social networks. In: Proceedings of the international requirements

engineering conference (RE), pp 59–68

32. Begel A, Khoo Y, Zimmermann T (2010) Codebook: discovering

and exploiting relationships in software repositories. In: Pro-

ceedings of the international conference on software engineering

(ICSE), pp 125–134

33. Sarma A, Maccherone L, Wagstrom P, Herbsleb J (2009)

Tesseract: interactive visual exploration of socio-technical rela-

tionships in software development. In: Proceedings of the inter-

national conference on software engineering (ICSE), pp 23–33

34. Wolf T, Schroter A, Damian D, Nguyen T (2009) Predicting

build failures using social network analysis on developer com-

munication. In: Proceedings of the international conference on

software engineering (ICSE), pp 1–11

35. Asuncion H, Asuncion A, Taylor R (2010) Software traceability

with topic modeling. In: Proceedings of the international con-

ference on software engineering (ICSE), pp 95–104

36. Linstead E, Rigor P, Bajracharya S, Lopes C, Baldi P (2007)

Mining concepts from code with probabilistic topic models. In:

Proceedings of the international conference on automated soft-

ware engineering (ASE), pp 461–464

37. Thomas S, Adams B, Hassan A, Blostein D (2010) Validating the

use of topic models for software evolution. In: Proceedings of the

IEEE working conference on source code analysis and ma-

nipulation (SCAM), pp 55–64

38. Porteous I, Newman D, Ihler A, Asuncion A, Smyth P, Welling

M (2008) Fast collapsed gibbs sampling for Latent Dirichlet

Allocation. In: Proceedings of the ACM SIGKDD international

conference on knowledge discovery and data mining, pp 569–577

39. Linstead E, Bajracharya S, Ngo T, Rigor P, Lopes C, Baldi P

(2009) Sourcerer: mining and searching internet-scale software

repositories. Data Mining Knowl Discov 18(2):300–336

40. Linstead E, Rigor P, Bajracharya SK, Lopes CV, Baldi P (2007)

Mining internet-scale software repositories. In: Proceedings of

the neural information processing systems (NIPS)

41. Wu J (2012) Advances in K-means clustering: a data mining

thinking. Springer, Berlin

42. Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for win-

dows: software for social network analysis. Analytic

Technologies

43. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source

software for exploring and manipulating networks. In: Proceed-

ings of the international conference on weblogs and social media

(ICWSM), pp 361–362

44. Chang J, Boyd-Graber JL, Gerrish S, Wang C, Blei DM (2009)

Reading tea leaves: how humans interpret topic models. In:

Proceedings of the neural information processing systems (NIPS),

vol 22, pp 288–296

45. Liaskos S, Lapouchnian A, Yu Y, Yu E, Mylopoulos J (2006) On

goal-based variability acquisition and analysis. In: Proceedings of

the international conference on requirements engineering (RE),

pp 79–88

46. Niu N, Easterbrook S (2008) Extracting and modeling product

line functional requirements. In: Proceedings of the international

requirements engineering conference (RE), pp 155–164

47. Fillmore C (1968) The case for case. In: Bach E, Harms R (eds)

Universals in linguistic theory. Holt, Rinehart and Winston, New

York, pp 1–88

48. Hill E (2010) Integrating natural language and program structure

information to improve software search and exploration. PhD.

Thesis, University of Delaware

49. Gupta S, Malik S, Pollock L, Vijay-Shanker K (2013) Part-of-

speech tagging of program identifiers for improved text-based

software engineering tools. In: Proceedings of the international

conference on program comprehension (ICPC), pp 3–12

50. Manning CD, Raghavan P, Schütze H (2008) Introduction to

information retrieval, vol 1. Cambridge University Press,

Cambridge

51. Ernst NA, Murphy GC (2012) Case studies in just-in-time re-

quirements analysis. In: IEEE international workshop on em-

pirical requirements engineering, pp 25–32

52. Knauss E, Damian D, Poo-Caamano G, Cleland-Huang J (2012)

Detecting and classifying patterns of requirements clarifications.

In: Proceedings of the IEEE international requirements engi-

neering conference (RE), pp 251–260

53. Liu H, Gao Y, Niu Z (2012) An initial study on refactoring

tactics. In: Annual international computers, software & applica-

tions conference, pp 213–218

54. Scacchi W (2002) Understanding the requirements for developing

open source software systems. IEE Softw 149(1):24–39

55. Niu N, Bhowmik T, Liu H, Niu Z (2014) Traceability-enabled

refactoring for managing just-in-time requirements. In: Proceed-

ings of the IEEE international requirements engineering confer-

ence (RE), pp 133–142

56. Zaman S, Adams B, Hassan AE (2011) Security versus perfor-

mance bugs: a case study on firefox. In: Proceedings of the

working conference on mining software repositories (MSR),

pp 93–102

57. Griffiths TL, Steyvers M (2004) Finding scientific topics. In:

Proceedings of the national academy of sciences of the United

States of America, pp 5228–5235

58. Niu N, Savolainen J, Bhowmik T, Mahmoud A, Reddivari S

(2012) A framework for examining topical locality in object-

oriented software. In: Proceedings of the annual computer soft-

ware and applications conference (COMPSAC), pp 219–224

59. Paulus PB, Nijstad BA (2003) Group creativity: innovation

through collaboration. Oxford University Press, Oxford

60. Montgomery D, Runger G (2010) Applied statistics and prob-

ability for engineers. Wiley, New York

61. Yin RK (2008) Case study research: design and methods, vol 5.

Sage, London

62. Bird C, Pattison D, D’Souza R, Filkov V, Devanbu P (2008)

Latent social structure in open source projects. In: Proceedings of

the ACM SIGSOFT international symposium on foundations of

software engineering (SIGSOFT/FSE), pp 24–35

63. Niu N, Mahmoud A (2012) Enhancing candidate link generation

for requirements tracing: the cluster hypothesis revisited. In:

Proceedings of the international requirements engineering con-

ference (RE), pp 81–90

64. Popescu A-M, Etzioni O, Kautz H (2003) Towards a theory of

natural language interfaces to databases. In: Proceedings of the

8th international conference on intelligent user interfaces,

pp 149–157

280 Requirements Eng (2015) 20:253–280

123

	Leveraging topic modeling and part-of-speech tagging to support combinational creativity in requirements engineering
	Abstract
	Introduction
	Background and related work
	Creativity in RE
	On the way to creative requirements
	Stakeholders’ social network in software engineering
	Topic modeling with Latent Dirichlet Allocation (LDA)

	Our creativity framework
	Creating requirements using our framework
	Methodology
	Creative requirements via idea combinations

	Empirical evaluation of our framework
	Evaluating requirements generated by our framework
	Study setup
	Evaluation results
	Further insight from evaluation

	Comparing our automated support against manual methods
	Study setup
	Manually performing combinational creativity in RE
	Divide-and-Trade
	Individual-Interleaved-with-Group
	Group-Heavy
	Results and analysis

	Threats to validity

	Discussion
	On our framework
	On innovative requirements
	On cost and effectiveness of our framework
	On the identified creativity processes
	Limitations

	Conclusion
	References

