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Abstract—Requirements traceability provides critical support
throughout all phases of software engineering. Automated tracing
based on information retrieval (IR) reduces the effort required to
perform a manual trace. Unfortunately, IR-based trace recovery
suffers from low precision due to polysemy, which refers to
the coexistence of multiple meanings for a term appearing in
different requirements. Latent semantic indexing (LSI) has been
introduced as a method to tackle polysemy, as well as synonymy.
However, little is known about the scope and significance of
polysemous terms in requirements tracing. While quantifying
the effect, we present a novel method based on artificial neural
networks (ANN) to enhance the capability of automatically re-
solving polysemous terms. The core idea is to build an ANN model
which leverages a term’s highest-scoring coreferences in different
requirements to learn whether this term has the same meaning in
those requirements. Experimental results based on 2 benchmark
datasets and 6 long-lived open-source software projects show that
our approach outperforms LSI on identifying polysemous terms
and hence increasing the precision of automated tracing.

Index Terms—Requirements traceability, automated require-
ments tracing, polysemy analysis, term coreference

I. INTRODUCTION

Requirements traceability is defined as “the ability to de-

scribe and follow the life of a requirement, in both a for-

wards and backwards direction” [1]. It has been shown that

requirements traceability is vital for other activities throughout

all phases of software engineering, such as program com-

prehension [2], change impact analysis [3], [4], requirements

reuse [5], [6], software maintenance [7], refactoring [8], test

generation [9], and verification and validation (V&V) [10].

In practice, requirements traceability can be achieved by

managing trace links between software artifacts like from high-

level to low-level requirements. Previous research found that

developers do not build the trace links to the proper level of

detail or at all [11]. Therefore, activities like V&V are faced

with the time consuming, mind-numbing, effort-intensive, and

error-prone task of manually creating trace links in the “after

the fact” way, i.e., traceability information is not created as a

process unfolds [11].

To overcome limitations of the manual approach, informa-

tion retrieval (IR) methods have been introduced for automated

trace links generation [11], [12], [13], [14], [15]. IR-based

approaches take a requirement as the trace query and return

artifacts with high textual similarities as candidate links. Pre-

vious research has demonstrated that acceptable recall levels

(percentage of correct links in answer set that have been

retrieved) over 90% can often be achieved only at extremely

low levels of precision (percentage of retrieved correct links

over all the retrieved links) [11], [16], [17].

After manually analyzing 6 open-source software (OSS)

projects, we found that 52.67% of the incorrect links that are

retrieved contain polysemy (i.e., one word has multiple mean-

ings). To illustrate this, we draw on an example from the OSS

project JBoss Transaction Manager (Narayana or JBTM)1.

JBTM is a transactions toolkit which provides support for

applications developed using a broad range of standards-based

transaction protocols (e.g, web-service transactions and REST

transactions). Terms “subsystem”, “host”, and “configuration”

in the requirement JBTM-1644 [18] stating that: “Moving the

file based object store to another host and started another

application server with the same version and configuration.

Identical configurations probably isn’t necessary as long as the

database subsystem is configured correct and the transaction

component is configured in the same way”, indicate “database

system”, “file storage”, and “configuration for database” re-

spectively. However, in the enhancement JBTM-1706 [19]

stating that: “Make sure that RTS subsystem is configured cor-

rect and chooses the correct Undertow host instead of requir-

ing default Undertow configuration”, they represent “JBTM

component RTS”, “web server Undertow”, and “configuration

for Undertow” respectively. These two artifacts would likely

be mistakenly linked together by IR-based automated tracing

approaches, such as the vector space model (VSM), which

represent all artifacts as bags of words and therefore fail to

recognize the artifacts’ polysemy information.

Among popular IR-based automated tracing approaches,

only latent semantic indexing (LSI) is considered to be able to

resolve the polysemy problem [20], [21]. For a given document

collection, LSI creates a term-by-requirement matrix, and

then applies a mathematical technique called singular value

decomposition (SVD) to the matrix to construct a reduced

space, called LSI space. By using LSI space, it hopes to

preserve important latent semantic structures of documents,

as well as to remove “noise”. One target noise could be the

less important meanings of polysemous terms. Deerwester et
al. [22] pointed out that LSI offers a partial solution to

the polysemy problem, and its failure to alleviate polysemy

in LSI comes from the fact that a polysemous term with

1http://narayana.io/index.html
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multiple meanings is represented as a single point in the space.

Deerwester et al. [22] also pointed out that a better solution

for polysemy problem is to have an automated way to detect

the fact that a particular term has several distinct meanings

and to place this term in several points in the space.

On the other hand, artificial neural networks (ANN) tech-

niques have been successfully applied to solve many natural

language processing (NLP) problems. In this paper, we pro-

pose an ANN-based approach to enhance the capability of IR-

based requirements tracing by identifying polysemous terms in

requirements. The core idea is to train an ANN model which

leverages a term’s highest-scoring coreferences in different

requirements to learn whether this term has the same meaning

in those requirements. We compared our newly proposed ap-

proach with LSI to evaluate their abilities to resolve polysemy.

The results showed that our approach outperforms LSI, thereby

enhancing the accuracy of requirements trace link recovery.

Finally, we detected the importance of input features included

in ANN model via a feature ablation study. Surprisingly,

stakeholder features (e.g., whether requirements are reported

by different stakeholders) did not significantly improve the

performance of the ANN model. We argue that stakeholders

with similar background share the terminology, and therefore

tend to use the same terms consistently when describing the

objects.

This paper makes 3 main contributions, including investigat-

ing the impact of polysemous terms in requirements tracing,

proposing an approach based on ANN model to enhance IR-

based requirements tracing, and testing the performance of

our approach on 2 benchmark datasets and 6 OSS projects.

The rest of the paper is organized as follows. Section II

provides background. Section III presents quantifying analysis

of polysemy’s effect in requirements tracing. Section IV in-

troduces our polysemy enhaced approach. Section V describes

experimental design and results. Section VI discusses related

work, limitations, and implications. We conclude the paper and

suggest potential future research directions in Section VII.

II. BACKGROUND

The representation of a set of documents as vectors in

a common vector space is known as the VSM and is fun-

damental to a host of IR operations ranging from scoring

documents on a query, document classification, and document

clustering [23]. In this section, we first review core ideas of

VSM and another IR method, LSI, which is considered to be

able to resolve polysemy.

In VSM, let T = {t1, t2, · · · , tN} denote all the terms in

the given document collection. A document d is represented

as a vector [w1, w2, · · · , wN ] of term weights. The frequency

of term ti in the document is often used to assign weight

to wi. However, the term frequency might represent the bias

toward long-text documents or frequent words in the corpus.

To mitigate this risk, term frequency and inverse document

frequency (TFIDF) is used to calculate term weights:

wi = tfti,d · idfi (1)

where tfti,d is the frequency of ti in d, and idfi is computed

as idfi = log M
dfi

. M is the total number of documents and dfi
is the number of documents containing ti.

For a given query q and a document d, the standard way

of quantifying their similarity is the normalized inner product

between their vector representations, called cosine similarity.

The basic tenet is that the same term is used to express the

same meaning, and documents share more terms are more

similar than documents with only a few terms in common.

Since some terms have multiple meanings, polysemous terms

in a user’s query will literally match terms in documents that

are not relevant to the user’s information need, thus causing

rapid degradation of precision [22].

Instead of retrieving information by literally matching terms

in the documents, LSI tries to overcome the polysemy problem

by using statistically derived conceptual indices. LSI assumes

that there is some underlying or latent structure in term usage

that is partially obscured by variability in term choice [22].

A particular statistical technique SVD is used to estimate this

latent structure, and get rid of the obscuring “noise.” Retrieving

is then performed on documents and query’s “latent semantic

structure” representation.

For a given document collection, LSI first constructs a term-

by-requirement matrix (A). Each row represents a document,

and a term is represented as a column. The value of a cell

Aij is the number of times term ti appears in the document

dj . SVD is applied to decompose A into a factorization of the

form: A = USV T . Here, S is a diagonal matrix of eigenvalues

of ATA, and U and V are called term matrix and document

matrix respectively. Dimensionality reduction is achieved by

replacing S with a matrix Sk, which consists of the top k

diagonal elements of S. The reduced matrix Ak = UkSkV
T
k

is used in place of A. SVD analysis allows reduced space to

keep major associative patterns of term usages, and ignore less

frequent term usages which can be described as less important

meanings of certain terms. However, it works while only one

usage pattern or meaning of a polysemous term frequently

appears in the give document collection. If the frequencies

of two or more meanings of a particular polysemous term

have no significant difference, the reduced space actually

represents the weighted average of different meanings of

this term. Therefore, using the reduced space will create a

serious distortion, and cause more imprecision on the retrieval

results [22].

LSI has been employed in a wide range of software engi-

neering activities such as categorizing source code files [24]

and detecting high-level conceptual code clones [25]. Marcus

and Maletic [26] have applied LSI to recover traceability links

between documentation and source code. The results based on

two datasets are promising enough to warrant future research.

They also believed that other information is needed to improve

the performance of LSI [26]. In fact, Deerwester et al. [22]

pointed out that “what is needed is some way to detect the

fact that a particular term has several distinct meanings and to

subcategorize it and place it in several points in the space.”

Another approach that can be used to detect polysemy is
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TABLE I
SIX PROJECTS USED TO ANALYZE THE IMPACT OF POLYSEMY IN AUTOMATED REQUIREMENTS TRACING. TRACE LINK TYPES: �

REQ.-TO-ENHANCEMENT; � REQ.-TO-SUB REQ. � TASK-TO-SUB TASK � REQ.-TO-TEST

Project
Characteristics Statistics

domain
written initial latest trace link

# req.s
% of req.s avg. # links # terms polysemy

in release release types have links per req. per req. in req.s

AIRFLOW
workflow

Python
Oct 16 Feb 02 � �

629 20.99% 0.26 52.73 4.27 (8.10%)
execution 2014 2017 � �

ANY23
RDF data

Java
Jul 16 Feb 26 � �

182 32.97% 0.41 37.61 3.04 (8.08%)
extraction 2012 2017 � �

DASHBUILDER
data Java Aug 27 Apr 14

� � 85 5.88% 0.11 48.37 4.73 (9.78%)
reports HTML 2014 2016

DROOLS
business

Java
Nov 13 Jul 17 � �

486 27.16% 0.31 57.82 6.21 (10.74%)
rules 2012 2017 �

IMMUTANT
complexity

Clojure
Mar 14 Jun 23 � �

404 16.09% 0.20 29.97 2.53 (8.44%)
reduction 2012 2017 �

JBTM
business Java Dec 05 Jul 14 � �

1575 52.57% 0.72 49.74 4.43 (8.90%)
process C++ 2005 2017 �

part-of-speech (POS) tagging [27]. POS refers to the syntactic

roles of terms in the sentences (e.g., nouns and verbs). In

POS tagging augmented VSM (VSM-POS), only terms which

belong to a particular part of speech are considered in vector

space. Recent research reveals nouns and verbs carry higher

information values than other parts, capturing main actions and

objects in software artifacts [28], [29], [30], [31], [32]. There-

fore, two specific forms of VSM-POS, nouns only (VSM-POS-

N) and verbs only (VSM-POS-V), can be applied to improve

the accuracy of VSM.

III. POLYSEMY QUANTIFYING ANALYSIS

Before we introduce our polysemy enhanced approach, we

first describe a manual analysis on 6 OSS projects to show

the impact of polysemy in automated requirements tracing.

TABLE I lists the basic characteristics and statistics of the 6

projects. All 6 projects use the issue tracking system Jira2 to

manage their requirements and other textual artifacts. Stake-

holders have defined relationships between different artifacts

in Jira systems. While traceability refers to dependencies

among artifacts that are part of a single work product within

the software development process, we focus on only the

relationships from high-level artifacts (e.g., requirements and

tasks) to low-level artifacts (e.g., test and sub-tasks). Trace

link types in 6 OSS projects are listed in TABLE I.

Jira systems record not only user operations (e.g., creating

requirements, linking related issues), but also timestamps of

all operations. Therefore, operation histories can be retrieved.

From the analysis of historical data on Jira systems, we know

that stakeholders do not always provide complete links. In fact,

an average of 67.19% trace links in the 6 projects was created

at least one day (24 hours) after requirements were created.

In other words, most trace links were discovered during

implementation phrase. About 12% links were created after

the requirements were closed. On the other hand, stakeholders

rarely modify or delete trace links. Historical data shows that,

on average, only 4.32% trace links in 6 projects have been

2https://www.atlassian.com/software/jira

modified or deleted. We argue that stakeholders provide trace

links that they feel confident only. Therefore, we can use those

trace links as answer sets. We selected these 6 projects mainly

for the following reasons.

First, we select the 6 projects from 345 OSS projects. Our

guiding principle of choosing the representative projects is to

find projects with different sizes and active time durations.

In addition, the 6 projects cover all trace link types in

345 OSS projects. This increases our confidence about the

representativeness of 6 projects.

Second, the 6 projects are in different domains. A set of

terms have specific meanings in those domains. For instance,

“table” in the domain “business rules” indicates “decision ta-

ble” while in another domain “database”, it indicates “database

table”. Selected projects can help to test the performance

of our approach on distinguishing terms’ domain-specific

meanings.

Third, the chosen projects are implemented in different

programming languages. A particular term may have specific

meanings in programming languages. For instance, in HTML,

“tag” indicates “HTML tag”. However, the most common

explanation of it is “a label attached to someone or something”.

Selected projects can help to test the performance of our

approach on distinguishing terms’ programming language-

specific meanings with their general meanings.

In addition, with the change of time, the meanings of terms

may also evolve. All 6 OSS projects are long-lived projects.

They can help to test our approach’s capability of catching

terms’ meaning evolution over the time.

Finally, the more terms of a requirement, the more pol-

ysemous terms it tends to contain. The average length of

requirements (number of different terms per requirement; the

second rightmost column in TABLE I) is different in these 6

projects. The maximum (57.82 in DROOLS) is almost twice

of the minimum (29.97 in IMMUTANT). If our approach

works well for different requirements lengths, it will increase

our confidence on applying our approaches to other software

artifacts such as source code.

IR-based trace link recovery approaches rank all links by
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Fig. 1. False positives in automated tracing: N is the total number of false
positives in a project, white part shows the percentage of false positives that do
not contain polysemy; light gray part shows the percentage of false positives
that can be ruled out from returned lists after resolving polysemy; dark gray
part shows the percentage of incorrect links that cannot be removed from
retrieved results after resolving polysemy.

their similarities with a requirement. Only top N trace links

are returned to developers. To study the impact of polysemy on

IR-based tracing, we applied VSM on all requirements which

have been linked to other artifacts. For each requirement,

we cut the rank list at the point where all correct links are

retrieved, i.e.,100% recall. All requirements and retrieved links

were then analyzed by two authors of this paper independently

to find all polysemous terms (i.e., the terms which have

different meanings in requirements and false positives). Two

authors have at least 3 years working experience on OSS

projects. They started research on the 6 OSS projects from

May 2017 and conducted many research and development

tasks on those projects. Therefore, they are experts with

necessary domain knowledge about the 6 projects. We use

Fleiss’ kappa κ [33] to measure inter-rater agreement between

the two experts. The result (κ = 0.57) shows that there is

a “good” agreement between the two experts [34]. For the

terms that experts had different opinions, the experts made the

final judgement through a face-to-face discussion. Polysemous

terms identified manually by experts are used not only in

polysemy analysis, but also as training set for our approach.

We also acknowledge that, manually detecting polysemous

terms is a time consuming task (two experts spent two weeks

to label all polysemous terms in 6 projects). The results

may still contain errors. Additional information like project

glossary can be used to support manual analysis. The rightmost

column in TABLE I shows experts’ analysis results. The values

show average numbers of different polysemous terms in each

requirement. Percentages in brackets represent proportions of

polysemy in each requirement. We find that the proportions of

polysemy are very similar in 6 projects (i.e., from 8.44% to

10.74%). This finding confirms our previous conjecture that

longer text contains more polysemous terms.

We then separate those polysemous terms as different terms

while building term-by-requirement matrix. For example, if

term t is a polysemous term in a requirement, we mark it as

t1 in the requirement, and t2 in the retrieved links. Solving

polysemy could reduce similarity scores between requirements

and incorrect links (false positives), thus improve precision

of the results. Therefore, our analysis focuses on only false

positives. The results of updated term-by-requirement matrix

show that an average of 22.63% false positives in the 6 projects

are eliminated from the returned lists. Fig. 1 illustrates the

results of 6 projects. For example, in AIRFLOW, 3605 false

positives were retrieved by using original term-by-requirement

matrix, 48.57% of which do not contain polysemy (white part),

and 19.25% false positives can be ruled out by using updated

term-by-requirement matrix (light gray part). However, there

are 32.18% false positives which contain polysemous terms

that are still retrieved (dark gray part) after separating poly-

semous terms. We observed the following two reasons why

certain false positives had not been resolved after separating

polysemous terms: 1) Some requirements and their correct

links do not share any terms, thus their similarity scores are

0. It is hard to reduce the similarity scores of requirements

and false positives below 0 by addressing only the polysemy

problem; and 2) The weights of some polysemous terms

are relatively small. They do not have the significant impact

on decreasing similarity scores. Separating polysemous terms

combined with a good way to adjust their weights may further

reduce the similarity score, thereby helping rule out false

positives.

For each project, we also list top 5 most frequently occurred

polysemous terms. For example, in AIRFLOW (a workflow

management system), the top 5 polysemous terms are “task”,

“schedule”, “instance”, “connection”, and “execution”, which

mean “workflow task” or “development task”, “a plan” or “ar-

range a event”, “workflow task” or “SQL operation”, “depen-

dency between workflow tasks” or ”database connection”, and

“execute workflow task” or ”execute SQL query” respectively.

In summary, an average of 52.66% incorrect links in the 6

OSS projects is retrieved containing polysemy. Therefore, we

argue that polysemy is a serious problem which leads to lower

precision. Successfully resolving the polysemy problem can

significantly improve the precision of automated requirements

tracing. In the next section, we describe our approach of

identifying polysemous terms in requirements.

IV. POLYSEMY DETECTION BASED ON ARTIFICIAL

NEURAL NETWORKS

In NLP, the phenomenon that two terms refer to the same

real-world entity is called coreference [35]. For instance, the

linguistic expressions “subsystem” and “database” refer to the

same entity in the requirement mentioned in Section I. The

resolution of coreference has been referred to as calculating

semantic similarity between terms [36], [37]. Coreference can

be used to resolve the polysemy problem. The assumption is

that, if one polysemous term in different artifacts refers to

different entities, this term has different meanings in those

artifacts. For instance, term “subsystem” in the enhancement
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Fig. 2. System architecture of polysemy enhanced automated requirements tracing

refers to “JBTM component RTS”; not “database”. In this sec-

tion, we describe the system architecture and technical details

of our polysemy enhanced requirements tracing approach.

A. System Architecture

Our polysemy detection approach follows the process de-

picted in Fig. 2. The given requirements are first fed into

artifact indexing which includes two steps (tokenization and

stop words removal). The output of artifact indexing is a term-

by-requirement matrix.

Our term-pair ranking model scores pairs of terms in the

same requirement by passing their distributed representations

through a feedforward neural network (FNN) which contains

one input layer, one output layer, and three hidden layers.

FNN is a fundamental type of ANN. In FNN, the information

moves in only one direction, i.e., from the input layer to the

output layer. FNN is capable of approximating any measurable

function to any desired degree of accuracy, in a very specific

and satisfying sense [38]. In other words, FNN can be used

to learn any non-linear relationships. Therefore, it has been

viewed as a powerful method that can be applied to many

machine learning tasks [39]. Previous research demonstrated

that FNN can provide satisfactory results on NLP tasks, such

as coreference [37] and question answering [40]. The input of

term-pair ranking model is a particular term t and the other

terms in the same software artifact. The output of our term-

pair ranking model is a term pair that contains t and its highest

scoring coreference in the same software artifact.

An innovation of our approach is using the cluster-pair

ranking model to detect term coreference. Most approaches

in NLP detect coreference by linking pairs of terms which

have high semantic similarities together [37], [41], [42], called

term-level coreference. The similarity of two terms is usually

calculated by using terms and their preceding and following

terms. The size of preceding and following terms directly

affects accuracies of approaches. For instance, like the state-

of-the-art approach [37], by taking two previous and two

following words of the term “subsystem” in the requirements

and the enhancement mentioned in Section I, we will get “the

database subsystem is configured” and “that RTS subsystem is

configured”. Since 3 out of total 7 terms are shared by these

two sub-sentences, term-level coreference may still mistakenly

mark “subsystem” in two artifacts as referring to the same

entity. On the other hand, increasing the size of preceding

and following terms may result in increasing computational

complexity. An alternative approach is to treat a term and its

highest-scoring term-level coreferences in different artifacts as

clusters, and then the semantic similarity of two clusters is

used to decide whether this term has different meanings in

those artifacts. In the above example, “subsystem” belongs

to different clusters (i.e., {subsystem, RTS} and {subsystem,

database}), indicating the different meanings that “subsystem”

has.

Thus, we design our cluster-pair ranking model in two steps.

First, we pass term t and its highest-scoring coreferences in ri
and rj generated by term-pair ranking model through a pooling

layer and a single neural network layer. Then, if the output is

false (i.e., t in ri and rj refers to different objects, for instance,

“RTS subsystem” and “database subsystem”), the term-by-

requirement matrix is updated by separating the column of t
into two different columns. We believe our cluster-pair ranking

model improves the accuracy of coreference detection, thereby,

increasing the quality of term-by-requirement matrix.

Finally, IR-based trace link recovery approaches calculate

similarities of requirements pairs by using updated term-by-

requirement matrix. Only requirements pairs with similarity

scores higher than the certain threshold are considered to be

related to each other. In the following sub-sections, we will

describe the neural network based term-pair ranking model
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and cluster-pair ranking model and their training details.

B. Term-Pair Ranking Model

Our term-pair ranking is based on a FNN model. The struc-

ture of the FNN makes it a universal function approximator,

which has the capabilities of approximating any continuous

function [43]. Therefore, it is suitable to solve a wide range

of problems, including clustering and classification [44]. Com-

pared to the single layer perceptron (SLP), the multilayer

perceptron (MLP), which includes one or more hidden layers

in between an input and an output layer, is more suitable for

learning non-linear separable patterns and most data in the real

world is non-linear [45].

Term t may appear in different part of a requirement r. We

call each copy of t in r a mention of t. Given a mention

m of t and its candidate antecedent a in r, the term-pair

ranking model produces a score sm(a,m) representing their

compatibility for coreference with a MLP. In this section, we

will describe the design of MLP, including the structure of

input layer, activation functions of hidden layers, the output

layer, and training details.

Input layer: An important input feature is word embedding.

Instead of representing terms as single weight, NLP techniques

model a term’s meaning by embedding it into a high dimen-

sional vector space. The vector is computed from not only

the term itself, but also the distribution of terms around it.

Therefore, for a particular term, its embedding representations

under different contexts are different. Vector model of meaning

is considered as the most common way to compute semantic

difference [46]. We combine embeddings with other features

which are also considered to be able to detect polysemy, and

then feed them into FNN models to learn whether a term

in different artifacts has different semantic meanings. The

detailed information of input features is shown as follows:

• Embedding features include word embeddings of the

mention, two preceding words, and two following words

the mention, average word embeddings of the five pre-

ceding words, five following words of the mention, and

all words in mention’s sentence. We can consider the

combination of those embeddings as a specific embedding

for a term under the certain context. We initialized our

word embeddings with 50-dimensional vectors produced

by word2vec [47] in Java by Eclipse DL4J3.

• Additional features include the POS tag of the mention

(e.g., pronoun, nominal, verb)4, the mention’s position

(i.e., index of the mention divided by the number of

mentions in the requirement).

• Distance features include the distance between the men-

tion and its candidate antecedent in sentences, the dis-

tance between the mention and its candidate antecedent

in intervening mentions. Like [37], The distance features

are binned into one of the buckets [0,1,2,3,4,5-7,8-15,16-

3DL4J or Deeplearning4j is an open-source deep-learning library written
for Java and Sala https://deeplearning4j.org.

4The Stanford CoreNLP [48] is used to detect POS tags.

31,32-63,64+] and then encoded in a one-hot vector (the

value of each vector component is either 1 or 0).

• String matching features include head match, exact string

match, and partial string match.

In Clark and Manning’s approach [37], a mention could be

a term or a phrase. However, we assume that a term is a single

word. Therefore, features of phrases (e.g., word embedding of

the head word, average word embeddings of all words in the

phrase, etc.) are not suitable for our term-pair ranking model.

Since in term-pair ranking model, we focus on only term-pairs

in the same requirement, stakeholder features (e.g., whether

the mentions come from the same stakeholder or different

stakeholders) of a mention and its candidate antecedent are

the same, and adding them will make no difference on the

output of the term-pair ranking model. In fact, they are more

useful for the cluster-pair ranking model which learns whether

a given term t in two different requirements refers to the same

object.

Hidden layers: The input gets passed through three hidden

layers of rectified linear (ReLU) neurons [49]. Each neuron

in a hidden layer is fully connected to the previous layer. The

vector hi(a,m) represents the output of the ith hidden layer,

whose size is Mi :

hi(a,m) = max(0,Wihi(a,m) + bi) (2)

where W1 is a Mi× I weight matrix, W2 is a M2×M1, and

W3 is a M3×M2 matrix. Similar to Clark and Manning [37],

we set our hidden layers’ sizes to M1 = 1000,M2 = M3 =
500.

Compared to other activation functions, such as sig-

moid [50], ReLU allows efficient and effective training of FNN

on large and complex data. Recent research done by Glorot

et al. [51] also showed that ReLU is remarkably suitable for

naturally sparse data (e.g., term coreference).

Output layer: There is only one neuron in the output layer

which is fully connected to the 3rd hidden layer. It produces

a score so(a,m) to a mention m and its candidate antecedent

a representing their compatibility for coreference:

so(a,m) = Woh3(a,m) + bo (3)

where Wo is a 1×M3 weight matrix. The term-pair ranking

model links each term with its highest scoring candidate

antecedent.

Training details: We train our model using backpropagation

algorithm [45] with the slack-rescaled max-margin training

objective [37], [52]. Suppose the training set consistst of N
mentions {m1,m2, ...,mN}. Let A(mi) denote the set of

candidate antecedents of a mention mi, and T (mi) denote

the set of antecedents which are semantically close to mi. t̂i
is the highest scoring antecedent of mention mi in T (mi).
Then, the goal of training is to minimize the loss which is

given by:

∑N

i=1
max

a∈A(mi)
Δ(a,mi)(1 + so(a,mi)− so(t̂i,mi)) (4)
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where Δ(a,mi) is defined as:

Δ(a,mi) =

⎧⎪⎪⎨
⎪⎪⎩

αFN , a = NA ∧ T (mi) �= NA
αFA, a �= NA ∧ T (mi) = NA
αWL, a �= NA ∧ a �∈ T (mi)
0, a ∈ T (mi)

(5)

According to [37], (αFN , αFA, αWL) = (0.8, 0.4, 1.0) can

achieve optimal results. Our stop criteria for training is when

we find the same value of equation (4) in different epochs

(different rounds of backpropagation) or the total number of

epochs is greater than 200.

In conclusion, the purpose of the term-pair ranking model

is that, for a particular term in a requirement, finding the most

related terms inside the same requirement. For instance, in

Section I’s example, we embed features of “subsystem” and

one of other terms in the requirement (e.g, database) into a

vector (input layer). Then this vector is fed into a pre-trained

FNN model (i.e., three hidden layers and output layer). The

result of the FNN model is a score representing semantic

similarity of two input terms. Ideally, among all the terms,

the term-pair ranking model will give cluster {subsystem,

database} the highest score in the requirement, and will

also assign the highest score to cluster {size, RTS} in the

enhancement. Then, those clusters are fed into the cluster-pair

ranking model to detect whether the term “subsystem” has

different meanings in these two software artifacts.

C. Cluster-Pair Ranking Model

Given a term t and two different requirements ri and rj ,

we can obtain two clusters ci = {ai,mi} and cj = {aj ,mj}
where ai and aj are t’s highest-scoring retrieved antecedents

in ri and rj respectively, and mi and mj are two mentions

of t in ri and rj which were linked to ai and aj in term-

pair ranking model. Our cluster-pair ranking model produces

a boolean score representing whether t in two clusters refers

to the same object.

Input: The input of cluster-pair ranking model is the

intermediate output of term-pair ranking model called term-

pair representation, i.e., the output of the 3rd hidden

layer h3. Given two clusters ci = {ai,mi} and cj =
{aj ,mj}, the cluster-pair ranking model first combines the

information of four term-pair representations Rc(ci, cj) =
[h3(ai,mi),h3(ai,mj),h3(aj ,mi),h3(aj ,mj)].

Pooling: Pooling is then used to achieve more compact

representations, and better robustness to noise and clutter by

preserving task-related information while removing irrelevant

details [53]. Similar to [37], our pooling operation concate-

nates the results of max-pooling and average-pooling:

rc(ci, cj)k =

{
max{Rc(ci, cj)k}, for 0 ≤ k < d
avg{Rc(ci, cj)k}, for d ≤ k < 2d

(6)

where d = M3 = 500. Pooling produces a vector representa-

tion of cluster-pair (ci, cj).
Cluster-pair compatibility for coreference: In term-pair

ranking model, all terms are from the same stakeholder (i.e.,

the requirement creator), and therefore, no stakeholder features

are considered. In cluster-pair ranking model, ci and cj may

come from different requirements created by different stake-

holders. Therefore, stakeholder features shall be considered

while computing cluster-pair compatibility for coreference.

Two stakeholder features are added to vector representations

produced by pooling: 1) whether ri and rj were created by

the same stakeholder; and 2) whether one cluster contains the

name of the creator of another cluster. This can be determined

by exploring creators’ information saved in issue tracking

system and/or string matching rules from Raghunathan et
al. [54].

The updated cluster-pair representation is then fed into a

single fully connected layer of size one to produce a score

presenting cluster-pair’s compatibility for coreference:

sc(ci, cj) = Wcrc(ci, cj) + bc (7)

Decision making: We defined a policy network π that

assigns a probability of ci and cj are coreferences:

π(ci, cj) ∝ exp(sc(ci, cj)) (8)

Suppose rj was created later than ri, the policy network also

assigns a score representing mention mj has no antecedent:

π(NA,mj) ∝ exp(sNA(mj) (9)

where

sNA(mj) = WNAh3(NA,mj) + bNA (10)

if and only if π(ci, cj) ≥ π(NA,mj); otherwise, we mark t
term in ri and rj as the same term, otherwise, t indicates two

objects t1 and t2. It is noteworthy that only π(NA,mj) is

used in decision making, since it is reasonable and relatively

easy to detect whether a new requirement refers to existing

requirements, other than to predict whether future unknown

requirements refer to the current requirement. In addition, we

apply the same training strategy described in Section IV-B to

train π.

We then use the output of our cluster-pair ranking model to

update term-by-requirement matrix. For instance, in Section I’s

example, if the result cluster-pair ranking model indicates that

“subsystem” in the requirement (i.e., JBTM-1644) and the

enhancement (i.e., JBTM-1706) refers to different entities,

we could separate “subsystem” into two columns in term-

by-requirements matrix, “subsystem1” and “subsystem2”,

and set weights of “subsystem1” in the requirement and the

enhancement as tfsubsystem,1644 · idfsubsystem and 0 respec-

tively. Similarly, we also set weights of “subsystem2” in the

requirement and the enhancement as 0 and tfsubsystem,1706 ·
idfsubsystem respectively. The updated term-by-requirement

matrix is incorporated into IR-based approaches in order to

improve the precision of the trace retrieval results. In the next

section, we evaluate our approach with 6 OSS projects and 2

benchmark datasets. The results show that our approach can

significantly improve the precision.
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TABLE II
COMPARISON OF STANDARD IR-BASED APPROACH AND ITS IMPROVEMENTS (VSM-POLYSEMY VS. VSM-POS-N VS. VSM, LSI-POLYSEMY VS

LSI-POS-N VS. LSI): ∗ AND ◦ INDICATE THAT THE PERFORMANCE IMPROVEMENT IS STATISTICALLY SIGNIFICANT ACCORDING TO THE

NON-PARAMETRIC WILCOXON SIGNED-RANK TEST AT 0.05 AND 0.01 LEVELS RESPECTIVELY; R: RECALL; P: PRECISION

Projects
VSM VSM-POS-N VSM-Polysemy LSI LSI-POS-N LSI-Polysemy

R P F2 R P F2 R P F2 R P F2 R P F2 R P F2

AIRFLOW .78 .11 .35 .76 .15 .42 .88 ∗ .39 ∗ .70 ∗ .79 .21 .51 .78 .26 .56 .91∗ .39 ∗ .72 ∗
ANY23 .87 .12 .39 .87 .17 .48 .94 .38 ∗ .73 ∗ .89 .20 .53 .87 .21 .53 .96 ◦ .37 ∗ .73 ∗

DASHBUILDER .77 .21 .50 .76 .24 .53 .80 .22 .52 .79 .21 .51 .77 .22 .51 .80 .21 .51
DROOLS .62 .25 .48 .57 .31 .49 .69 .42 ∗ .61 ∗ .64 .26 .50 .62 .32 .52 .74 ◦ .43 ∗ .65 ◦

IMMUTANT .75 .26 .54 .74 .28 .56 .75 .36 ∗ .62 ∗ .76 .28 .57 .74 .33 .59 .78 ∗ .42 ◦ .67 ◦
JBTM .73 .17 .44 .69 .21 .47 .79 .33 ∗ .62 ∗ .75 .20 .50 .72 .24 .51 .82 ◦ .37 ◦ .66 ◦

MODIS .83 .21 .52 .83 .22 .53 .87 .32 ∗ .65 ∗ .85 .23 .55 .85 .24 .56 .91 ∗ .33 ∗ .67 ∗
CM-1 .91 .22 .56 .90 .23 .57 .91 .30 ∗ .65 ∗ .90 .26 .60 .90 .28 .62 .93 .34 ∗ .69 ∗

V. EXPERIMENTAL DESIGN AND RESULTS

A. Experimental Design

Not only were the 6 OSS projects listed in TABLE I used to

conduct the experiments, we also used 2 benchmark projects.

The MODIS dataset contains 19 high-level and 49 low-level

requirements for NASA’s Moderate Resolution Imaging Spec-

trometer. The CM-1 dataset has 235 high-level requirements

and 220 low-level design documents for a NASA scientific

instrument. The correct trace links are defined by projects’

original developers. Both MODIS and CM-1 are available on

Promise Website [55].

We first train and test our approach with 6 OSS projects.

Again, polysemous terms identified by experts while analyzing

polysemy in Section III are used to train our FNN models. For

each project, we apply 10-fold cross-validation to evaluate the

performance of our models. The primary goal of our models is

to automatically update term-by-requirement matrix with the

hope that all vector space based models, such as VSM and LSI,

can benefit from polysemy analysis. Therefore, we compare

our polysemy enhanced automations (VSM-Polysemy and

LSI-Polysemy) with the standard approaches (VSM [12] and

LSI [26]). Three most frequent and basic measures in IR field

(recall and precision) are used to analyze the experimental

results. Another important measure is F-measure which is the

harmonic mean of recall and precision. Automated tracing

methods emphasize recall over precision [11], therefore, F2

is also used to compare the performances of approaches.

In order to evaluate and improve our feature selection, we

perform the feature ablation study on all five feature groups

(i.e., word embedding, additional, distance, string matching,

and stakeholder features). The feature ablation study is de-

signed to assess the informativeness of a feature group by

quantifying the change in predictive power when comparing

the performance of an approach trained with all the feature

groups versus the performance without a particular feature

group. The results of feature ablation can be used to find

optimal feature groups by removing feature groups which have

negative impact on the approach’s performance.

Since manually identifying polysemous terms is a time

consuming task and the results may contain errors which can

cause inaccuracy of FNN models, an optimal solution for FNN

models is to train models with a fully discussed training set

with the hope that the trained models can successfully apply to

other projects. Therefore, we perform a cross-project testing,

e.g., training our models with 6 OSS projects and testing our

approach with 2 benchmark projects.

B. Results

We compare polysemy enhanced automated requirements

tracing approaches with the baseline approaches, i.e., VSM-

Polysemy vs VSM-POS-N vs. VSM, LSI-Polysemy vs LSI-

POS-N vs. LSI. TABLE II presents the comparison results

on 6 OSS projects while 70% threshold is applied to the

tracing methods (i.e., evaluating only the top 70% of retrieved

candidate links) [56]. For space reasons, we only display

VSM-POS-N and LSI-POS-N in TABLE II. VSM-POS-V and

LSI-POS-V have similar performances. Since we perform 10-

fold cross-validation, for each round of testing, we average the

results of all requirements in each project. TABLE II presents

the average values of 10 testing rounds.

As shown in TABLE II, VSM-POS-N and LSI-POS-N out-

perform the baseines in 6 projects. However, there is no

significant improvement. Our polysemy enhanced approaches

significantly improve the precision and F2, at the same time,

they do not decrease the recall on 5 projects. This confirms

our hypothesis that resolving polysemy will lead to ruling out

incorrect links. The only outlier is DASHBUILDER project.

It seems that our FNN models fail to resolve polysemy in this

project. A closer analysis on DASHBUILDER project shows

that the failure does not come from failing to identify polyse-

mous terms. For instance, while retrieving the DASHBUILDE-

246 [57], our enhanced approaches have reduced the similarity

scores of all 14 false positives. However, since its correct

link GUVNOR-3406 [58] is from other projects, and does not

share any terms with it, the similarity of its correct link is

0. Therefore, even after reducing incorrect links’ similarity

scores, the correct link is still hard to be retrieved because of

vocabulary mismatch [59].

According to TABLE II, LSI-Polysemy improves LSI pre-

cision at 0.01 level in most cases. However, VSM-Polysemy

improves VSM at 0.05 level. Our FNN models are designed

to resolve polysemy problem, and previous research indicates

that LSI outperforms VSM by fully solving another natural
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Fig. 3. F2 differences between including all feature groups (white) and
removing stakeholder features (gray) on six OSS projects: VSM-Polysemy

language (NL) problem: synonymy [22] (multiple terms have

the same meaning). Therefore, we can conclude that methods

of solving polysemy and synonymy are complementary with

each other, i.e., the improvement achieved by resolving both

of them is greater than the sum of improvements achieved by

resolving them separately [60].

In addition, solving the polysemy problem leads to reducing

similarity scores between requirements and incorrect links. At

the same time, solving synonymy problem leads to increasing

similarity scores between requirements and correct links. The

combination of these two effects certainly further improves

the approach’s accuracy. The analysis on the results shows

that, there are 128, 34, 2, 51, 47, and 357 hard-to-eliminate

incorrect links (dark gray part in Fig. 1) that have been

removed from retrieval results of AIRFLOW, ANY23, DASH-

BUILDER, DROOLS, IMMUTANT, and JBTM respectively

by using LSI-Polysemy.

For IR-based approaches, we want to get some amount of

recall while tolerating only a certain percentage of false posi-

tives. F-Measure is a single measure that trades off precision

versus recall. Therefore, our feature ablation study focuses on

comparing F2 performances of polysemy enhanced approaches

including all feature groups and removing certain feature

groups. It is unsurprising that embeddings and string matching

features substantially improves the approach’s performance,

since both of them catch terms’ distributional semantic sim-

ilarity [61]. Surprisingly, not like results reported in [37],

stakeholder features do not significantly improve polysemy

enhanced approaches. Fig. 3 visualizes the feature ablation

study results of stakeholder features using VSM-Polysemy.

Analysis based on LSI-Polysemy shows similar results.

We introduce the support analysis, one method of associa-

tion analysis from the data mining literature [62], to test how

frequently a polysemous term is used by different stakeholders

to express different meanings:

supp(X ⇒ Y ) = P (X,Y ) =
freq(X

⋃
Y )

|T | (11)

where X is a term used by two stakeholders, Y means this

term expresses different meanings, and |T | is the sum of

occurrences of all polysemous terms. If an association has

the support that is less than a user-specified value, then the

association will not be considered as significant. In practice,

frequency count freq(X
⋃
Y ) with threshold value 3 is used

more often in the software engineering literature [63], [64].

Analysis of 6 OSS projects shows that, only average 12.63%

terms express different meanings because of different stake-

holders using them (i.e., only 12.63% of total terms satisfy

freq(X
⋃
Y ) ≥ 3). We argue that, unlike general speakers

in WSJ datasets used in [37], stakeholders with similar back-

ground share the terminology, and therefore tend to use the

same terms consistently when describing the objects. Further

analysis of the reasons causing polysemy is needed (e.g., [65],

[66]), and it will help with feature selection. However, it is out

of this paper’s scope. According to our observations, project

evolution plays a role in polysemy problem.

The bottom 2 rows in TABLE II present cross-project testing

on MODIS and CM-1. FNN models trained with all 6 OSS

projects are used to identify polysemous terms in these two

benchmark datasets. The results show that pre-trained FNN

models can significantly improve IR-based approaches on

both datasets. On one hand, FNN methods are facing the

problem of lacking well-defined training datasets. On the other

hand, the problem of finding the appropriate parameters in

neural networks models belongs to the class of NP-complete

problems [67], and computational complexity of FNN training

scales linearly with the size of the network [68]. If a pre-

trained model could solve the same problem in different

datasets, this will greatly reduce the computational cost of

building FNN models. Our cross-project testing results give

us the confidence to build such models.

VI. DISCUSSION

A. Related Work

Several IR methods can be used to detect polysemous terms.

Thesaurus [12] is designed to solve term mismatch problem in

automated requirements tracing. A simple thesaurus T is a set

of triples 〈ti, tj , α〉, where ti and tj are matching thesaurus

terms and α is the similarity coefficient between them. If

〈a, b, αab〉 and 〈a, c, αac〉 are in T , and there is no 〈b, c, αbc〉
or αbc = 0, we can conclude that a is a polysemous term. A

complete thesaurus library can help us find polysemous terms

accurately. However, manually build such complete thesaurus

library is a difficult task. On the contrary, our term-pair ranking

model provides an automated way to build the thesaurus

library, and our cluster-pair ranking model uses such library

to detect polysemous terms.

Our results show that POS tagging improves precision of

the IR-based methods. However, the improvements are not

significant. In fact, VSM-POS and LSI-POS can alleviate

polysemy while a term’s multiple meanings are classified

into different linguistic categories. For instance, the term

“ship” in “board ship” is a noun which means a boat, and

in “ship goods” is a verb which means transport. Indexing
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only nouns or verbs leads to ignoring one meaning of term

“ship”. Therefore, VSM-POS and LSI-POS approaches will

not link them together. However, for polysemous terms whose

multiple meanings are in the same linguistic category, such

as “table” (e.g. “database table” and “webpage table”), VSM-

POS approaches cannot distinguish their meanings. In fact,

POS tagging is one of the input features of our polysemy

enabled approach. The feature ablation study shows that,

POS combined with other features significantly contributes to

polysemous term detection.

On the other hand, ANN models have been successfully

applied to support requirements traceability recovery. In order

to overcome term mismatching or more specific synonymy

problem, Guo et al. [69] proposed an approach based on re-

current neural networks (RNN) to learn semantic associations

between requirements and correct links. Unlike [69], our ap-

proach improves the precision of the automated requirements

tracing by resolving polysemy. Having an innovative way to

combine those two methods together may further improve the

accuracy of the automated requirements tracing.

B. Threats to Validity

In this paper, we proposed a ANN-based approach to tackle

a typical NL problem, polysemy, in automated requirements

tracing. The experimental results show that our approach can

improve the precision of retrieval results. However, several

factors can affect the validity our study. Construct validity

is the degree to which the variables accurately measure the

concepts they purport to measure [70]. In our experiment,

there were minimal threats to construct validity as standard

IR measures (recall, precision, and F2), which have been

widely used in requirements traceability research, were em-

ployed to assess the different methods. The feature ablation, a

fundamental analysis method in machine learning, is used to

provide more insights into the results. Therefore, we believe

that the measures we used sufficiently capture and quantify

the different aspects of automation tracing methods evaluated

in this paper.

Threats to external validity impact the generalizability of

results. In particular, the results of this study might not gen-

eralize beyond the underlying experimental settings [70]. One

major threat to the external validity comes from the datasets

used in this experiment. We mitigate this threat by testing

our approach with 6 OSS projects and 2 benchmark datasets.

Additionally, the sizes of projects used in the experimental

are varied. Therefore scalability questions are also addressed.

Another threat comes from training sets. We acknowledge that

manually creating training data (i.e., polysemous terms) is

an error-prone task. However, we believe having two experts

worked jointly on finding polysemous terms helps mitigate this

threat. In fact, inter-rater agreement analysis (Fleiss’ kappa

κ [33]) also demonstrated that two experts provided coherent

judgments.

In addition, specific design decisions and heuristics used

during the implementation can also limit the results applicabil-

ity. Such decisions include the size of input and hidden layers,

using ReLU as activation functions, using TFIDF weights, and

training stop criteria.

C. Implications

The vast majority of requirements in practice are writ-

ten in NL, and thus suffer from typical NL problems like

polysemy. Therefore, our approach can be applied to solve

other requirements engineering tasks, such as ambiguity [71]

and requirements interaction management [72]. In addition,

Wang et al. [73] developed a useful Eclipse plugin (the assisted

tracing tool) to help improve the precision of analyst-submitted

final trace matrices by allowing analysts to tag requirements

and source code. Our term-pair ranking model can improve

their tool by automatically finding semantically related tags

of analysts’ tags.

One surprising finding is that stakeholder features con-

tributed less to identifying polysemy. Incorporating other fea-

tures, like interval time between creation of two requirements,

into consideration can help us find other important features.

Experimental results also show that solving polysemy and

synonymy together can significantly improve the accuracy of

automated requirements tracing. Fully connected FNN models

have been considered to be able to solve multi-class classifi-

cation problems [68]. Constructing a multi-class classifier to

identify both polysemy and synonymy is a promising future

extension of our approach.

Answer sets of trace links in 6 projects are defined by

original developers. Developers link different documents not

only because those documents describe similar issues, but

also because those documents belong to the same component.

This means that linked documents may not share any terms.

Detecting links between documents which do not share any

terms is out of the scope of the VSM-based approaches

(including our FNN-based approach). Therefore, having a new

approach to trace links belonging to the same component can

help further improve VSM-base approaches.

VII. CONCLUSION

Polysemy is a typical NL problem which has impacted au-

tomated requirements tracing. This paper tries to resolve poly-

semy by adapting NLP approaches into IR-based requirements

tracing. Our contributions include: 1) quantifying polysemy’s

impact on automated requirements tracing; 2) proposing a

semantically enhanced approach to detect polysemous terms;

and 3) testing proposed approach with 6 OSS projects and 2

benchmark datasets.

Our future work includes finding and testing more features,

building polysemy enhanced automated requirements tracing

with other neural network models (e.g., RNN), and training a

new model to resolve both polysemy and synonymy together.
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