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Abstract—Compared to building a single requirements view,
modeling stakeholder viewpoints and then merging them is shown
to improve the understanding of the problem domain, but also
very time consuming. How has the situation changed? This paper
reports our replication of a case study, where we take theoretical
replication’s advantage to mitigate the original study design’s
threat and to embrace an important evolving factor, namely
automated tool support for producing i∗ models. Our replicate
case study verifies the rich domain understanding gained through
viewpoint-based modeling, and updates the prior results by
showing the time saving enabled by the tool. Our work offers
operational insights into independent, theoretical replications.
These insights, we believe, can advance requirements engineering
research toward an empirically backed body of knowledge.

Index Terms—Replication, theoretical replication, case study,
Scholar@UC, viewpoints, model merging, i∗, tech transfer.

I. INTRODUCTION

In no science or engineering discipline should one accept

knowledge on the basis of the effects and observations re-

ported in a single study. Being able to repeat experiments

is a hallmark of the scientific method, used to confirm or

refute hypotheses and previously obtained results. In software

engineering, replications allow us to build knowledge about

which results or observations hold under which conditions [1].

The need for repeated research is especially high for

requirements engineering (RE) due to the strong influence

posed by the stakeholders and the contextual factors [2].

Effects about an RE approach observed in a single study may

be caused by factors that were not measured or controlled,

such as variability in human behavior, difficulty of isolating

confounding variables, and researcher bias [3, 4]. The aim

of replication is to examine the extent to which a published

study’s results are valid, reliable, and useful in RE practice.

To scale empirical RE research to practice, Wieringa [5]

suggested two generalization dimensions: statistical inferenc-

ing from samples to populations, and case-based reasoning

that tests the underlying theory under increasingly realistic

conditions. An example of the former is replicating the original

Siemens case study [6] with two other partners (BMW and

Cassidian) [2] so as to verify and broaden the benefits of

artifact-based RE across different domains (populations).

The sample-based inference is often made by a literal
replication [3] whose objective is to execute close enough

to the original experiment so that the results can be directly

compared. In contrast, case-based reasoning corresponds to

theoretical replication [7] which seeks to investigate the the-

ory’s scope of applicability and to update the assumptions that

have evolved greatly since the initial studies. For example, to

test the theory concerning a linguistic tool’s superior perfor-

mance over a baseline method in supporting the requirements

consolidation task [8], Wnuk et al. [9] performed a replication

by changing the baseline method from the research prototype’s

simple keyword searching to the advanced searching and

filtering capabilities offered in DOORS, a state-of-the-practice

requirements management tool. In this way, the theory was

tested in a more realistic setting, rather than by sticking rigidly

to the original experimental setup.

Theoretical replications, therefore, play a key role in

technology transfer by assessing whether the predictably

(dis)similar results hold when conditions are systematically

altered [3, 5]. However, beyond [9], there are very few the-

oretical replications published in RE. The survey by Sjøberg

et al. [10] showed that only 20 of their 103 (18%) reviewed

software engineering experiments were replications, and only

one replication was RE related. This leaves many questions

about theoretical replication unanswered. For example, which

conditions should be altered, what evolving factors ought to

be incorporated, and with these changes, how much adaptation

is needed to test the original hypothesis?

In an attempt to answer such questions, and more impor-

tantly, to gain operational insights into theoretical replica-

tions in RE, we performed one ourselves. We selected an

exploratory case study reported in [11] where Easterbrook

and his colleagues tested a key tenet of the viewpoints theory,

namely, modeling stakeholder viewpoints separately and then

explicitly merging them leads to a richer domain understanding

than constructing a single coherent requirements model. The

largely positive results, though obtained qualitatively and sub-

jectively, were having some long-lasting impacts, influencing

work in RE [12, 13] as well as in the broader areas of infor-

mation systems and enterprise modeling [14, 15]. Easterbrook



et al.’s study of viewpoint merging has even begun to shape

new and challenging RE domains like health care [16]. For

these reasons, we believe repeating the test of the underlying

viewpoint theory and doing so in a more quantitative and

objective manner is a worthwhile endeavor.

This paper makes two main contributions: We integrate a

state-of-the-art tool into the goal modeling process, and we

develop a new way to evaluate the goal modeling product. Our

study not only updates the previously obtained results [11] in

the face of potentially practical support, but also illuminates

that theoretical replication is fruitful in advancing RE research

toward an empirically backed body of knowledge. In what fol-

lows, we present background information in Section II, detail

our replication design in Section III, analyze the results in

Section IV, and draw some concluding remarks in Section V.

II. BACKGROUND

A. Repeated Research in RE

The idea behind establishing software engineering’s empir-

ical foundations is to separate “what is actually true” from

“what is only believed to be true”, and in doing so to build

knowledge [17]. Clearly no single study has the independent

power to produce definitive answers for separating truth from

belief. Therefore, replication of previously published empirical

studies is frequently advocated [1, 17]. Repeated research, as

it turns out, takes many forms.

Probably the most well-known distinction in software engi-

neering is between internal and external replications, as de-

fined in [17]. Internal replication is undertaken by the original

researchers themselves or the team involving them, whereas

external replication is performed by independent researchers.

Brooks et al. [17] pointed out that, without the confirming

power of external replication, many principles and guidelines

in software engineering should be treated with caution.

In mature scientific disciplines, external replication is a

must. A recent remarkable discovery in physics exemplifies

this: Even though the gravitational waves were detected in

September 2015, the news was kept secret until February

2016 after the results were independently verified [18]. Un-

fortunately, external replication is still rare in RE. Although

the number of software engineering replications was updated

from 20 in Sjøberg et al.’s survey [10] to 133 in da Silva

et al.’s study [19], 31 of the 32 RE replications (97%) were

internal ones. Our repeated research, carried out as an external

replication, addresses the critical need by checking whether the

published RE evidence is able to stand scrutiny.

Who replicates the experiment is only one of the permissible

changes in repeated research. Others include what and how to

measure, whether to use the same materials, and so forth [20].

Mendonça et al. [21] advocated careful control over the

variabilities and suggested to abort a replication if its planning

deviates too much from the original experiment. Contrariwise,

Juristo and Vegas [22] proposed a “run-and-see” approach by

encouraging a replication’s actual execution and post-treatment

analysis rather than abandoning an otherwise useful study with

context-induced changes.

These opposing views can be explained by the difficulty in

replicating human-subject studies in software engineering [3].

The context of each study can easily cover tens and hundreds

of variables [22]. For example, programmer productivity has

been linked to more than 250 contributing factors [23], and in

RE, an independent review uncovered 8 potential confounding

variables of Wnuk et al.’s replication mentioned earlier [9].

Performing an identical, exact, literal, strict, or even close

replication in the same way as the natural sciences like

physics is neither practically attainable nor methodologically

advantageous for software engineering [3, 17, 22, 23].

In contrast to following the original experimental procedures

as closely as possible, theoretical replication takes advantage

of the opportunities to improve the study design. Moreover, the

improvement is made to advance the body of knowledge in a

systematic way, e.g., by addressing a serious threat, updating

a response variable’s measuring, or embracing a key change

in the context of the phenomena under investigation. Such

an advancement is illustrated by the aforementioned change

of the baseline requirements consolidation tool to DOORS in

Wnuk et al.’s replication [9]. Referring to Juristo and Vegas’s

“run-and-see” motto [22], we believe theoretical replication

can achieve a “run-and-see-big” effect by selecting the critical

factors to re-examine the underlying theory.

In summary, replications are essential to constructing and

evolving knowledge in RE. Although the number of published

replications has grown in the last few years, there is a pressing

need to conduct external RE replications [19]. Theoretical

replication, compared with literal replication1, can potentially

improve the repeated study’s quality because the researchers

can pursue a less contrived design and execution.

B. Replication Base

A case study is an empirical inquiry that investigates a con-

temporary phenomenon within its real-life context, especially

when the boundaries between phenomenon and context are

not clearly evident [7]. Case studies have gained consider-

able acceptance in software engineering, and so have their

replications. In da Silva et al.’s surveyed 133 replications, for

example, 15 (11%) are replicate case studies, growing steadily

from 1 in 1999 to 4 in 2009 [19]. In RE, the distinctive need for

case studies arises out of the desire to understand the complex

environment in which the requirements are located [24, 25].

This environment is constantly changing. To structure the

evolving requirements, viewpoints are proposed to partition a

large information space into loosely coupled yet overlapping

chunks (“viewpoints”) [26]. Although viewpoints are believed

to produce better requirements models, one of the first empir-

ical tests is [11] which serves as our replication base.

The original case study explored the underlying theory

of viewpoints: “When approaching a conceptual modeling

problem, it is better to build many fragmentary models rep-

resenting different perspectives than to attempt to construct

1We use “theoretical” and “literal” replications for the rest of this paper in
the same way as [3]. Please refer to [20] for a review of various replication
types in experimental disciplines.
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Fig. 1. Original study’s design (adopted from [11]).

a single coherent model” [11]. “Better” was translated to

“a richer domain understanding” and further operationalized

by 3 response variables: “hidden assumptions”, “disagree-

ments between stakeholders”, and “new requirements”. To

test the predicted differences, one team followed a global

(G) approach, whereas the other team adopted viewpoints

(V), to build i∗ models [27] for the Kids Help Phone (KHP)

organization. The fundamental distinction was model merging
that was explicit for the V team but nonexistent for the G

team. Fig. 1 shows the original study’s design. Table I helps

explain the key components of this design. We summarize the

original study’s main findings as follows.

• R1: Viewpoints led to a richer domain understanding.

While the benefits of viewpoints were observed, there

lacked detailed and quantitative analyses (especially those

of the 3 response variables) in [11].

• R2: Viewpoints-based modeling was slower. In fact, it

was so time-consuming that the V team was not able to

produce their merged i∗ model. In Fig. 1, only the slices,

rather than the integrated whole, from both teams were

compared and presented to the KHP stakeholders.

• R3: Process was more important than product. This could

be seen as a combination of R1 and R2. On one hand, the

process of merging stakeholder viewpoints did improve

the understanding of the problem domain [11]. On the

other hand, the merged product never existed, due to the

lack of modeling tool support for handling i∗ syntax [11].

In summary, not only were the viewpoints theory and

hypothesis stated clearly in [11], but the results were thought-

provoking, including such startling claims that promoted a

requirements modeling process even though no end result was

produced. This stands in stark contrast to artifact-based RE

which values the requirements tangibles rather than the way

of creating them [6]. Nevertheless, Easterbrook et al.’s study

design was straightforward and sound. Their work [11] also

appeared to be influential, especially in meeting some emerg-

ing RE challenges [12]–[16]. For these reasons, we believe

Easterbrook et al.’s work [11] is a study worth replicating.

III. REPLICATION DESIGN AND EXECUTION

Our theoretical replication investigates the same central

hypothesis as the original study: “Modeling stakeholder view-

points separately and then combining them leads to a richer

TABLE I
ORIGINAL STUDY’S DESIGN EXPLAINED

Study Context 
Kids Help Phone (KHP), a non-profit social 
organization that provides counseling to 
kids and their parents across Canada 

Study Period around 2004 
Organizational 
Need Related to 
the Study 

KHP wanted to analyze the strategic 
technology change of developing new 
internet-based services 

Modeling Input transcripts from interviewing 14 KHP 
stakeholders (approx. 140 pages in total) 

V Team viewpoint modeling team consisting of 3 
graduate students 

G Team global modeling team consisting of 2 
graduate students 

Modeling Output team-based i* models 

understanding of the domain” [11]. Furthermore, we take the-

oretical replication’s advantage to improve the study procedure

in three aspects.

• Mitigate a threat. The original study collected purely

qualitative data, and relied on the subjective opinions of

the modelers to measure “a richer domain understanding”.

In contrast, we examine 3 finer measures — “hidden

assumptions”, “stakeholder disagreements”, and “new

requirements” — which were laid out but not analyzed

in [11]. In our replication, these 3 response variables

are assessed by the domain experts rather than by the

modelers themselves, reducing the experimenter bias.

• Take into account an evolving factor. Among the many

things changed from the original study, we intentionally

incorporate the i∗ tool support in our replication. In [11],

both the G and V teams used Microsoft Visio for the

modeling. While the V team failed to build the merge,

both teams encountered difficulty with Visio in managing

large, evolving models. In the past decade, i∗ tooling has

greatly increased. The community wiki, for example, lists

over 20 tools, many of which are open-source [28]. We

choose OpenOME [29] to update the study design and

describe this tool in more detail in Section III-B.

• Devise a new mechanism to evaluate i∗ models. Unlike

the original study’s focus on the internal qualities of the

models, such as size and readability [11], we resort to

the domain expert by eliciting a set of questions from

the expert and then assessing how well the resulting i∗

models are capable of answering those questions. We

refer to such an approach as an external way of evaluating

i∗ models. Horkoff and Yu [30] recently presented an

external framework for interactive i∗ model analysis,

which we discuss further, along with other goal model

evaluation approaches, in Section III-C.

A. Replication Context

We adopt case study [7] as the basis for our replication

design. The contemporary phenomenon of our investigation

is the Scholar@UC project [31]. Scholar@UC is a digital

repository that enables the University of Cincinnati (UC)

community to share its research and scholarly work with

a worldwide audience. Its mission includes preserving the
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permanent intellectual output of UC (e.g., publications, pre-

sentations, datasets, etc.) and enhancing discoverability of

these resources. UC faculty and students, for instance, can use

Scholar@UC to store, organize, and distribute their scholarly

creations in a durable and citable manner.

The development of Scholar@UC evolved from a couple of

legacy Web systems and began over a year ago in partnership

by the UC Libraries and UC Information Technologies. The

principal technological platforms are the Fedora Commons

repository architecture, Apache Solr server, Ruby on Rails

engine, and Blacklight interface [31]. Scholar@UC is made

open source on GitHub [32], and its project team follows agile

development, employing such practices as sprint iterations

(each cycle typically covers 2 weeks) and scrum stand-ups

(roughly 3 meetings per week).

The requirements of Scholar@UC over the past 2 years

were shaped by the early adopters, a group of more than 30

enthusiastic users (faculty, graduate students, and library staff)

who provided in-depth feedback on the functionalities of the

software and helped set priorities for the development at var-

ious points. As a result of engaging these user representatives

in the agile process, user stories were developed and released

in GitHub [33]. A sample user story is shown in Fig. 2.

We collaborated with the Scholar@UC team to share the

expertise in software engineering research and practice. In

particular, the Scholar@UC artifacts provide a valuable real-

world dataset for research. Meanwhile, the research findings

can feed back into the project practice, leading to greater

awareness of the state-of-the-art and more informed decision-

making. In the fall of 2015, we designed our theoretical

replication of viewpoint merging with the specific aim of

deepening the understanding of the problem domain. This fit

Scholar@UC’s plan as the project was transitioning from early

adoption toward institution-wide self-submissions2.

As illustrated in Fig. 2, over a hundred user stories were

elicited and documented in an agile way [34]: who it is

for, what it expects from the intended software, why it is

important, and optionally, how it is delivered. The user stories

were organized into 11 categories [33]: data management,

digital archives, publishing, etc. Linking these user stories

could help consolidate the stakeholder roles, identify their

intentional dependencies, and uncover possible inconsistencies

and incompleteness. This made i∗ an appropriate modeling

framework due to its built-in constructs emphasizing strategic

relationships among organizational actors [27].

2“Scholar@UC Open for Self-Submissions” was officially announced on
February 3, 2016. Please see http://www.uc.edu/News/NR.aspx?id=22818 .

TABLE II
DESIGN OF OUR REPLICATE CASE STUDY

Study Context 
Scholar@UC, an institution-wide Web 
application that supports preservation and 
access for digital scholarly works 

Study Period late 2015 – early 2016 

Organizational 
Need Related to 
the Study 

Scholar@UC supported research on 
consolidating existing user stories and wanted 
to use research findings to help deepen the 
domain understanding 

Modeling Input user stories, some elicited from early adopters 
(134 user stories & 49 pages in total) 

V1 Team viewpoint modeling team1 consisting of 2 
undergraduate & 1 graduate students 

V2 Team viewpoint modeling team2 consisting of 3 
undergraduate students 

G1 Team global modeling team1 consisting of 3 
graduate students 

G2 Team global modeling team2 consisting of 4 
undergraduate students 

Modeling Output team-based i* models 

We recruited 13 UC students from a split-level RE class

to participate in our study. The students did not know

Scholar@UC before the class. All of them were familiar

with i∗ syntax based on the class’s earlier readings [27, 35],

but none had learned OpenOME or any other automated i∗

modeling tools. As their i∗ experiences were similar, we

randomly assigned the student modelers into 4 groups and

further divided the groups into 2 G (global modeling) teams

and 2 V (viewpoint modeling) teams. Table II presents our

study design, which is to be contrasted with Table I. Note that

Scholar@UC keeps evolving its artifacts including the user

stories. The version that served as our modeling input, together

with all other study materials, is made publicly accessible

in [36], facilitating future replications.

B. OpenOME: Tech Transfer from a Research Prototype

We required all 4 teams to use OpenOME to produce their i∗

models, updating an important factor from the original study.

OpenOME supports modeling of the social and intentional

aspects of a system, allowing users to capture the motiva-

tions behind system development in a graphical form [30].

OpenOME extends the Organizational Modeling Environment

(OME) which is part of the Tropos project [37]. To enlarge

the user base, OME was made open source in the spring of

2004 and hence renamed to OpenOME. Since then, many

researchers and students have contributed to its development.

The latest version of OpenOME operates on the Eclipse

platform. The main features exploited by the modelers in our

study are editing-related and shown in Fig. 3. By simply

dragging and dropping items from the palette, for example,

one can generate and edit an i∗ model within the canvas. In

addition, our modelers benefited from OpenOME’s interop-

erability, downloading and successfully running the tool on

Windows, Linux, and Mac computers.

In our opinion, OpenOME has grown from a research pro-

totype to a community asset. Not only does the tool maintain

a record of sustained downloads3, but its users are able to

3In the first two months of 2016, for example, OpenOME received 38, 7,
28, 18, 40, 81, 15, and 55 weekly downloads [29].



Fig. 3. Screenshot of the OpenOME tool highlighting the editing-related features.

build enterprise architectures, create ontological visualizations,

monitor early aspects, and tackle other problems [38, 39, 40].

The diverse and independent usages clearly signal a trajectory

of successful technology transfer [5] for OpenOME.

C. Evaluating i∗ Models

To evaluate i∗ models, we must understand what i∗ goal-

oriented modeling is trying to achieve. Broadly speaking, i∗

models are intended to facilitate requirements exploration with

an emphasis on social aspects by providing a graphical depic-

tion of system actors including their intentions, dependencies,

and alternatives [27, 30]. Five evaluation categories exist:

analyzing goal satisfaction or denial, computing model met-

rics, planning action sequences, simulating model behavior,

and model checking formal properties [41]. The evaluation of

our replication base falls mostly into the metrics computing

category, assessing measures such as the i∗ model sizes in

terms of the number of nodes and the number of edges [11].

Recently, Horkoff and Yu [30] introduced two procedures

for analyzing i∗ models: forward analysis addressing “what

if?” types of questions so that the alternatives can be com-

pared, and backward analysis answering “are certain goals

achievable?” questions. These procedures are implemented in

OpenOME, shown by the “Analysis Buttons” in Fig. 3. The

domain experts are encouraged to interact with the OpenOME

analysis features to iteratively improve the i∗ models, e.g., by

uncovering ambiguity and incompleteness.

We propose in our work a similar approach by engaging

experts in identifying the questions that are important for

domain understanding. Different from [30], our approach is

non-interactive. The questions are defined by domain experts

without being constrained by the content and layout of any

specific model. The questions are then answered by analysts

or researchers who are familiar with i∗ syntax and semantics.

We believe this can provide the best of both worlds, allowing

stakeholders and modelers to do what they do best. The

questions resulted from our approach can be used to carry out

what Horkoff and Yu [30] described as “sanity check” to test if

the produced i∗ models are sensible or not, before interactive

and/or formal analyses are performed. This question-asking

and question-answering divide stems from our view that,

during the early stages of requirements exploration, the i∗

models are a means to an end — to gain a richer understanding

about the problem domain — rather than the end itself.

D. Replication Execution

Our replicate case study aims to answer 3 research ques-

tions: (1) Can we confirm the prior results: R1, R2, and R3

(cf. Section II-B)? (2) How does the OpenOME tool affect

the modeling process? and (3) How well can the resulting i∗

models answer the stakeholder questions?

We introduced the i∗ modeling task to the 4 teams in

November 2015. The introduction was made separately to

each modeling team without any other team’s presence. As

a result, the modelers were not exposed with the G-V process

difference, the viewpoint theory, or the study hypothesis.

Every team was instructed to use [33] as the only source

for their modeling, and to use OpenOME to construct their

i∗ models throughout their work. For the G1 and G2 teams,

all members were asked to work together from day one. For

the V1 and V2 teams, the modelers were required to divide

existing Scholar@UC requirements artifacts [33] as a group,

use divided input to build viewpoint models individually, and

merge the viewpoints collectively.

All the 4 teams were given 3 weeks to complete the model-

ing. After that, a meeting with Scholar@UC stakeholders was

held, during which the final i∗ models of all 4 teams were

presented in foam boards, and the domain experts, modelers,

and researchers exchanged feedback in an open format.

In addition to the i∗ models, all 4 teams were instructed

to submit 3 lists: “hidden assumptions”, “stakeholder dis-

agreements”, and “new requirements”, as well as detailed

data tracking their modeling efforts. These instructions can be

found in our study packet [36]. Note that, compared to Fig. 1,

our study execution had two main differences: our G and V

teams had exactly the same modeling input (namely [33]), and

it was the final integrated model from each team (instead of

model slices) that was presented in the stakeholder meeting.



TABLE III
NUMBER OF RAW AND RATED DOMAIN-UNDERSTANDING ITEMS

Team G1 G2 V1 V2
hidden raw # 5 8 9 4

assumptions rated # 3 3 9 3
stakehoder raw # 2 6 5 4

disagreements rated # 2 4 2 2
new raw # 3 5 7 7

requirements rated # 3 4 5 5

IV. RESULTS

A. Problem Domain Understanding: Richer or Not?

For each of the 3 response variables used to operationalize

“a richer domain understanding”, we collected the modeling

team’s data directly from their submissions. By relating to

the submitted i∗ models from the teams, two researchers then

jointly processed the raw data to filter out the items that were

insensible or of low quality. Sample removed and preserved

items are listed below (more information is available in [36]).

• The hidden assumption “Devs4 know things about stuff”

is clearly too general to sensibly help domain understand-

ing, which we filtered out. Another submission from the

same team, “Digital archivist is the moderator of every

repository”, makes an assumption about the responsibility

and rights of a stakeholder role, which we kept.

• The reported disagreement “It is unclear what the ap-

proval process should be for collections” looks more like

under-specification than lack of consensus to us, so we

removed it. In contrast, we felt that the tension between

the “proxy service desired by archivist” and “repository

user’s usability” reflected a sensible stakeholder disagree-

ment, so we kept it.

• “Create a glossary of terms so that there is less con-

fusion for requirements documenting” may be needed

internally to the project team, but would not count as

a new requirement for the Scholar@UC system itself.

“Download multiple works at a time”, to us, would count.

We therefore discarded the former and kept the latter.

The preserved items were presented to Scholar@UC domain

experts and assessed in two different ways: interview and

survey5. Because hidden assumptions and stakeholder dis-

agreements were contextually rich, we conducted an interview

with one expert (a science informationist) to obtain qualitative

ratings and justifications6. Because new requirements were

relatively self-contained, we designed an online survey to

collect ratings from a broader and more diverse group of

project members. Table III lists the number of raw and rated

items. No team, according to Table III, seemed to outperform

the others in terms of domain understandings’ quantities. We

next compare their qualities.

4Here “Devs” mean “development engineers” as used in DevOps. DevOps
is the practice of operations and developers participating together in the entire
service lifecycle, from design through development to production support.

5The rating items were completely anonymized (i.e., containing no
modeling-team information) in both the interview and the survey.

6The interview lasted about 1 hour involving the expert and one researcher.

Hidden Assumptions. For hidden assumptions, in addition to

being valid and non-obvious, we wanted them to assert indica-

tive environmental properties, as defined by Jackson [24]. Such

problem-domain conditions, events, and states are critical to

the operation of the intended software. As shown in Table IV,

what the V teams produced were more about environmental

assertions. These included “time frame is not necessary for

assigning permission from consumer to depositor” (V1) and

“depositor can achieve same level of integrity in downloading

small chunks as the large ones” (V2). Neither assumption

touched upon implementation details, and both were deemed

very hidden. In general, the domain assumptions resulted from

the V teams received higher ratings in terms of the environ-

mental indicativeness and hiddenness, shown in Table IV.

The V teams’ domain assumptions, however, were less valid

compared to the G teams’. Referring to the above records, V2’s

assumption about the downloading integrity was valid whereas

the time-oblivious permission assertion made by V1 was not.

The G teams, overall, made more sound assumptions about

Scholar@UC. For instance, all the G2’s rated assumptions —

“uploaded data is readable”, “system is secure”, and “system

has enough permission rights” — were assessed as correct

by the domain expert, though their hiddenness was virtually

nonexistent in that their average rating is 1.33 in Table IV

where 1 indicates “completely obvious”.

We conclude that the V teams outperformed the G teams

in generating hidden assumptions. While what the V teams

found might not always be factually correct, their assumptions

were both more about the intrinsic properties of the problem

domain and more concealed. Thus, we believe that at the stage

of requirements exploration it is crucial to surface the less than

perfect environmental assertions that otherwise would be kept

out of stakeholders’ sight.

Stakeholder Disagreements. Disagreements between

Scholar@UC stakeholders could occur at different levels:

syntactic, semantic, and pragmatic. Although we do not claim

that one level is a prerequisite for another, they are clearly

not disjoint. Table IV lists all these levels, together with

the severity and validity of the reported disagreement, as

perceived by the domain expert that we interviewed.

A syntactic disagreement indicates that some well-formed-

ness rule is broken when Scholar@UC requirements are

stated. G1’s two rated disagreements: “Who should nominate

the URL for a work (Depositor or Repository User)?” and

“Are Metadata Specialist and Digital Archivist the same in

assuring work attribute quality?” identified the overlapping and

potentially conflicting information presented in Scholar@UC’s

user stories [33]. Consequently, G1’s results received the 3 out

of 3 rating on ‘Syntactic’ in Table IV, which is better than all

the other three teams.

Semantic disagreements go beyond the syntax and sig-

nal inconsistencies relating to meaning. The aforementioned

disagreement: “proxy service desired by archivist” versus

“repository user’s usability” submitted by V2 is an instance of

semantic disagreements, as well as an instance of pragmatic



TABLE IV
ASSESSING HIDDEN ASSUMPTIONS AND STAKEHOLDER DISAGREEMENTS (ALL RATINGS ARE DONE QUALITATIVELY ON A 3-POINT LIKERT SCALE

WHERE 3 INDICATES THE POSITIVE END, 2 INDICATES NEUTRAL, AND 1 INDICATES THE NEGATIVE END)

Team Average rating of hidden assumptions Average rating of stakeholder disagreements
Environmental Hidden Valid Syntactic Semantic Pragmatic Severe Valid

G1 1.67 1.67 2.33 3.00 2.00 1.50 1.00 1.50
G2 2.33 1.33 3.00 2.00 2.25 2.00 1.50 1.50
V1 2.78 2.89 1.87 2.50 3.00 2.50 2.50 3.00
V2 3.00 3.00 2.00 2.00 3.00 2.50 3.00 2.50

disagreements reflecting practical considerations rather than

theoretical ones (e.g., well-formed-ness). By comparison, the

syntactic disagreement by G1 concerning URL nomination re-

ceived low rating on ‘Pragmatic’ because, in reality, Depositor

and Repository User are both given the right to do so.

Compared to the ‘Syntactic’, ’Semantic’, and ’Pragmatic’

ratings, the differences of ‘Severe’ and ‘Valid’ between V

teams’ findings and those from the G teams are clearly visible

in Table IV. While ‘Valid’ can be seen as an aggregate of

the three levels of disagreements, ‘Severe’ shows the negative

impact of the reported disagreements on Scholar@UC if they

are not resolved. We therefore conclude that the V teams

did a better job at finding stakeholder disagreements than the

G teams, both in terms of the pragmatic meanings and the

practical values.

New Requirements. Unlike hidden assumptions and stake-

holder disagreements, the new requirements appear to have

some very similar records across multiple teams. We held a

meeting with three Scholar@UC experts (a project lead, an

informationist, and a developer) and shared with them the

17 new requirements without disclosing the modeling team’s

information. This one-hour meeting helped us better design a

survey via Google Docs with 14 distinct requirements, which

we e-mailed the entire Scholar@UC project team, asking them

to respond in a two-week window.

For each surveyed new requirement, we designed 5

multiple-choice options shown in the left column of Table V.

Our original design focused only on value. The meeting

with the 3 Scholar@UC team members helped us refine this

focus by adding priority. A survey respondent may feel a

requirement has value, but if the value is not immediately

needed, then that requirement may be nice to have rather

than important to have. The meeting also made us realize

that some “new” requirements were already implemented in

the system: “having anti-virus scan before a work is up-

loaded” is such an example. The reason for our modeling

teams not realizing these already existing requirements is that

Scholar@UC evolved from a couple of legacy Web systems at

UC. While certain features like anti-virus scan were inherited

TABLE V
RATINGS USED TO ASSESS AND ANALYZE NEW REQUIREMENTS

Surveying Scholar@UC team Analyzing and reporting
(choosing one and only one) (e.g., the starplots in Fig. 4)◦ Valuable and of high priority 3◦ Neutral 1◦ Not valuable or of low priority 0◦ Already exists 2◦ Do not understand 1

from the legacy system, they were not documented in the

project’s current GitHub repository [33]. We therefore added

an “already exists” option in our survey.

We received 11 survey responses in two weeks, showing

Scholar@UC’s strong support to our case study. We grouped

the responses in 3 categories based on the respondents’ roles

in the project: 3 were clustered as ‘Archivist’ including infor-

mationist and metadata librarian, 5 played the ‘Manager’ role

consisting of a project lead along with 4 task force members,

and 3 software developers (‘Developer’).

Fig. 4 presents the starplot for each of the 4 modeling

teams. In each plot, there are in total 11 axes denoting the

11 Scholar@UC team members who responded to our survey.

Each axis is scaled according to the numeric values defined

in the right column of Table V. Zero shows an explicit “not

valuable or of low priority” response, and one represents

either a neutral or an uncertain opinion. On the positive end,

“valuable and of high priority” is clearly the most desirable

choice, but in our view, “already exists” also signifies a value

proposition. Thus, the more area a modeling team’s scores

cover the starplot, the more valuable the team’s new require-

ments were perceived by the members from the Scholar@UC

team. The two V teams, according to Fig. 4, outperformed their

G team counterparts. The superior performance is also in line

with the top-5 ranked new requirements listed in Table VI. The

discrepancy is apparent here: Only one G2’s finding made it

to Table VI and all others were contributed by the V teams.

B. Modeling Process with OpenOME

Table VII presents self-reported modeling effort of each

team. Compared to our replication base where the V team

did not produce their final i∗ model [11], all the 4 teams in

our study successfully completed their integrated models by

spending a comparable amount of total time.

OpenOME played a significant role according to the mod-

eling teams’ own reflections. All the modelers agreed that

OpenOME was easy to learn and to use. The V1 team, how-

ever, pointed out two problems: merging individual models and

saving the final merge in a format suitable for large prints.

We share their former experience here. In V1’s first model

merging meeting, they were successful in loading the three

i∗ viewpoints into OpenOME. After choosing one base file

(strategic rationale model), they encountered great difficulty in

copying and pasting other diagrams to the base. The i∗ actors

would collapse (rather than staying expanded) and all of the

elements inside an actor were piled onto one location. Fig. 5

illustrates this issue. Although the problem may seem to relate

only to the user interface, we believe addressing the subtle



G1: 3 new requirements assessed G2: 4 new requirements assessed V1: 5 new requirements assessed V2: 5 new requirements assessed

Fig. 4. Starplots summarizing eleven Scholar@UC team members’ ratings on the new requirements (cf. Table V for the mapping between the survey options
and the Likert-scale numeric values).

TABLE VI
TOP-5 RATED NEW REQUIREMENTS AND THEIR CONTRIBUTING TEAMS (CLUSTERED BY SCHOLAR@UC SURVEY RESPONDENTS’ ROLES)

New Requirements (partial list) Archivist Manager Developer 
NR1: add approval/mediation mechanism (V1, G2) 
NR5: enforce data quality validation (V1) 
NR6: report work usage statistics (V1, V2) 
NR8: allow new content to be monitored (V1) 
NR10: drag & drop new works (V2) 
NR11: view works inside the browser (V2)

NR6 (V1, V2) NR6 (V1, V2) NR6 (V1, V2) 
NR1 (V1, G2) NR11 (V2) NR8 (V1) 
NR10 (V2) NR10 (V2) NR11 (V2) 
NR11 (V2) NR8 (V1) NR10 (V2) 
NR8 (V1) NR5 (V1) NR5 (V1) 

issues like this will improve not only OpenOME’s usability

but also its support for viewpoint merging and collaborative

modeling in general. The copy-and-paste issue, along with

several other concrete suggestions, is shared in [36] with

the intention to make OpenOME an even more valuable

community asset.

C. Modeling Products’ Sanity Check

Our interview with the informationist also engaged this

Scholar@UC expert in teasing out a set of questions important

for domain understanding. As stated in Section III-C, we did

not present the informationist during the interview any of the

i∗ models resulted from the modeling teams. The main reason

was to avoid causing the domain expert to be bogged down by

the i∗ syntax or to be biased by any specific mode construct.

Table VIII lists seven questions elicited from the domain

expert. Relating to the forward (“what if” questions to com-

pare alternatives) and backward (“goal satisfaction” questions)

analyses defined in [30], Q5 and Q7 of Table VIII exhibit a

backward nature whereas Q1, Q3, and Q4 fit more into the

forward reasoning. Q2 and Q6 seem to evoke AI (artificial

intelligence) planning that concerns the realization of strate-

TABLE VII
SELF-REPORTED MODELING EFFORT (TIME IN HOURS)

Team # of meetings total meeting time individual effort Σ
G1 5 unknown unknown 13
G2 3 7 3+5+2.5+2.5 20
V1 4 3 3.5+4.5+4.5 15.5

V2� n/a n/a 4+4+2 10
�A V2 member had a 2-week travel during the 3-week modeling period,
which was not foreseen. While this helped viewpoints-based modeling,
V2’s group-wide communication and coordination were largely done via
e-mails. Thus, the meeting measures were not applicable (n/a) for V2.

Fig. 5. Copy-and-paste issue in OpenOME, hurting model merging.

gies or action sequences executed by agents. While automated

forward and backward goal model analysis procedures have al-

ready been built in OpenOME (cf. Fig. 3 “Analysis Buttons”),

some planning solution is also proposed for requirements goal

models [13].

In our analysis, the focus is not automation but a sanity

check of the produced i∗ models [30]. To do so, we took

two steps: checking whether the model contained the relevant

elements (e.g., for Q2, testing if “orphaned works” appeared

in the i∗ model) and gaining a sense of how easy for the model

to answer the question. The two steps are sequential: If the

model elements do not exist in the first place, then it is not

sensible to perform the relevant analysis on the model. One

researcher carried out the two steps manually.

Our analysis results are shown in Table IX. V1’s i∗ model

was the most comprehensive in terms of containing the nec-

essary elements of all the seven questions. The two G models

missed more elements. For the second step, no actual answer

was attempted though obtaining one would be “easy” on the

capable models. Although the V teams’ models passed the



TABLE VIII
QUESTIONS ELICITED FROM A SCHOLAR@UC DOMAIN EXPERT WITHOUT

REFERRING TO ANY OF THE i∗ MODELS PRODUCED IN OUR STUDY

Q1 What sequence of actions must be taken to assure data quality? 
Q2 What is the best plan of actions to manage the orphaned works? 
Q3 What are the acceptable branding guidelines? 
Q4 How to achieve the versioning of records? 

Q5 Can anti-virus check and fast responsiveness be satisfied 
simultaneously? 

Q6 How involved must archivist be to approve collection? 
Q7 What is the effect of deciding on URL acceptance by archivist? 

TABLE IX
SANITY CHECK ON TEAM-BASED i∗ MODELS

Do question elements 
appear? (Yes/No) 

How capable of 
answering? (Easy/Hard) 

G1 G2 V1 V2 G1 G2 V1 V2 
Q1 Yes Yes Yes Yes Hard Easy Easy Easy 
Q2 No No Yes No  Easy 
Q3 No No Yes Yes Hard Easy 
Q4 No No Yes No Hard
Q5 Yes Yes Yes Yes Easy Hard Easy Easy 
Q6 Yes No Yes Yes Hard  Easy Easy 
Q7 Yes No Yes Yes Easy  Easy Easy 

sanity check better than the G teams’ models, it is important

to point out two key observations from Table IX. First, none of

the 4 i∗ models seemed to be fully capable of answering all the

7 questions, which were elicited from only one domain expert.

Second, none of the 7 questions was addressed adequately by

any of the models. Both these points stress the importance of

interactive and incremental i∗ model analysis [30].

V. CONCLUDING REMARKS

A. Summary and Limitations

Our study updates the replication base’s results (cf. Sec-

tion II-B) as follows:

• R1’: Viewpoints did lead to a richer domain understand-

ing because it helped generate better hidden assumptions,

stakeholder disagreements, and new requirements.

• R2’: With proper tool support like OpenOME,

viewpoints-based modeling was no longer slower

and was successfully in producing the merged i∗ model,

though certain features of OpenOME could be improved

to better support collaborative requirements modeling.

• R3’: Process was still important, but with the appropriate

support, the better process (e.g., viewpoints) would lead

to better product (e.g., merged i∗ model).

Some important factors must be taken into account when

interpreting our results. Our covering of 3 response variables

of “a richer domain understanding” can affect the construct

validity [7]. “Stakeholder disagreement”, for instance, is a

domain-dependent construct and its manifestations in legal

and regulatory requirements are well studied (e.g., [42]). One

internal validity [7] threat relates to the modelers’ self-reported

effort data. Confounding variables include the modelers’ po-

tentially differing levels in mastering OpenOME, as well as

our filtering of the insensible raw domain-understanding items

(cf. Table III). To mitigate the latter, we have shared our

entire study packet in [36]. Regarding the external validity [7],

although our study doubles the number of V and G teams

from [11], it is not the statistical generalization, but the theo-

retical generalization (i.e., testing and updating the viewpoints

theory [11]) that our replicate case study is intended to achieve.

B. Replication Insights and Future Work

Replication has been at the heart of science for as long as

the scientific method has existed. By independently carrying

out a theoretical replication, we highlight the lessons learned.

• Enable external replications via open repository. While

it is not possible to acquire all the information from the

study packet [17], we believe an open repository approach

like Scholar@UC will greatly facilitate external replica-

tions in RE. We are feeding our own study materials back

to Scholar@UC [36] and cordially invite researchers to

extend our work to further the relevant RE knowledge.

• Replicate in increasingly realistic settings. There is

little doubt that replication helps evolve an empiri-

cally backed body of knowledge, but which aspect(s)

to evolve? Due to the fast pace of technological ad-

vances in RE, we believe factors key to tech transfer

(e.g., OpenOME) are worth updating. The “Ready-Set-

Transfer” track held in recent RE conferences offers

promising candidates; meanwhile, replications involving

the techniques and tools will yield a better understanding

about their usefulness and range of applicability.

• Advance case study research in RE. Admittedly, our

study is an exploratory case study just like our replication

base [11]. We plan to investigate two ways for method-

ological advancement. One is to move from exploratory
to explanatory case study [7], i.e., to embark on an

explanation-building process to stipulate the causal links

for the phenomenon. The other is to move from literal or

theoretical replication to triangulation where the same

phenomenon (e.g., viewpoint merging) is examined with

different empirical research methods: controlled experi-

ments, case studies, ethnographies, etc. [43, 44, 45].

Our collaboration with Scholar@UC continues. The re-

search team was recently invited to participate in the project’s

“train the trainer” program where we realized more viewpoints

could be built and merged. More importantly, the project team

fully embraces the i∗ models produced in our work and deems

these models valuable and complementary to [33]. Quoting

Brooks et al. [17] here: “The work of the replicator should

be seen as glamorous not gruesome”. As RE replicators, our

work with Scholar@UC has certainly made us feel so.
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