
Extracting and Modeling Product Line Functional Requirements

Nan Niu Steve Easterbrook
Department of Computer Science, University of Toronto

Toronto, Ontario, Canada M5S 3G4
{nn,sme}@cs.toronto.edu

Abstract
We introduce an extractive approach to building a

product line’s requirements assets. We define the func-
tional requirements profiles (FRPs) according to the lin-
guistic characterization of a domain’s action-oriented con-
cerns, and show that FRPs can be extracted from a doc-
ument based on domain-aware lexical affinities that bear
a ‘verb – direct object’ relation. The validated FRPs are
then amenable to semantic case analysis so as to uncover
the variation structures. Finally, merging FRPs helps dis-
cover the requirements interdependencies. We use orthogo-
nal variability modeling to represent the product line’s ex-
ternal variability and constraints. We apply our approach to
an auto-marker product line. The study shows our approach
complements domain analysis by quickly offering insights
into system functionalities and product line variabilities.

1 Introduction

A software product line (SPL) succeeds because mass
customization is achieved by variability management, i.e.,
by exploiting the family members’ commonalities and by
controlling their differences [12, 32]. Requirements assets
enhance the effectiveness of reuse as developers can work
on the abstractions closer to the SPL’s initial concepts.

Many contemporary SPL methods, such as FODA [22]
and FAST [36], base requirements definition on heavy-
weight domain analysis, and so do many requirements en-
gineering (RE) techniques for SPLs like PRS [14] and def-
inition hierarchies [25]. In practice, the up-front cost and
the level of manual effort associated with domain analysis
present a prohibitive adoption barrier for many organiza-
tions that could otherwise benefit.

To ease the transition from a single-system mentality to
software mass customization, Krueger proposed the extrac-
tive adoption model as a means of reusing existing products
for the SPL’s initial baseline [24]. Core assets are no longer
created from scratch, but are mined from software reposi-
tories. The extractive approach is particularly effective for
an organization that has accumulated development experi-

ences and artifacts in a domain and wants to quickly tran-
sition from conventional to SPL engineering. Notably, the
main beneficiaries are small and medium-sized enterprises
(SMEs) as large companies tend to proactively launch a SPL
in the mature market segment [9]. The basic tenets of the
extractive model are:

• Maximal reuse: A fair amount of grounded knowledge
is embedded in legacy systems, and a SPL’s assets can
be established on top of existing artifacts.

• Gradual change: Incrementally exposing small varia-
tions avoids over-specifying and inaccurately predict-
ing a complete set of SPL features.

• Reactive development: Each under-specified asset will
be enriched when abstractions are refactored as they
emerge from an evolving SPL.

Leveraging this adoption model urges us to consider fun-
damental questions like where and what to extract, and how
to represent the result. In this paper, we propose a semi-
automated approach to identifying functional requirements
assets by analyzing natural language (NL) documents. Our
aim is to reduce the manual operation cost and increase the
operation efficiency in domain analysis.

Studies of RE practice in SMEs, such as [16] and [6],
showed that the majority of requirements are written in NL
because text is used universally to convey information and
to communicate. We therefore choose NL documents to be
the primary extraction source, and anticipate our textual-
based technique can effect a wide spectrum of domains.

We adopt the orthogonal variability model (OVM) pro-
posed by Pohl et al. [32] to represent the extraction result.
An OVM defines a SPL’s variability in a single view, so
we can consistently manage the variability across require-
ments, design, realization, and testing artifacts. The build-
ing blocks of the OVM are variation points, variants, depen-
dencies, and constraints. These elements provide a concep-
tual basis for determining what should be extracted.

When constructing a SPL’s requirements assets, we shall
follow two principles [32]: 1) Focus more on external
variability (visible to customers) and less on internal vari-
ability (useful to implementers), 2) Focus more on what

varies (variation point) and less on how it varies (variants).
Our strategy is to tease out functional requirements profiles
(FRPs) and analyze their variabilities. We define the notion
of FRP to capture the domain’s action themes and to define
a context for studying system qualities [30]. The FRPs in
each document are identified on the basis of lexical affini-
ties [27] and “verb – direct object” relations [34]. We then
use Fillmore’s case theory [15] to characterize each FRP’s
semantics. Note that Liaskos et al. used Fillmore’s cases
to acquire variability for goal models [26]; here, we deal
with textual requirements. Merging FRPs allows us to dis-
cover the variability dependencies and constraints, thereby
forming an initial OVM for the SPL.

The contributions of our work lie in the concept of FRP
and the support for extracting and modeling FRPs for a
SPL. Our approach complements existing domain analysis
methods by quickly offering insights into system function-
alities and their variabilities, and the approach is readily
scalable and extensible. To mitigate the risk of being over-
general, domain concepts are incorporated when possible.
We study an auto-marker SPL to demonstrate our approach.
The results are promising and comparable to expert opin-
ions. In addition, we present several scenarios for using the
extracted FRPs to show the benefits of our approach.

2 Motivating Example
We motivate our work with a scenario for extracting re-

quirements assets in an auto-marker SPL. The system em-
ployed in the University of Toronto for marking program-
ming assignments exhibited delays in turnaround time, due
to the administrative burden of printing, distributing as-
signments to teaching assistants (TAs), and returning as-
signments to students. To provide feedback to students in
a timely manner, a dozen teams, each consisting of 3 to
4 junior undergraduates, conducted requirements analysis
and wrote software requirements specifications (SRS’s) for
Web-based auto-markers in their course projects [1].

Note that these team projects were carried out separately
by interviewing different sets of stakeholders. The result-
ing SRS’s shared certain concerns, but also had different
focuses. Consolidating these results could help understand
the commonalities and variations in the auto-marker do-
main. All 12 auto-marker SRS’s followed the IEEE-STD-
830 standard in a textual form [19]. Figures 1a and 1b show
the excerpts from two SRS’s in the repository.

We are interested in culling a set of functional require-
ments profiles (FRPs) from these SRS’s. We define FRPs
to be the action-oriented concerns [34] that bear a high
information value of a document [27]. FRPs model the
user-visible system functionalities, and are represented by
“verb – direct object” pairs. Figure 1d shows a partial list of
FRPs extracted from the auto-marker SRS’s.

SPL engineering considers it crucial to define a set of
standard terms used in discussions about and descriptions

...

...

3.1.3.2 Marking

AMS shall store students’ assignments.

Instructor shall create the marking rubric.

Marker shall mark students’ assignments.

AMS can generate report for each section.

Students can request remarking to markers.

AMS shall access marked assignments.

3.1.3.4 Remarking

AMS shall apply late policy automatically.

3.1 Functions 3.1 Functional requirements

...

...

3.1.1 The EMS shall time−stamp any

information sent online.

...

this information using a marking rubric.

specifies mark breakdown, and records

3.1.4 A professor must create a marking

scheme for an assignment. A professor

assignment.

3.1.8 A TA shall mark any portion of an

... ...

(a) SRS for AMS (b) SRS for EMS

Thesaurus

Vocabulary

...

TA, marker

auto−marker, AMS, EMS

...

mark assignment

retrieve assignment

view grade

access Internet

create marking rubric

generate report

request remarking

create template

define comment list

...

(c) Domain concepts (d) Functional requirements profiles (FRPs)

Marking Rubric: an organized plan on

how to mark or evaluate assignment

EMS: Electronic Marking System

AMS: Assignment Marking System

Figure 1. FRPs extraction example

of the domain, and makes developing a domain dictionary
part of the core assets [36]. Figure 1c depicts a snippet of
the auto-marker domain concepts: Thesaurus identifies syn-
onym classes [33], whereas vocabulary provides the defi-
nitions of terms, acronyms, and abbreviations required to
properly interpret the requirements documents [19]. These
concepts are identified by domain experts. According to
Figure 1c, we would treat “marking rubric” as a single con-
ceptual unit, and thus determine the FRP “create marking
rubric”, as indicated in Figure 1d.

Although the extracted FRPs are capable of characteriz-
ing the SPL’s action themes, the flat list (Figure 1d) hinders
us from gaining insights into the variability structures and
dependencies. We analyze the FRP’s variabilities by filling
out Fillmore’s semantic cases [15]: agentive, objective, pro-
cess, etc. Figure 2a shows two sample case structures: each
case defines a variation dimension for the FRP, and a case’s
values determine the range of that dimension. For exam-
ple, only a “TA” can “mark assignment”, and the types of
assignment to be marked can be “late” or “on-time”.

We take advantage of the OVM notations [32] to rigor-
ously express the SPL’s variability. Figure 2b illustrates an
OVM, in which a “VP” triangle represents a variation point
(what can vary) and a “V” box represents a variant (how
the “VP” varies). We map each FRP to a “VP” and orga-
nize the variants by the FRP’s cases. A mandatory variant
is linked by a solid line, whereas optionals are linked by
dotted lines. The alternative choice among the optionals is
further annotated with an arch, along with the cardinalities
specified in [min..max]. The variability constraint, such as
“FRP1 requires FRP4”, is given by an arrow in Figure 2b.

We focus on the FRPs in building the requirements as-

V

TA

Agentive

VP

Internet
access

V

Ethernet

V

Wireless

VP

assignment
mark

V

on−time

V

late

Ethernet,
Wireless

instructor,
student,

TA,
administrator

FRP1 : mark assignment

(b) Orthogonal variability model

vp_requires_vp

Process [1..2] Objective
[1..1]

(a) Cases for FRPs

FRP

...

Agentive:

Process:
access Internet
free form
comment list,
marking rubric,
late, on−time
TAAgentive:

Objective:
Process:

Conditional:
...

4 : access Internet

Figure 2. Semantic cases and OVM

sets for a couple of reasons. First, a FRP represents the
functional aspect of a feature, which is an essential charac-
teristic of an application domain [22]. Features are distinc-
tively identifiable abstractions that must be implemented,
tested, delivered, and maintained [21]. While system quali-
ties, such as reusability and sustainability, may become the
prominent features in the long run, product functionalities
remain the salient features directly observable by users.

Second, as pointed out by Bosch, starting from the
functional requirements does not preclude the optimiza-
tion of quality requirements during the architectural de-
sign stages [7]. In fact, we found out that having a set
of concrete FRPs could effectively align quality require-
ments [30]. While the role of FRP in SPL engineering is
further explored in Section 5, we now consider how to ex-
tract the FRPs from an existing requirements document.

3 Functional Requirements Extraction

The central question that we address in this section is
that: Given a NL document, how can its characterizing
attributes, which relate to system functionalities, be pro-
duced? We examine some single-term indexing schemes,
and propose a technique for automatically generating the
FRPs. We use the auto-marker SRS’s to evaluate the effec-
tiveness and cost of our approach.

3.1 Single-Term Indexing

When constructing the indices for a requirements arti-
fact, information retrieval (IR) techniques draw information
from the texts rather than from a human expert. Instead
of relying on a great deal of manually pre-encoded seman-
tic information to create a knowledge base, little semantic
knowledge is required and no interpretation of the document
is given in most IR techniques [33]. Automatic indexing
systems attempt to characterize the document rather than

understand it. We prefer IR techniques in our work for rea-
sons of cost, scalability, and domain transportability [27].

An important issue in indexing is the nature of the in-
dices. The most usual form is a single-term index, where a
term is a content identifier typically encapsulated in a word.
The assumption underlying the single-term indices is stated
in Zipf’s law: Given some corpus of NL utterances, the fre-
quency of any word is inversely proportional to its rank in
the frequency table [33]. John proposed some basic tech-
niques for integrating legacy documentation assets into a
SPL [20]. Use cases and system functionalities can be iden-
tified by searching the verbs with the highest frequencies of
occurrence within a document. We can greatly improve the
results by filtering out a list of stop words (e.g., “be” and
“have”) that commonly appear in all domains [20]. The left
column of Table 1 shows the top-ranked verbs in the AMS
SRS by frequency of occurrence.

Although term frequency indicates relevance, some
noise exists, mainly due to words appearing too often in
a given context. In order to reduce the influence of such
words it is necessary to identify the most representative
terms, i.e., those containing the most information. The
quantity of information of a word within a corpus is defined
by its Shannon information content as:

INFO(w) = −log2(P{w}) (1)

where P{w} is the observed probability of occurrence w in
the corpus [33]. Therefore the more frequent a word is in
a domain, the less information it carries. The middle col-
umn of Table 1 ranks the AMS SRS’s verbs by INFO(w).
Most term-ranking strategies, such as tf-idf and signal-noise
ratio [33], take INFO(w) into account. Also note that the
information value defined in (1) lies at the heart of many
single-term IR applications in RE (e.g., [11], [18]).

3.2 Functional Requirements Profiles (FRPs)

Extracting valuable conceptual information from docu-
mentation can be done by using richer indexing units than
single words. Maarek et al. used a two-word unit, called
lexical affinity (LA), for profiling software libraries [27].
In linguistics, an LA between two units of language stands
for a correlation of their common appearance in the utter-
ances of the language. An LA is more restrictive than a
simple co-occurrence since it necessarily relates words that
are involved in a modifier-modified relation. LAs in large
textual corpora have been shown to convey information on
both syntactic and semantic levels, and to provide us with a
powerful way of taking context into account [27].

For our purposes, we restrict the definition of LAs by ob-
serving them within a finite requirements document rather
than within the whole language so as to retrieve conceptual
affinities rather than purely lexical ones. One limitation of
considering only a two-word unit as an LA is that domain
concepts are not preserved. For example, “marking rubric”

Input: a requirements document d, a domain vocabulary voc
Output: a list of LAs (and frequencies of occurrence) from d concerning voc
Preprocessing

For each entry e in voc
Replace every occurrence of e in d by ue

For each word w in d AND w /∈ ue

uw ← inflectional root of w
Main Procedure

Initialize Hashtable la freq
For each u ∈ (ue ∪ uw) from the beginning to the end of d

Let u1, . . . , um be the m units immediately following u in d
(where m = 5 except the end of sentence is reached earlier)
For i = 1 to m

f ← la freq.getV alue({u, ui})
(f = 0 when {u, ui} has not been encountered before)
la freq.put({u, ui}, f + 1)

Return Hashtable la freq

Figure 3. Extracting domain-aware LAs
would be treated as two separate words, not as one proper
term, in [27]. To address this problem, we augment our ap-
proach with a semantic component, as shown in Figure 1c,
so that each entry in the domain vocabulary, voc, is main-
tained as one atomic conceptual unit.

Figure 3 outlines the algorithm for extracting domain-
aware LAs. Two steps are involved in preprocessing. First,
every domain concept appearing in the document is re-
placed by a single unit. In our implementation, for exam-
ple, “marking rubric” (e), defined by the domain experts, is
replaced by “marking rubric” (ue). Second, the remaining
words are stemmed [13] to permit an accurate identifica-
tion of the LAs.1 As a result, the word is represented by
its inflectional root, i.e., the singular form for nouns and
the infinitive form for verbs. The order of these two pre-
processing steps is important; otherwise, “marking rubric”
would be stemmed into “mark rubric”, causing the domain
concept to be unrecognizable in the document.

The main procedure of the algorithm is built upon the
sliding window technique [27]. The idea is to make use of
an empirical observation that 98% of lexical relations re-
late words which are separated by at most 5 words within
a single sentence [28]. Therefore, most of the LAs involv-
ing a conceptual unit u can be extracted by examining the
neighborhood of each occurrence of u within a span of 5
units. The window is slid throughout the document d with-
out crossing sentence boundaries. It is worth bearing in
mind that the window size of 5 conceptual units is not a pa-
rameter but a property of the English language [28]. Given
that both the window size and the domain vocabulary en-
tries are bounded by some small constants, the extraction
of domain-aware LAs is linear in the number of conceptual
units in the document. In the worst case where voc is not de-
fined, the complexity of the algorithm in Figure 3 is O(n),
where n is the number of words in d.

Similar to single-term indexing, using frequency to di-
rectly determine relevance may introduce some noise. From
the definition in (1), we infer the definition of the quantity of

1We use OpenNLP [5] to perform stemming, and discuss the evaluation
in Section 3.3.

Table 1. Profiling the AMS SRS (3, 264 words)
Verbs Freq. Verbs INFO FRPs ρ
mark 64 accept 11.67 mark assignment 106.75
access 18 install 11.67 access assignment 96.31
submit 14 highlight 11.67 divide number 69.85
release 14 define 11.67 notify instructor 61.97
provide 12 calculate 10.67 modify information 54.68

use 9 update 10.67 release assignment 44.58
notify 9 check 10.09 change password 43.10

.

information (ρ) of an LA in a given document d as:
ρ(({u1, u2}, f)) = f × INFO({u1, u2})

= f ×−log2(P{u1, u2})
≈ f ×−log2(P{u1} × P{u2}) (2)

where ({u1, u2}, f) is a tuple retrieved while analyzing d,
meaning {u1, u2} is an LA appearing f times in d, as de-
fined by the hashtable la freq in Figure 3. To simplify the
computation of INFO({u1, u2}), we consider u1 and u2 as
independent variables. This assumption represents only an
approximation within the textual universe, as noted in [27].

The ρ score defined in (2) measures the information value
an LA carries based on both its frequency of appearance in
the text and the quantity of information of the conceptual
units involved. The LAs with high ρ scores thus effectively
characterize the requirements document, but they typically
include several modifier-modified relations. Consider the
following sentence, taken from the EMS SRS in Figure 1b:

“A professor specifies mark breakdown, and
records this information using a marking rubric.”

Some of the potential LAs in this sentence are:

• of type verb-DO (direct object), e.g., “specify break-
down”, “record information”;

• of type subject-verb, e.g., “professor specify”; or

• of type noun-noun, e.g., “mark breakdown”.

We are concerned only with the verb-DO relation since
our goal is to construct functional profiles. Shepherd stud-
ied the verb-DO pairs in source code and observed their de-
notations of action-oriented concerns [34]. More generally,
an especially strong relationship exists between verbs and
their themes in English. A theme is the subject matter that
the action (implied by the verb) acts upon, and usually ap-
pears as a DO [10]. Thus, we define the functional require-
ments profiles (FRPs) of a document to be the domain-aware
LAs that have a high information value (ρ) and bear a verb-
DO relation. The right column of Table 1 lists the FRPs
extracted from the AMS SRS, along with the ρ values.

3.3 Evaluation

It is apparent from Table 1 that FRPs are more appealing
indices than single words because each term in the FRP pro-
vides a context that helps disambiguate the other. But how
much better, or more importantly how effective, are FRPs in

characterizing the user-visible system functionalities? What
is the effort required to generate the FRPs? What counts as
a high ρ value? We answer these questions empirically by
analyzing the SRS’s in the auto-marker repository.

We fully implemented the single-term indexing schemes
and the FRP-extraction procedure. We used OpenNLP [5]
for stemming and part-of-speech (POS) tagging. State-of-
the-art taggers like OpenNLP have the precision of about
97%, which makes them unlikely to become an extra error
source [23]. Nevertheless, we believe FRPs can tolerate cer-
tain tagging and stemming errors because phrasal indices
offer a robust way of taking context into account; testing
this hypothesis is beyond the scope of our current work.

For single-term evaluations, documents were indexed us-
ing stemmed verbs,2 ranked by raw term frequencies in
Verb Freq and by term information values in Verb INFO. To
achieve a fair comparison of FRPs, we discarded the LA
containing any stop word [3], and then kept only the LAs
whose first units were tagged as a verb by OpenNLP [5].
We did not check if an LA’s second unit was a DO because
the single-term indices did not have such a component. We
did not perform synonym substitution either (Figure 1c) be-
cause Verb Freq and Verb INFO did not consider it. In the fu-
ture, we plan to implement these operations, and expect to
generate more effective FRPs than the ones appeared in the
current evaluation. The FRPs were ranked by the ρ scores.

We adopted FAST [36], one of the most mature SPL de-
velopment methods, as a gold standard in evaluating the in-
dexing schemes. FAST uses practical domain engineering
for a SPL’s scope, commonality, and variability analysis.
We organized three weekly meetings following FAST’s de-
tailed process guidelines: the first was to establish standard
terminology, the second was to define the SPL’s externally
perceivable functionalities, and the third was to compare the
FAST’s domain analysis results with the automatic indexing
results. Each meeting lasted about one hour. Three domain
experts participated in all these meetings: a TA who also
acted as the moderator, an instructor, and a student.

− Effort. As aforementioned, the algorithm for extract-
ing domain-aware LAs is linear in the number of words
contained in the document, so are the single-term index-
ing schemes. The cost of further obtaining verbs and FRPs
is highly dependent on POS tagging and stemming. In our
experience, it took OpenNLP about 5 seconds to process
a 5, 000-word auto-marker SRS on a PC with a 2GHz P-
4 CPU and 768Mb RAM. Recent advances in requirements
tagging and stemming (e.g., [13]), together with the compu-
tational efficiency of our extraction algorithm, give us confi-
dence that our approach to functional requirements profiling
can be readily scalable and extensible.

Analyzing existing requirements documents is not a re-

2A stop list of common words must be removed from the indices [20,
13]. We used a domain-neutral list [3] in our current implementation.

Verb_Freq

Verb_INFO

FRPs

0.2

0.4

0.6

0.8

Precision

Recall

0.1 0.2 0.3 0.4 0.5

Figure 4. Precision-recall curves
placement, but a complement, to FAST. FAST requires a
considerable amount of time and effort, which is not un-
common among domain analysis methods. Our goal is to
use automatic indexing to help domain experts gain insights
into a SPL’s functionalities quickly and effectively.

− Effectiveness. We assessed the quality of indices via
well-known IR metrics, in comparison with the FAST’s re-
sults and the assessment of domain experts. Our FAST
meetings were organized such that the experts tried to define
the SPL’s functionalities before they were asked to evaluate
the indices generated automatically. This helped alleviate
the bias toward automatic indexing. Relevance judgments
of Verb Freq, Verb INFO, and FRPs were performed inde-
pendently by the three domain experts, and different opin-
ions were reconciled in the last FAST meeting.

We use precision and recall [33] to assess an indexing
scheme’s effectiveness. Precision measures accuracy and
is defined as the proportion of extracted information which
is relevant. Recall measures coverage and is defined as
the proportion of extracted relevant information to the to-
tal amount of all relevant information. The effectiveness
comparison was performed by measuring, for the indexing
schemes, precision at several levels of recall. We used the
12 auto-marker SRS’s and followed the procedure [33]:

1) Plotting precision-recall points for each SRS with each
plot corresponding to a given recall value;

2) Extrapolating the plots to obtain precision values for
recall values that were not explicitly observed; and

3) Deriving from the curves computed in stage 2) the av-
erage precision values at fixed recall intervals to obtain
a single curve for the indexing scheme considered.

We have built such curves for Verb Freq, Verb INFO, and
FRPs. The curves are shown on the same axes in Figure 4,
where 10 fixed recall values are plotted for each indexing
scheme. The best performance is reached by the scheme
whose curve is closest to the area where both precision and
recall are maximized – the upper right corner of the graph.
The bump of the FRPs curve is due to the inability of 4
SRS’s to reach the 30% recall level or beyond; for the re-
maining 8 SRS’s, the average precisions keep decreasing

for the recall values greater than 30%. The Verb Freq curve
slightly indicates such a fluctuation. The Verb INFO curve,
to our surprise, is so flat that the indices are indifferent. This
may suggest Verb INFO should not be applied directly, but
it certainly warrants further investigation.

The results in Figure 4 show that for the sample SRS’s,
the FRPs are better characterizations of system function-
alities than the single-term indices. From Figure 4, it is
clear that on average, FRPs have 46% better precision than
Verb Freq, and 181% than Verb INFO. This suggests that our
extraction results are much more accurate. FRPs therefore
can be a good starting point for the stakeholders to under-
stand and discuss the domain.

It turns out that, using the current analysis method, the
maximum recall achieved by all three schemes is approxi-
mately the same, around 58% on the average. This implies
that the extraction result of an individual system/product
may not achieve a very high coverage of the domain. On
one hand, as we improve our extraction method, we antic-
ipate to achieve higher recall and precision. On the other
hand, the current analysis method may be misleading. For
example, we may achieve a much higher recall if we use
the union, instead of the average, to plot the recall curve at
fixed precision intervals. We are currently comparing dif-
ferent analysis methods in IR [33] to assess our results.

− Threshold. Although FRPs are promising indices, we
are left with a practical problem: which FRPs shall be con-
sidered primarily. We address this question based on the ρ
score defined in (2), which measures an FRP’s information
value. Maarek et al. [27] used ρ ≥ ρ̄ + σ as the cutoff
value for profiling software libraries, where ρ̄ represents the
mean and σ the standard deviation of the distribution of ρ
within one document. In our experiment, this threshold was
so selective that, for every SRS, many relevant FRPs were
filtered out. Comparing all 12 SRS’s from our dataset indi-
cated that ρ≥ρ̄ was likely to be an optimal threshold, but a
more decisive answer to how to select useful FRPs would
require further evaluation.

Choosing a threshold helps filter out insignificant FRPs,
but the resulting FRPs can still contain irrelevant informa-
tion or miss relevant information. However, this seeming
drawback is really an advantage: Before the FRPs can be-
come a SPL’s assets, they must be validated by the domain
experts. From our experience with the auto-marker SPL, a
5, 000-word SRS resulted in around 20 FRPs, which typi-
cally took an expert less than 10 minutes to validate. Our
approach, hence, provides an efficient way to complement
FAST and other domain analysis methods.

4 Functional Variability Modeling
4.1 Semantic Cases

The validated FRPs are amenable to semantic analysis so
as to uncover their variation structures. We use Fillmore’s

case theory [15] as a basis for understanding language se-
mantics in an RE context; though, here we focus on func-
tional requirements. The theory analyzes the surface syn-
tactic structure of sentences by studying the combination of
cases (i.e., semantic roles like agent, object, location, etc.)
which are required by a specific verb. According to Fill-
more, there exists an essential set of cases that fits in the
case system of every known language. Each of these uni-
versal cases addresses a particular semantic concern of the
verb in a sentence, and each represents a potential semantic
slot that may or must be associated with the verb. Hence,
given a verb, a case frame can be defined, which is a set
of semantic slots that the verb evokes. As an example, the
verb “open”is necessarily associated with an objective slot
(“what opens/is opened?”) but may also be associated with
an agentive slot (to answer “who opens?”).

FRPs have made the DO role explicit because the verb-
DO relation renders the action and its theme in English [10].
The discovery of variation structures can be driven by iden-
tifying the essential cases associated with the verb in every
FRP. In this context, a case defines a variation dimension,
i.e., a question whose alternative answers result in alter-
native refinements of the original action-oriented concern
expressed by the FRP. The collection of all dimensions rel-
evant to an FRP determines the variation structure, or the
variation frame, evoked by the FRP.

Following Fillmore’s idea of defining a universal set of
cases, we introduce a general set of dimensions for concep-
tualizing the FRP’s variation structure. The set we consid-
ered includes most of the semantic roles Fillmore originally
proposed, but also draws information from recent work on
variability frames for goals [26]. A high-level goal can
be refined by studying the cases associated with the goal’s
verb. However, a high-level goal in [26] is expressed mostly
by a verb-DO pair, such as “send message” or “display
record”. Such concerns will likely be recognized as FRPs
in our approach. Thus, we consider the following variation
dimensions for an FRP.

• Agentive defines the agent(s) whose activities will
bring about the FRP’s state of affairs. Responses to this
question are typically actors or combinations of actors
found in the domain, including the system-to-be. For exam-
ple, {machine, TA, instructor}Agentive “check time stamp”.

• Objective defines the object(s) that is affected by the
FRP’s activity. Since a DO is already part of the FRP, this
case concerns mainly with the types of DO involved. For
example, “mark {late, on-time}Objective assignment”.

• Locational defines the spatial location(s) where the
FRP’s activity is supposed to take place. For example,
“mark assignment” {in the lab, at home}Locational.

• Temporal defines the duration or frequency of the
FRP’s activity. For example, “keep log” for {a term, a
month, a week}Temporal.

• Process refers to the instrument (P.ins) used, as well
as the means (P.mea) and the manner (P.man) by which
the FRP’s activity is performed. Some examples are, “ac-
cess Internet” via {Ethernet, Wireless}P.ins, “mark assign-
ment” {following marking rubric, in free form}P.mea, or
“adjust mark” {dramatically, subtly}P.man.3

• Conditional defines the trigger(s) of the FRP’s action
or the condition(s) under which the FRP’s function can be
achieved. For example, “mark assignment” only if {“access
Internet”, “retrieve assignment”}Conditional.

The set is by no means an exhaustive list of grammati-
cal features that must be associated with functional require-
ments descriptions, but a catalogue of categories that can
help analysts understand the variation points, i.e., what can
vary, of the FRP. Two case structures are illustrated in Fig-
ure 2a. Our experience showed that systematically identi-
fying the variation point could uncover its variants (how it
varies) that would otherwise remain hidden. For instance,
it was when “mark late assignment” was identified that we
noticed that on-time assignments should be marked as well.

4.2 Variability Constraints
We now discuss the intra- and inter-FRP variability is-

sues [32]. Our purpose is to identify the variability depen-
dencies and constraints so that FRPs can be integrated to
form the SPL’s initial asset base. To that end, we present
several heuristic rules for variability interdependency iden-
tification. It is important to keep in mind that variability
management requires a deep understanding of the domain.
Our heuristics serve as an aid to this understanding and
should be treated as such. Our work is guided by the OVM
framework [32]. As shown in Figure 5, we extend the OVM
by adding a boundary for each FRP to mark its internal vari-
ation structure — the semantic cases and their correspond-
ing values. The idea is to allow the user to zoom in (display)
or zoom out (hide) the internal structure of any FRP to gain
a comprehensive view of the OVM.

The intra-FRP variability refers to the values identified
along each of the case dimensions. We concentrate more
on the case’s mandatory or optional property, and less on
the connection between the cases within a single FRP. Note
that not every FRP evokes all the cases described earlier.
It is up to the domain engineer to decide which intra-FRP
variabilities to model. For example, the locations where
“mark assignment” occurs are not deemed essential for the
auto-marker SPL, so Figure 5 disregards the locational case
for “mark assignment”.

Heuristic 1: “If a case is associated with only one
value, then the case has one mandatory variant.”

This heuristic often applies to the agentive role to indicate
the sole actor who shall perform the action. In Figure 5,

3We will not distinguish P.ins, P.mea, and P.man for the remainder
of the paper, but use the general Process dimension instead.

V

instructor

V

TA

VP

V

instructor

V

detailed

V

sketchy

VP

create
marking
rubric

VP

assignment
mark

V

TA

Agentive

VP

Internet
access

V

Ethernet

V

Wireless V

on−time

V

late

V
marking
rubric

V
pre−defined
comment list

V
free
form

VP

assignment
retrieve

vp_requires_vp

v_excludes_v

Agentive

comment
list

define

Agentive
[1..1]

Objective

v_requires_vp
v_requires_vp

Process
Objective

[1..2]

[1..1]
Process [0..2]

vp_requires_vp

Figure 5. Partial OVM for the auto-marker SPL

the agent of “mark assignment” and that of “create marking
rubric” instantiate this heuristic.

Heuristic 2: “If diverse values are identified for a
case, then alternative choice(s) should be made.”

An example is “keep log” for {a term, a month, a
week}Temporal, where the values are diverse but not mutu-
ally exclusive. A [min..max] choice among the variants is
often made in such situations, but also note that one variant
(e.g., a month) can subsume another (e.g., a week). A spe-
cial case of this heuristic is that the values for a case are op-
posite or contradictory, as in “mark {late, on-time}Objective

assignment”. In such cases, a unique [1..1] choice is made.
The inter-FRP variability constraint refers to the ‘re-

quires’ or ‘excludes’ relationship between a variant and a
variation point, between two variants, or between two varia-
tion points [32]. In Figure 5, such a constraint is represented
by an annotated, dotted arrow.

Heuristic 3: “If FRPβ is conditional to FRPα, then there
exists a vp requires vp constraint from FRPα to FRPβ .”

This heuristic helps identify two constraints in Figure 5:
“mark assignment” requires both “access Internet” and “re-
trieve assignment”. The conditional semantic case usually
reveals FRPs’ interdependencies, so it seldom appears as an
intra-FRP variation dimension.

Heuristic 4: “If DOδ is a case value of FRPφ, then there
exists a v requires vp constraint from DOδ to some FRPγ

such that the direct object of FRPγ is DOδ .”

For example, marking rubric (DOδ) is a process value of
“mark assignment” (FRPφ), so the v requires vp constraint
exists from marking rubric to “create marking rubric”
(FRPγ). Figure 5 shows this constraint, as well as a sim-
ilar one on the DO comment list.

The above heuristic rules stem from our experience of
merging the FRPs extracted from different auto-marker

SRS’s [1, 8]. They fit our intuition and lead to a trial-
and-error inquiry into the SPL’s variability dependencies
and constraints. Currently, only simple relationships can
be identified by applying the heuristics manually. While we
are keen to discover more rules and patterns, we insist they
should all play a supporting role for expert opinions, be-
cause many relationships, such as [min..max] choice, ‘ex-
cludes’ constraint, and conflicts, are not likely to be inferred
from text, or even from the FRPs, directly.

We conducted a preliminary evaluation by asking a do-
main expert, who did not attend the FAST meetings (cf.
Section 3.3) and would have fresh eyes, to review the in-
tegrated auto-marker OVM. She not only confirmed the
OVM’s value as an asset, by which the SPL can be man-
aged and evolved as a single and unified entity, but also
spotted several constructs and relationships in the OVM to
be the new insights into the domain: some examples were
FRPs “highlight code segment”, “define comment list”, the
process variants pre-defined comment list of “mark assign-
ment”, and the v excludes v constraint from “mark late as-
signment” to the comment list defined by a TA.

The response was encouraging in that the OVM did not
surprise the domain expert by containing obviously incor-
rect information. Not only that, the consolidated FRPs and
their variabilities helped uncover the incompleteness and
inconsistency to a certain degree. The OVM thus demon-
strated its usefulness by guiding people in keeping an eye
on the important issues. Although the initial feedback from
the expert’s review was positive, in the longer term, we plan
to carry out more in-depth empirical studies to determine
the value of our approach.

5 Discussion and Applications
Having detailed how to extract and model a SPL’s FRPs,

we now consider what they are good for. Before describ-
ing the usage scenarios, we discuss two key aspects of our
approach.

5.1 Levels of Variability
The variabilities that are identified at each phase of

core assets development have different levels of abstrac-
tion. FRPs work at a primitive level. According to Moon
et al. [29], a primitive requirement (PR) is a transaction that
has an effect on an external actor; sample PRs for the on-
line news domain are “write an opinion” and “forward an
article by e-mail”. We enhance the idea of PR by heeding
the conceptual units in the domain corpus that carry high
information value and concern action themes. Thus, the
primitive-level FRP can be used as a building block of a
more complex refinement.

Some extractive approaches like [20] use a naive way
to decide the variability attribute: a requirement is manda-
tory if it intersects the documents being extracted; otherwise
it is optional to the SPL. This method violates the under-
specify principle of assets mining [24]: any extraction re-

sult is intrinsically incomplete. Decisions drawn from in-
complete information can be grossly inaccurate. We em-
phasize that experts must validate the extracted FRPs and
domain knowledge shall be the major driver in determining
the variability properties at all granularity levels.

5.2 Scalability and Extensibility
Although the auto-marker SPL is relatively small and

has modest business goals, it suffices to show the appli-
cability and effectiveness of our approach. Our technique
for extracting FRPs is scalable because 1) the algorithm for
identifying lexical affinities (cf. Figure 3) is computation-
ally efficient, 2) exploiting available NLP toolset for tag-
ging and stemming does not present a considerable over-
head, and 3) the extraction process is summarizing, which
means the output (FRPs) is significantly smaller than the
input (the requirements document) [17]. Experimenting
with the large-size SRS’s of NASA’s family of fault tolerant
system services [4] resulted in a compelling summarizing-
factor around 200: on average, 101 FRPs were identified
for each of the three SRS’s whose average size was 20, 477
words.

Domain semantics play a key role in modeling variabil-
ities and determining domain concepts (cf. Figure 1c),
thereby affecting the extensibility, i.e., domain transporta-
bility, of our approach. Domain knowledge is critical to
building sensible assets (e.g., FRPs and OVM), and de-
veloping domain-specific heuristics can increase reuse. In
terms of domain concepts identification, most RE standards
(e.g., [19]) contain a definition section for specifying the
domain terminology. We counted on this source in our auto-
marker study: each SRS’s domain vocabulary had about
10 entries. For the sake of comparing indexing schemes,
we did not perform synonym substitution (cf. Section 3.3).
Therefore some sensitivity analysis is in order, which mo-
tivates our endeavor to incorporate WordNet thesauri and
domain ontology extraction [23].

5.3 Aligning NFRs
Non-functional requirements (NFRs) are abstract con-

cepts that represent a SPL’s architecture drivers [25]. Mis-
matches in stakeholders’ abstraction vocabulary often oc-
cur, as an area of surprising controversy. Experts would
occasionally misunderstand one another, because they were
using the same words in different ways. In fact, experts
would sometimes be in “violent agreement” with one an-
other, all the while expressing the same idea in different
terms [12]. In our previous work, we tackled termino-
logical interferences by applying the Repertory Grid Tech-
nique [30]. One open question is how to come up with a set
of primitive elements within the domain of discourse. We
would venture an answer of using the FRPs extracted in this
work to form a common ground.

Figure 6 shows a sample repertory grid for aligning
NFRs in the auto-marker SPL. Five extracted FRPs pro-

1

2 2

2

4

4

4

4

4

highlight code segment

store assignment

create template

create marking rubric

e−mail feedback

100 90 80 70 60

100 90 80 70 60

1

break5
hurt4
neutral3
help2
make1

Ratings:

2

2

1 3 3

3

2

3

2

3

Performance [Prof.]

Responsiveness [TA]

Usability [Prof.]

Usability [TA]

Figure 6. Aligning auto-marker NFRs

vide a shared context for comparing and contrasting abstract
NFRs. The clustering analysis of this grid would flag the
clash of “Usability” between the professor and the TA’s vo-
cabularies due to the low similarity level at 70%. The work
on definition hierarchies pointed out that it is acceptable for
family members in a SPL to have different interpretations of
the same NFR term [25]. We anticipate the mix-and-match
of FRPs can help crystallize the varying NFR satisfying cri-
teria; however, we have not yet investigated this idea.

5.4 Driving Design and Development
Teasing out functional requirements facilitates the op-

timization of quality requirements during the architectural
design stages [7]. Behavior-driven development (BDD) [2]
has been an evolutionary step toward specifying business-
oriented behavior. BDD’s motto, “getting the words right”,
suggests that how we talk about what we are doing influ-
ences how we work. The emphasis is on making the sys-
tem’s functionalities explicit with an unambiguous termi-
nology. FRPs capture significant action themes in the do-
main, and can greatly help BDD to produce a vocabulary
that is accurate, accessible, descriptive, and consistent [2].

The OVM rigorously copes with a SPL’s variation prop-
erties and dependencies, and is orthogonal to traditional re-
quirements, design, code, and test artifacts [32]. Modeling
FRPs in OVM allows us to trace the action-oriented con-
cerns throughout the SPL life cycle. In the auto-marker
study [1], we were able to relate the OVM to use cases,
goal models, and class diagrams, which consistently man-
aged the system functionalities and their relationships.

6 Related Work
Many RE methods have implicitly used the verb-DO pair

to model the functional unit: a use case, a primitive require-
ment [29], a goal concern (task) [26], to name a few. We
not only formulate this linguistic clue [34] explicitly in RE,
but also introduce an IR-based [27] technique to effectively
extract the FRPs from requirements documents.

Domain analysis has been the predominant way of defin-
ing a SPL’s requirements assets [36]. One of the drawbacks
refers to its intrinsic domain dependence. Domain analy-
sis methods count on experts’ experience and intuition to
manually acquire domain knowledge. Namely, there are no

rules that enable engineers to identify domain elements eas-
ily [29]. Our approach complements domain analysis by
efficiently detecting valuable domain constructs.

The field of feature engineering has worked on modeling
domain constructs and their relationships for a number of
years [22, 21]. The original proposal envisaged that stan-
dard terms (features) used by the stakeholders would nat-
urally emerge at the right level of abstraction, but many
studies presented contradictory evidence. For instance,
engineers working on the LG’s elevator control SPL did
not agree on what specific features meant, even after 3
months of domain analysis [12]. The term “feature” there-
fore remains overused and under-defined in the SPL litera-
ture [31]. We focus on the functional characteristic of a fea-
ture, and provide a semi-automated way to help search for
reusable primitives [29] that can be used for a more complex
feature refinement [21].

Liaskos et al. identified variability in goal models
via Fillmore’s case theory [26]. They took a closer
look at the semantic characterization of every goal’s OR-
decompositions. As was mentioned, a refined goal in [26],
expressed mostly by a verb-DO pair, resembled closely the
FRPs in our work. Nonetheless, their work illuminated the
importance for distinguishing between intentional variabil-
ity and background variability, and their experience showed
that background variability could be effective identified by
focusing on the agentive, objective, and locational cases.

Our work also relates to assets modeling techniques like
definition hierarchies [25], n-dimensional SPL [35], and
PRS [14]. A definition hierarchy is essentially a logi-
cal AND tree decomposed by NFRs. The n-dimensional
method uses set-theoretic constructs (e.g., subset) to con-
ceptualize variability. A PRS provides a single document to
record the common and variable requirements and the deci-
sions pertaining to product derivation. All these approaches
impose some hierarchical structure over the family require-
ments. By their very nature, FRPs are functional so they are
better at modeling the SPL’s actions and external behaviors.
We exploit the OVM [32] to devise the assets that can effect
the entire SPL development process.

7 Conclusions

SPLs are rarely created right away but they emerge when
a domain becomes mature enough to sustain their long-term
investments. A practical adoption pattern is to build a sin-
gle system, and then build the collection of small variations
for the SPL [24]. We contribute an approach to extracting
and modeling a SPL’s requirements assets by scrutinizing
the linguistic characterization of a domain’s action-oriented
concerns and their variabilities. Studying an auto-marker
SPL shows our approach complements domain analysis.

Our work has a number of limitations that we plan to in-
vestigate further. First, DO tagging and synonym substitu-

tion need to be incorporated to our current FRP implemen-
tation, and the operational cost shall be minimized. Second,
sensitivity analysis of domain concepts, as well as domain-
specific heuristics production, is in order. Third, integrating
more semantic or even structural knowledge will certainly
enhance the extraction effectiveness, but the benefits must
be weighted against scalability and cost.

Legacy systems and their documentation are valuable
source for developing a SPL; yet, their potential remains
largely unexploited [20]. The main thrust of our work is
to promote a set of low-threshold techniques as a critical
enabler for the practitioners to capitalize on the order-of-
magnitude improvements offered by SPL engineering.

Acknowledgments. We are grateful to the CSC340 (Win-
ter 2007) students and staff at UofT, and especially thank
Jennifer Campbell, Jia Wang, and Sotirios Liaskos for par-
ticipating in the FAST meetings and helping evaluate the
results. Financial support was provided by NSERC.

References

[1] Archived course website: requirements engineering (winter
2007). http://www.cs.toronto.edu/˜nn/csc340h/winter07.

[2] BDD. http://www.behaviour-driven.org.
[3] English stop words. http://en.wikipedia.org/wiki/Stop word.
[4] Mirrored FTSS. http://web.mit.edu/16.35/www/project.
[5] OpenNLP. http://opennlp.sourceforge.net.
[6] J. Aranda, S. Easterbrook, and G. Wilson. Requirements in

the wild: how small companies do it. In Int’l Reqs Eng Conf,
pages 39–48, New Delhi, India, October 2007.

[7] J. Bosch. Design & Use Software Architectures: Adopting &
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[8] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu,
and M. Sabetzadeh. A manifesto for model merging. In
Int’l Wkshp on Global Integrated Model Mgmt, 2006.

[9] S. Bühne et al. Exploring the context of product line adop-
tion. In Int’l Wkshp on Product Family Eng, pages 19–31,
Siena, Italy, November 2003.

[10] J. Carroll et al. High precision extraction of grammatical
relations. In Int’l Wkshp on Parsing Technologies, 2001.

[11] J. Cleland-Huang et al. The detection and classification of
non-functional requirements with applications to early as-
pects. In Int’l Reqs Eng Conf, pages 36–45, Minneapolis,
USA, September 2006.

[12] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2001.

[13] J. Dag et al. A linguistic-engineering approach to large-scale
requirements management. IEEE Software, 22(1):32–39,
January/February 2005.

[14] S. R. Faulk. Product-line requirements specification (PRS):
an approach and case study. In Int’l Symp on Reqs Eng,
pages 48–55, Toronto, Canada, August 2001.

[15] C. Fillmore. The case for case. In E. Bach and R. Harms,
editors, Universals in Linguistic Theory, pages 1–88. New
York: Holt, Rinehart and Winston, 1968.

[16] M. Friedewald et al. Status of the software industry in Ger-
many. Informatik Spektrum, 24(2):81–90, 2001.

[17] L. Goldin and D. M. Berry. AbstFinder, a prototype natural
language text abstraction finder for use in requirements elic-
itation. Automated Softw Eng, 4(4):375–412, October 1997.

[18] J. H. Hayes et al. Advancing candidate link generation for
requirements tracing: the study of methods. IEEE Trans. on
Softw Eng, 32(1):4–19, January 2006.

[19] IEEE Standards Board. IEEE recommended practice for
software requirements specifications. 1998.

[20] I. John. Integrating legacy documentation assets into a prod-
uct line. In Int’l Wkshp on Product Family Eng, pages 113–
124, Bilbao, Spain, October 2001.

[21] K. Kang et al. FORM: a feature-oriented reuse method with
domain-specific reference architectures. Annals of Softw
Eng, 5:143–168, January 1998.

[22] K. C. Kang et al. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21,
SEI, Carnegie Mellon Univ, November 1990.

[23] L. Kof. Scenarios: identifying missing objects and actions
by means of computational linguistics. In Int’l Reqs Eng
Conf, pages 121–130, New Delhi, India, October 2007.

[24] C. W. Krueger. Easing the transition to software mass cus-
tomization. In Int’l Wkshp on Product Family Eng, pages
282–293, Bilbao, Spain, October 2001.

[25] J. Kuusela and J. Savolainen. Requirements engineering for
product families. In Int’l Conf on Softw Eng, pages 61–69,
Limerick, Ireland, June 2000.

[26] S. Liaskos et al. On goal-based variability acquisition and
analysis. In Int’l Reqs Eng Conf, pages 76–85, Minneapolis,
USA, September 2006.

[27] Y. S. Maarek et al. An information retrieval approach for
automatically constructing software libraries. IEEE Trans.
on Softw Eng, 17(8):800–813, August 1991.

[28] W. J. R. Martin et al. On the processing of a text corpus:
from textual data to lexicographic information. In R. R. K.
Hartmann, editor, Lexicography: Principles and Practice.
Academic Press, 1983.

[29] M. Moon, K. Yeom, and H. S. Chae. An approach to devel-
oping domain requirements as a core asset based on com-
monality and variability analysis in a product line. IEEE
Trans. on Softw Eng, 31(7):551–569, July 2005.

[30] N. Niu and S. Easterbrook. So, you think you know others’
goals? A repertory grid study. IEEE Software, 24(2):53–61,
March/April 2007.

[31] D. L. Parnas. Software product-lines: what to do when enu-
meration won’t work. In Int’l Wkshp on Variability Mod-
elling of Software-intensive Systems, 2007.

[32] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer, 2005.

[33] G. Salton and M. J. McGill. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, 1983.

[34] D. Shepherd. Natural Language Program Analysis. PhD
thesis, Univ of Delaware, 2007.

[35] J. M. Thompson and M. P. Heimdahl. Extending the prod-
uct family approach to support n-dimensional and hierarchi-
cal product lines. In Int’l Symp on Reqs Eng, pages 56–64,
Toronto, Canada, August 2001.

[36] D. M. Weiss and C. T. R. Lai. Product-Line Engineering:
A Family-Based Software Development Process. Addison-
Wesley, 1999.

