
Mining Security Requirements from Common
Vulnerabilities and Exposures for Agile Projects

Wentao Wang, Arushi Gupta, and Nan Niu
Department of Electrical Engineering and Computer Science, University of Cincinnati, USA

Email: {wang2wt, gupta2ai}@mail.uc.edu, nan.niu@uc.edu

Abstract—Agile software development (ASD) is becoming in-
creasingly popular in the software industry. Several researchers
point out that characterized with short iterations and the
quick delivery of working software, ASD often does not give
consideration to security requirements as well as other non-
functional requirements. This means important security require-
ments might be neglected in ASD. However, implementing all
necessary security requirements is determinant for the success
of software projects. Many approaches are proposed to elicit
security requirements, but most of them rely on analysts’ knowl-
edge and experience about security requirements management.
In this paper, we propose a new approach in which security
requirements are mined from the vulnerability repository of
common vulnerabilities and exposures (CVE). We describe our
approach with illustrative examples, discuss operational insights,
and raise research questions for future work.

Index Terms—Security requirements, common vulnerabilities
and exposures, data mining, security testing

I. INTRODUCTION

Security refers to a class of non-functional requirements

(NFRs) related to software system’s confidentiality, integrity,

and availability [1]. Security experts point out that failing to

fulfill security requirements leads to vulnerabilities in software

systems. In September 2017, Equifax, a customer credit report-

ing agency, announced a security breach where cybercriminals

accessed approximately 145.5 million United States Equifax

consumers’ personal data, including their full names, social

security numbers, and credit card information [2]. Equifax

reported that this data breach was caused by a vulnerability in

the Apache Struts 21, a web application framework used by

Equifax to build its website.

Compared to commercial software, security vulnerabilities

in open-source software (OSS) projects have a greater impact

on other software systems, since they are available to public

and many other software projects are dependent on them.

For instance, in 2016, common vulnerabilities and exposures

(CVE)2 published a vulnerability3 in Libxml24, an open-

source XML file parser. More than 10 companies, including

Apple and IBM, reported that over 30 of their products were

affected by this vulnerability since developers use Libxml2 in

those products.

The situation becomes worse and worse these days. CVE

published over 14 thousand vulnerabilities in 2017, 1.27 times

1https://nvd.nist.gov/vuln/detail/CVE-2017-5638
2https://cve.mitre.org
3https://nvd.nist.gov/vuln/detail/CVE-2016-4449
4http://www.xmlsoft.org

more than the total number of 2016. Over 20% of them

are reported in OSS projects. Part of reason comes from

agile software development (ASD), a software development

approach which is widely used in OSS projects. According

to Behutiye et al. [3], in ASD, developers either do not

document security requirements and other NFRs, or ignore

lower-level details such as security designs in requirements

documentation. Documenting security requirements improp-

erly introduces difficulties for following the life of security

requirements. Therefore, having a suitable approach to help

development teams elicit important security requirements and

document them properly is determinant for the success of ASD

projects.

A couple of security requirements elicitation approaches

have been proposed [4], [5]. However, most of them rely

on analysts’ expertise and experience. Unfortunately, security

experts are not always available in ASD teams. Meanwhile,

CVE becomes the industry standard for security vulnerability

and exposure identifiers. Security vulnerabilities and related

implementation-level details, such as attacks to vulnerabil-

ities and mitigations for security vulnerabilities, are well-

documented in CVE. This information can be used to not only

guide security requirements management in ASD projects, but

also help design test cases for verifying and validating security

requirements.

In this research, we propose a new approach to mining re-

lated security requirements from CVE for the given functional

requirements (FRs) in ASD projects. For example, a related

security requirement for the sub-requirement “uploading pa-

tient’s information via CVS file” in use case 1 in iTrust5 is “If

the file is malformed, then no data is added, and an error

message explaining the correct file structure is presented”.

In our approach, an automated tool is used to retrieve FRs’

related vulnerabilities from CVE. In order to further reduce

manual effort, a mechanism is developed to filter out redundant

vulnerabilities. Then security requirements are derived from

retrieved vulnerabilities. In the remainder of the paper we

describe our process for deriving security requirements and

test cases from CVE within an ASD project environment.

Section II describes the subject project, iTrust, which provides

the context for our work and from which all of our examples

are drawn. Section III provides a detailed description of the

process with illustrative examples. We discuss related work

5http://agile.csc.ncsu.edu/iTrust

6

2018 1st International Workshop on Quality Requirements in Agile Projects

978-1-5386-8412-2/18/$31.00 ©2018 IEEE
DOI 10.1109/QuaRAP.2018.00007

Fig. 1. Overview of mining security requirements from common vulnerabil-
ities and exposures (CVE)

and draw conclusions in Section IV.

II. THE SUBJECT PROJECT

The process described in this paper emerged from our

subjective lessons learned in detecting vulnerabilities in the

iTrust project. iTrust is a medical web application that provides

patients with a means to keep up with their medical histories.

All healthcare related products in the USA must comply

with the Health Insurance Portability and Accountability Act

(HIPAA) [6], which is the legislation that provides data privacy

and security provisions for safeguarding medical information.

Therefore, security and dependability is one of the main

concerns of the iTrust project [7].

iTrust was created by Dr. Laurie Williams in the Fall of

2005. Starting from version 6, the project follows a predefined

release cycle (i.e., six months). In each cycle, developers keep

changing the requirements [8]. Since iterative release cycle and

adaptability to late requirements changes are core principles

of ASD method [9], we believe that developers of the iTrust

project follow the ASD.

The project employs Java Server Pages (JSPs) to handle

user interfaces and HTTP requests. The business logic and

data accesses are coded in Java production classes. Secu-

rity requirements are recorded in its project wiki. However,

only system-wide, high-level security requirements are doc-

umented, such as “implementation must not violate HIPAA

guidelines”. According to Behutiye et al. [3], missing lower-

level details of security requirements introduces challenges to

ASD developers, especially when requirements are constantly

changing [10]. Therefore, a new approach is needed to improve

security requirements management in ASD projects.

III. MINING SECURITY REQUIREMENTS FROM CVE

The overview of our approach is summarized in Fig. 1. In

this section, we describe each of these steps with illustrative

examples from iTrust.

A. Mining Vulnerabilities

CVE is an open-source repository of cybersecurity vul-

nerabilities. For each vulnerability, CVE documents it as a

Fig. 2. CVE ID example: CVE-2013-6693

CVE entry or CVE ID. Fig. 2 shows an example of CVE

ID (CVE-2013-6693). In this example, detailed information

about the vulnerability, including the name of the affected

product, the vulnerability type, the access that an attacker

requires to exploit the vulnerability, and the important code

components that are involved, is documented in the “Descrip-

tion” portion. References attached to the vulnerability are used

for identifying source of the vulnerability, recording notes

of the vulnerability, or describing attacks associated to the

vulnerability.

Although vulnerabilities published by CVE are mitigated,

the recorded high-quality information can be used to guide

building projects more securely. However, manually analyz-

ing all related vulnerabilities from similar projects for ASD

projects is an impossible mission since there are over 100,000

vulnerabilities in CVE database. An automated tool which can

retrieve highly related vulnerabilities for FRs in ASD projects

can help improve developers’ working efficiencies.

Most information retrieval methods used in requirements

engineering like vector space model [11] are based on shared

terms between documents. However, according to our ex-

periments, performances of those methods in mining related

vulnerabilities for FRs are poor. The main reason is that CVE

and ASD developers use different words to describe same

objects. This is referred to as the term mismatch problem [12].

For example, iTrust developers use “database” in FRs (e.g.,

UC126), and CVE uses database management system names

like “MySQL” in description of vulnerabilities. However,

both of them are associated to the same topic “database

management system”. This type of latent semantic relationship

between words can be used to improve the performances of

information retrieval methods.

Latent semantic indexing (LSI) is a prominent method for

capturing latent semantic relations [13]. We applied LSI to

improve our automated vulnerability mining tool. Step �
in Fig. 1 represents this process. The output of information

retrieval methods is a ranked list of vulnerabilities according

6https://152.46.18.254/doku.php?id=requirements:uc12

7

to their similarities to FRs. Currently, only top 70% highest-

ranked vulnerabilities are selected as candidate vulnerabilities.

However, there are still too many candidates. Therefore, a

future research topic could be how to further reduce the

number of candidates. We summarize this topic as research

question RQ1:

• RQ1: How to improve information retrieval method to

achieve the goal of removing irrelevant candidates with-

out filtering our relevant ones?

B. Derive Security Requirements

For a FR, after retrieving candidate vulnerabilities, we

first group them with their common weakness enumerations

(CWE)7 types which are predefined by CVE. For each FR in

iTrust, average 100 types of vulnerabilities are retrieved from

step �. We only consider top 10 types that contain the most

vulnerabilities. There are two main reasons: 1) statistic analy-

sis indicates that the distribution of vulnerabilities in different

types fits to power law distribution [14] (i.e., 90% vulnera-

bilities come from 10% vulnerability types), and 2) most of

remaining 90% vulnerability types are irrelevant to FRs. For

instance, there are three vulnerabilities (i.e., CVE-2017-13871,

CVE-2017-13903, and CVE-2017-13828) belonging to CWE-

371 (state issues) and retrieved as candidates for UC1 (Create

and disable patients)8 in step �. According to CWE, state

issues vulnerabilities are related to improper management of

operating system state. Obviously, it is irrelevant to UC1 which

describes the process of creating new patients and disabling

existing patients.

For each CWE type, we then manually investigate vulnera-

bilities belonging to this type. We found that if vulnerabilities

satisfy one of following conditions, that means they are irrel-

evant and shall be ignored. First, if a vulnerability is reported

in the implementation of a component/method in a specific

programming language platform and we shall ignore this vul-

nerability unless we use this component/method in our ASD

project. For instance, CVE-2012-53739 which was caused by

a malfunctioned method in Oracle Java Development Kit is re-

trieved as candidate vulnerability of UC1. However, according

to the original developers’ documentation, iTrust does not use

this method, therefore we ignore this vulnerability. Second, if

a vulnerability is reported in the operating environment we

shall ignore it. For instance, another retrieved candidate for

UC1 (CVE-2012-194110) is a buffer overflow vulnerability

reported in Mozilla Firefox which happened while Firefox tries

to calculate the size of HTML components like hypothetical

box. However, we can do nothing except for asking iTrust

users to run it on other web browsers instead of Firefox.

In fact, those conditions can be used to help solve research

question RQ1.

7CWE is a list of software weaknesses types http://cwe.mitre.org/data/index.
html.

8https://152.46.18.254/doku.php?id=requirements:uc1
9https://nvd.nist.gov/vuln/detail/CVE-2012-5373
10https://nvd.nist.gov/vuln/detail/CVE-2012-1941

For the remaining candidates, we derive security require-

ments from their description and document security require-

ments as acceptance criteria in FRs. We considered other

representations as well, such as ASD-specific artifacts like

backlog. However, the complexity of backlogs’ structure

makes it hard to maintain traceability between security re-

quirements and FRs, especially when requirements changes

are anticipated [3]. The “Given-When-Then” format is used

to document the acceptance criteria. For example, in UC1’s

related vulnerability CVE-2017-1597411, a vulnerability is

reported as “tPanel 2009 allows SQL injection for Authentica-

tion Bypass via ‘or 1=1’ to login.php”. Therefore, we derived

an acceptance criteria for UC1 as following:

AC1: Given an eligible user, when create patient or upload

patients, then all input values shall be properly sanitized

to prevent tautology (e.g., 1=1).

For the similar vulnerabilities, instead of putting them into

separate acceptance criteria, we merge them together. For

example, another related vulnerability (CVE-2012-561212) for

UC1 is described as “Heap-based buffer overflow in Oracle

MySQL, allows remote authenticated users to cause a denial

of service, as demonstrated using certain variations of the (1)

use, (2) show tables, (3) describe, (4) show fields from, (5)

show columns from, (6) show index from, (7) create table, (8)

drop table, (9) alter table, (10) delete from, (11) update, and

(12) set password commands”. We merge it into AC1:

AC1: Given an eligible user, when create patient or upload

patients, then all input values shall be properly sanitized

to prevent SQL injection, such as tautology (e.g., 1=1) or

SQL commands (e.g., use, show tables, describe, show

fields, show columns, show index, create table, drop table,

alter table, delete from, update, and set password).

We represent the process described in this sub-section as

step � in Fig. 1.

Another interesting phenomenon we observed in step �
is that, it is very hard to derive new acceptance criteria

after top 20 vulnerabilities for each CWE type. Since much

vulnerability after top 20 is irrelevant or repeats previous ones.

This phenomenon makes us speculate that classifying similar

vulnerabilities according to their topics instead of types, and

only investigating representative vulnerabilities in each topic

can potentially reduce manual workload. We summarize it as

a research question RQ2:

• RQ2: Which methods can better classify vulnerabilities

to achieve the goal of easily selecting all representative

vulnerabilities?

C. Design and Execute Test Cases

Like in acceptance criteria AC1, test cases can be easily

defined since attacks associated with the security requirements

are provided. For example, a trace link from UC1 to a

Java method “AddPatientAction().addPatient(PatientBean p)”

is defined by original developers, where new patient’s first

11https://nvd.nist.gov/vuln/detail/CVE-2017-15974
12https://nvd.nist.gov/vuln/detail/CVE-2012-5612

8

name is saved in PatientBean.firstName. Therefore a test input

derived from AC1 could be: PatientBean.firstName=“1=1”, and

the expected output of this test case is that “AddPatientAc-

tion().addPatient()” will return an error message “the input

of patient’s first name is illegal”. In addition, since some

references of vulnerabilities provide associated attacks, those

attacks are also valuable for designing security test cases.

For different test cases, we apply different technologies to

execute them. For example, test cases extracted from SQL

injection vulnerabilities like AC1 can be executed by applying

JUnit. For test cases extracted from other vulnerability types

such as cross-site scripting (XSS), vulnerability scanning tools

like snuck [15] can be used to execute them.

Step � in Fig. 1 represents test case generation process.

An important research question for testing is the quality of

those test cases. Testing coverage is one of important metrics

that can be used to evaluate quality of test cases. More

test cases increase testing coverage. Meanwhile, malicious

attackers will learn new knowledage in order to develop new

attacks [16]. White-box fuzzing, which generates new test

cases by modifying test inputs, could be a useful approach

to predict new attacks as well as increase testing coverage.

Therefore, the third future research question RQ3 can be

summarized as:

• RQ3: How to modify attacks in CVE to generate more se-

curity test cases which can achieve the goal of increasing

testing coverage?

New vulnerabilities can be observed from analyzing testing

results. Those new vulnerabilities shall be included in CVE

database in order to guide security requirements management

in other projects. We model this process as step � in Fig. 1.

IV. CONCLUSIONS

In this paper, we describe a new security requirements

mining approach that provides following benefits: First, all

security requirements come from well-documented vulnerabil-

ities in CVE, therefore the qualities of them are guaranteed.

Second, it is learnability effective. Since less security related

experience is needed when using our approach, new developers

to security can also apply it to manage security requirements in

ASD. Third, adding security acceptance criteria into the user

story will increase awareness regarding security requirements.

There are several existing security requirements manage-

ment approaches. Cleland-Huang proposed a lightweight ap-

proach to integrate safety stories into ASD [4]. Elicitation of

security requirements is based on brainstorming, checklists,

and analyzing reports of previous failures. Since the success of

analysis relies on analysts’ experience, it introduces challenges

to new developers joining the team who have limited visibility

of security requirements. Our approach, benefited from well-

documented vulnerabilities, can help solve this problem.

Alqahtani et al. [5] proposed another security vulnerability

analysis framework called SV-AF. In this framework, bi-

directional traceability links between project source code and

vulnerabilities reported in projects which are used in this

project are estimated. With those trace links, this approach

supports finding affected projects of vulnerabilities reported

in CVE. Having a way to combine our approach and SV-AF

can make the results of step � (retrieving vulnerability) more

accurate.

This research is ongoing. There are still several research

questions described in Section III that need to be addressed.

Other than that, another limitation of current research is that

some steps (e.g., test cases generation in step �) are done man-

ually. Therefore further automation can be pursued. Finally,

differences between vulnerability categories lead to different

expressions of attacks in CVE (e.g, textual description vs.

source code), questions regarding the generalizability of our

approach require systematic analysis.

ACKNOWLEDGEMENT

The work is funded by the U.S. National Science Founda-

tion (Award CCF 1350487).

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Raandell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” in IEEE
Trans. on Dependable Secure Computing, vol. 1, no. 1, 2004, pp. 11–33.

[2] Equifax, “2017 Cybersecurity Incident & Important Consumer Informa-
tion,” 2017. [Online]. Available: https://www.equifaxsecurity2017.com

[3] W. Behutiye, P. Karhapää, D. Costal, M. Oivo, and X. Franch, “Non-
functional requirements documentation in agile software development:
challenges and solution proposal,” in Proc. the 18th PROFES, Innsbruck,
Austria, Nov. 2017, pp. 515–522.

[4] J. Cleland-Huang, “Safety stories in agile development,” in IEEE Soft-
ware, vol. 34, no. 4, 2017, pp. 16–19.

[5] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SV-AF - a security
vulnerability analysis framework,” in Proc. the 27th IEEE ISSRE,
Ottawa, ON, Canada, Oct. 2017, pp. 219–229.

[6] U.S. Department of Health and Human Services, “Health Insurance
Portability and Accountability Act (HIPAA) of 1996,” 1996. [Online].
Available: https://www.hhs.gov/hipaa/index.html

[7] W. Wang, A. Gupta, N. Niu, L. D. Xu, J.-R. C. Cheng, and Z. Niu,
“Automatically tracing dependability requirements via term-based rel-
evance feedback,” in IEEE Trans. on Industrial Informatics, vol. 14,
no. 1, 2018, pp. 342–349.

[8] W. Wang, A. Gupta, and Y. Wu, “Continuously delivered? periodically
updated? never changed? studying an open source project’s releases of
code, requirements, and trace matrix.” in Proc. the 1st IEEE JIT RE,
Ottawa, ON, Canada, Aug. 2015, pp. 13–16.

[9] L. López, W. Behutiye, P. Karhapää, J. Ralyté, X. Franch, and M. Oivo,
“Agile quality requirements management best practices portfolio: A
situational method engineering approach,” in Proc. the 18th PROFES,
Innsbruck, Austria, Nov. 2017, pp. 548–555.

[10] N. Niu, W. Wang, and A. Gupta, “Gray links in the use of requirements
traceability,” in Proc. the 24th FSE, Seattle, WA, USA, Nov. 2016, pp.
384–395.

[11] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” in IEEE
Trans. on Software Engineering, vol. 32, no. 1, 2006, pp. 4–19.

[12] N. Niu and S. M. Easterbrook, “Managing terminological interference
in goal models with repertory grid,” in Proc. the 14th RE, Minneapo-
lis/St.Paul, MN, USA., Sep. 2006, pp. 296–299.

[13] A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” in Requirements Engineering, vol. 20, no. 3, 2015,
pp. 281–300.

[14] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,” in
ACM Trans. on Software Engineering and Methodology, vol. 18, no. 1,
2008, pp. 2:1–2:26.

[15] F. d’Amore and M. Gentile, “Automatic and context-aware cross-site
scripting filter evasion,” Sapienza University of Roma, Roma, Italy, Tech.
Rep. 1, Oct. 2012.

[16] N. Hussein, W. Wang, J. L. Nedelec, X. Wei, and N. Niu, “Unified
profiling of attackers via domain modeling,” in Proc. the 1st iRENIC,
Beijing, China, Sep. 2016, pp. 98–101.

9

