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Abstract—Cyber-physical systems play a crucial role in various
applications, ranging from critical infrastructure control like
power grid to the technological revolution of Industry 4.0 aimed
to integrate and automate the manufacturing value chain. The
Systems Modeling Language (SysML) represents a significant and
increasing segment of industrial support for the development
of cyber-physical systems partly due to the language’s built-in
mechanisms for modeling the requirements. In this paper, we
leverage goal-oriented obstacle analysis to systematically identify
the impediments to the fulfillment of requirements, and further
examine several machine learning algorithms’ capabilities of
classifying these impediments into the components that constitute
the cyber physical systems. We then investigate the extent
to which a state-of-the-practice SysML tool simulates these
obstacles, thereby assessing the risks of system failures at the
requirements level. Our work offers concrete insights into model
testing which incorporates the deep intertwining of software with
hardware in order to improve the robustness of the cyber-physical
systems.

Index Terms—obstacle analysis, KAOS, cyber-physical systems,
system modeling language (SysML), machine learning

I. INTRODUCTION

A cyber-physical system (CPS) tightly integrates computing

and communication technologies in order to monitor and con-

trol the physical processes, usually with feedback loops where

physical processes affect computations and vice versa [1].

The applications of CPS have not only spanned domains like

medical devices and autonomous vehicles, but also become

the hallmark of Industry 4.0 which revolutionizes manufac-

turing via transdisciplinary approaches rooted in theories of

cybernetics, mechatronics, and design science.

For CPS developers, the Systems Modeling Language

(SysML) [2] gains increasing use in their industrial applica-

tions as SysML is becoming the de facto modeling standard

for systems engineering [3]. SysML allows for precisely

specifying hardware devices, software control components,

and their interfaces [4]. State-of-the-practice tools like Magic

Draw [5] facilitate the systems engineers to define SysML

diagrams, track design progress, and communicate with clients

and other CPS stakeholders about requirements satisfactions.

Currently, the fulfillment of requirements can be supported

by traceability, e.g., SysML design slices could link fragments

of the activity diagram to a safety concern of the requirements

diagram, thereby assisting in safety inspections [6], [7] and

change impact analysis [8]. While traceability exploits mainly

the textual content of the model elements [9], [10], [11], the

Protos framework [12] aims to assure the requirements of a

sociotechnical system like CPS are formally specified through

autonomous parties’ conditional interactions via commitments.

Such interaction-oriented requirements specifications are mo-

tivated by promoting openness and accountability [13], which

helps to realize the vision of Industry 4.0 by connecting

autonomous parties (e.g., machines, software controllers, and

businesses) along the entire value chain.

An intrinsic challenge to specifying and tracing CPS re-

quirements is rooted in the deep intertwining of software with

hardware, making it insufficient to interrelate only the modeled

elements and to make assumptions without exposing necessary

details of the sociotechnical interactions (networks, devices,

software, people, etc.). To overcome this challenge, Briand

et al. [14] proposed a practical solution called model testing.

The idea is to raise the level of abstraction of testing from a

unit of operational software, where factors such as hardware

constraints are commonly neglected, to models such as the

ones built using SysML where systems-level behaviors and

properties can be automatically checked. Recent work by Ali

and his colleagues [15], [16], [17] made major strides in CPS

model testing by understanding the multifaceted natures of

uncertainty, performing variability-aware multiobjective test

optimizations, learning new uncertainties during evolution, and

generating test cases from the evolved models.

In this paper, we build on the latest developments and

significantly extend the literature by exploring the role of

KAOS-based [18] obstacle analysis in CPS model testing. Ob-

stacles are a dual notion to goals: while goals capture desired

conditions, obstacles capture undesirable (but nevertheless

possible) ones [19]. In KAOS-based requirements elaboration,

not only are goals operationalized into specifications [18], but

the obstacles can also be systematically generated from goal

formulations [19]. An obstacle obstructs some goal and is

a precondition for non-satisfaction of stakeholders’ require-

ments. Thus, we are interested in leveraging the obstacles to

guide model testing so as to improve the CPS robustness at

the requirements level.

Our work makes two main contributions: (1) investigating

machine learning’s capabilities of automatically classifying the

obstacles generated from KAOS into cyber, physical, cyber-

physical, and uncertainty, and (2) deriving test cases based

on the classified obstacles to automatically execute model

testing within a state-of-the-practice SysML tool, namely,
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Magic Draw (formerly known as Cameo System Modeler).

Our results on the basis of three sets of CPS requirements

show that Naive Bayes is among the most stable obstacle

classifiers, the classified obstacles can be model tested with

Magic Draw’s built-in support, and surprisingly, physical

obstacles are addressed more readily than those obstructing

cyber conditions. Our study offers operational insights into

goal-oriented obstacle analysis as an innovative solution to

CPS model testing, and meanwhile provides a mechanism for

making obstacle analysis more robust.

The rest of this paper is organized as follows: Section II

provides background information and reviews related work.

Section III presents the subject systems, along with the sets

of CPS requirements, of our study. Section IV discusses the

identification and classification of the obstacles. Section V

builds upon the obstacle classifications to perform model

testing. Section VI and Section VII discuss threats to validity

and practical applications. Finally, Section VIII draws some

concluding remarks and outlines future work.

II. BACKGROUND AND RELATED WORK

A. Cyber-Physical Systems and SysML

A CPS is defined by Ali and Yue [17] as: A set of

heterogeneous physical units (e.g., sensors, control modules)

communicating via heterogeneous networks (using network-

ing equipment) and potentially interacting with applications

deployed on cloud infrastructures and/or humans to achieve

a common goal. Applications of CPS have the potential to

both dwarf the 20th century IT revolution [20] and to trigger

a new industrial revolution termed Industry 4.0. An example

is the smart factory like a car or yogurt manufacturing system

characterized by its flexibility, resource efficiency, ergonomic

design, and the ability to integrate customer and business

partner into the value creation process [21].

The CPS challenges can stem from both physical and cyber

environments. From the mechatronics perspective, a CPS is

stochastic in nature due to factors such as actuator inaccu-

racies, sensor readings, the rate of arrivals, and component

failure rates. In a smart yogurt factory, for example, the

temperature of the freezing cylinder may be sensed stochas-

tically. From the cybernetics perspective, a CPS has to cope

with the fast increase of software scale and complexity while

striving for high levels of computational intelligence. With

wide variations in customizing yogurt (lactic acid, sweetness,

mix-ins, etc.), the product-line software could compute an

optimal decision ordering to minimize the overall manual

configuration steps [16]; however, the optimization objectives

may change as stakeholders requirements evolve [17], [22].

The requirements of CPS must be engineered at a systems

level by explicitly considering the hardware-software inter-

dependencies. One of such modeling frameworks that have

gained much industrial adoption is SysML, which represents

a significant and increasing segment of the embedded software

industry, particularly in safety-critical domains [8]. SysML ex-

tensively reuses UML, while also providing certain extensions

to it. Compared to UML, a couple of SysML features offer

advantages for systems engineers [23]: (1) the use of blocks

to unify structural concepts of a CPS, thereby reducing the

bias that UML classes have towards software in encapsulating

data abstractions, and (2) the built-in requirements diagram

allowing for natural language requirements to be modeled and

traced to design elements.

The requirements tracing capabilities equipped with state

of-the-practice SysML tools like Magic Draw and enhanced

by state-of-the-art methods like model slicing [24] facilitate

activities such as verification and validation, safety certifi-

cation, and change impact analysis. For example, to verify

the design meets such safety requirements as: “The feed belt
conveys a blank to table if the table is in load position” [6],

the slices (fragments) from a SysML internal block diagram

can help the inspector to efficiently locate the relevant model

elements without having to analyze all the elements. However,

automated requirements traceability [8] relies mainly on the

textual descriptions of requirements and (SysML) models.

To complement traceability’s static nature, model testing was

proposed by Briand and his colleagues [14] as a dynamic

mechanism for reasoning about requirements satisfactions.

B. Model Testing

Testing is a widely used approach toward software quality

because the degrees of automatically executing test cases

help tackle the scalability issues, such as size and com-

plexity, in practice. For the software under test (SUT), a

particular testing strategy essentially guides two practices:

what and how many test cases to generate with the latter

being bounded by resources like the amount of available or

allocated time to perform testing. For example, usage-based

statistical testing manages the test cases proportional to the

probability distribution obtained from the operational profiles

of the SUT’s environment [25], whereas boundary testing

focuses on developing test cases around the corner cases of the

input domain (e.g., maximum, minimum, just inside/outside

boundaries, typical values, and error values) when the SUT

takes numeric input(s) [26].

Such traditional testing methods rely on after–the–fact

testing for verification. However, due to the stochastic and

intrinsic nature of a CPS and the lack of a precise understand-

ing of the expected system behavior (i.e., uncertainty) these

methods are infeasible to apply. Model-based-testing (MBT),

a systematic and automated test case generation technique,

has been used for many years in industry [27]. MBT has also

shown promise for ensuring CPS during testing [28]. However,

due to the scalability issue of CPS and the large test suites

generated by MBT, MBT techniques are not practical [28].

To overcome this challenge, recent studies were proposed.

Uncertainty-wise testing modeling framework called Uncer-
Tum [28] is a new testing paradigm that was proposed to

explicitly address known uncertainty about the behavior of

CPS. UncerTum relies on Test Ready Models (TRM) with

uncertainty. TRM are models that represent the behavior of

the CPS in such details that test cases can be generated from

47



them [28]. In other words, TRM take models as inputs and

generate test cases either automatically or semiautomatically.

The aim of UncerTum is to improve the quality of these

TRM by using the real operational data of CPS, which can be

used to generate additional test cases as compared to the initial

ones. The main idea of this framework is that uncertainty

must be explicitly captured in TRM. Briand et al [14] propose

an approach called model testing for untestable systems. As

the authors claim, since models represent system behavior,

environment, properties, and structure, they can be used as a

basis for test execution. The basic idea of this approach is to

run as much as test scenarios while executing the models in

an automated fashion, taking in consideration uncertainty and

level of details for detecting faults [14].

One of the main objectives of model testing [14] is to

execute a much larger number of test scenarios by means

of model executions. Thus, in this paper, we investigate the

role of KAOS-obstacle analysis into CPS model testing where

model-driven engineering practices such as SysML models are

adopted.

C. KOAS-Based Obstacle Analysis

Requirements violation caused from the interactions be-

tween cyber and physical components can wreak havoc in

critical systems [29]. CPS interacts with the physical world

and, given the complexity of problems being solved by CPS in

critical domains, these systems must function safely even when

experiencing uncertainty in their physical environment [15].

However, due to the intertwining of software with hardware,

predicting the exact behavior of the physical environment of

a CPS is not possible. An example of safety violations is the

Alice incident [29]. Alice, an autonomous Ford Econoline van,

dangerously deviated from the generated path of the computer

and started stuttering in the middle of a busy intersection [29].

The reason was the unexpected interaction of the path planner

and the steering systems which was involved during making

a sharp left turn while merging into traffic. Alice deviated

from the path and thus the reactive obstacle avoidance system

slowed it down, the path planner generated a new path with

a more sharper turn to be able to merge into the traffic. As a

result, Alice could not follow, deviated, and caused a collision.

This unexpected interaction among the path planner and the

physical environment was not witnessed during more than

300 miles of autonomous test-driving and hours of extensive

simulations [29]. According to Lee and Seshia [30] , as an

intellectual challenge, CPS is about the intersection, not the

union, of the physical and the cyber. Therefore, dealing with

such obstacles is crucial for CPS.

KOAS-based obstacle analysis has been successfully used

in a variety of safety-critical systems [31]. It is a goal-oriented

activity, and begins with exploring the goal model and with

negating each goal in turn [31]. A goal G in the goal refine-

ment model is refined into G1, ...., Gn iff G1,...., Gn imply G.

If G is violated, then it is because at least one of the subgoals

is violated. Goals are refined using AND/OR refinements until

they are assignable to agents. The type of goals assigned to

agents is either a requirement or an expectation (i.e., leaf goals

in refinement graph). Each negated goal is refined to possible

obstacles that obstruct that goal from being fulfilled. Obstacles

are situations in which a goal, a requirement or an expectation

is violated [31]. To identify obstacles to goal G: negate G;

find as many obstacles as possible that obstruct G in view

of domain properties. After identifying obstacles, conditions

for these obstacles are looked for. Various techniques are used

to generate these obstacles ranging from formal calculus of

preconditions for obstruction to the use of heuristics as an

informal alternative to formal techniques [19].

In this paper, we use two types of techniques for obstacles

identification: obstruction refinement patterns and informal

obstacle identification. In obstruction refinement patterns, ob-

stacles are shown in a form of a tree. It shows through

AND/OR refinements how the goal may be violated. The root

of the tree is the goal negation; the leaves are elementary

obstruction conditions that are satisfiable by the environment

[32]; an AND-refinement captures a combination of sub-

obstacles entailing the parent obstacle; an OR refinement cap-

tures alternative ways of entailing the parent obstacle. Since

OR-refinements are in general desirable for critical goals [19],

we apply it in our study. Informal obstacle identification takes

the form “if the specification has such or such characteristics

then consider such or such type of obstacle to it”.

Integrating obstacle analysis in CPS model testing not only

gives systems engineers the ability to more easily identify

scenarios in which goals are not satisfied, but also to reason

incrementally about new alternatives for handling obstacles

that can occur during runtime. This is useful in that obstacles

indicate which scenarios would ensure coverage of exception

cases. All these obstacles must be investigated at requirements

engineering time if the system is to remain robust.

III. SUBJECT SYSTEMS

In this section we present the subject systems that we

examined in this paper: AntiLock-Braking System (ABS),

Transmission Control Module (TCM) [33], and the barbados

Car Crash Management System (bCMS) [34].

An example of CPS is a car equipped with an ABS [35]. The

ABS may interact directly or indirectly with other systems,

such as adaptive-cruise control and lane keeping control [36].

ABS is designed to prevent a vehicle’s wheels from locking

up and skidding during heavy braking. ABS can also reduce

the distance required to come to a stop, thereby reducing the

risk of skidding and allowing the driver to keep control of the

vehicle and improving safety. The safety requirement we have

considered for this system is: The vehicle shall be steerable
and stable during heavy braking by preventing wheel lock.

An obstacle to this requirement, for simplicity, is {loss of
control}, i.e., the negation of the associated leaf expectation

Achieve[Full control of vehicle] in the goal model.

TCM, another example of CPS [37], consists of not only

mechanical parts but also electronics. It controls gearbox and

switch between gears based on input from several sensors

as well as data provided by engine control module (ECM).
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TABLE I
SUBJECT SYSTEMS STATISTICS

Case Study # Req.s # Obstacles/tree (std) # Leaf obstacles /req. (std) Avg. height of obstacle tree (std) Avg. branch factor (std)

ABS 1 24 13.00 5.00 1.00

bCMS 9 5 (3.36) 3.33 (2.40) 2.78 (0.67) 0.75 (0.17)

TCM 1 25 18.00 3.00 0.96

It then processes this input to calculate how and when to

shift gears in the transmission and generates the signals that

drive actuators to complete this shifting. Electronic sensors

monitor the selection of gear position, vehicle speed, throttle

position, and many other attributes. This information helps the

control module to adjust the current supplied to solenoids in

the transmission that control the position of various valves

and gears. The safety requirement we have considered for this

system is: Revolution Per Minute (RPM) value shall not exceed
3900. An obstacle to this goal is {RPM value exceed 3900}.

bCMS system is a distributed crash management system that

is responsible for coordinating the communication between

different systems to handle crisis [34]. It has several require-

ments and expectations including hazard requirements, threat

requirements, inaccuracy requirements, and other types of

requirements as identified by van Lamsweerde and Letier [19].

The high-level goal we consider for this system is that bCMS
shall handle a crisis in a timely manner. An obstacle to this

goal is crisis is not resolved in a timely manner. Based on goal

refinement in the goal model of this system, we can refine this

goal to more specific requirements.

We create our own obstacle tree for ABS (i.e., 24 obstacles)

and TCM (i.e., 25 obstacles). For bCMS, we include all obsta-

cles (i.e., 54 obstacles) generated by Cailliau et al [32]. The

underlying rationale for the choice of these subject systems is

due to the following reasons:

• Each subject system has different types of requirements

and expectations. As a result, we can investigate various

types of obstacles (e.g., safety requirements, security

requirements).

• The complexities are different for each subject system

in terms of obstacles. For example, we calculate the

number of obstacles per requirement or obstacle tree.

The results show that obstacle trees in ABS and TCM

contain more nodes than trees in bCMS. In addition,

although the height of obstacle trees is very different in

the three subject systems; the highest one (i.e., 5 in ABS)

is almost twice the lowest one (i.e., 2.78 in bCMS). The

percentages of leaf obstacles in each obstacle tree are

similar in three datasets (i.e., 54.17%, 66.60%, and 72%

in ABS, bCMS, and RPM respectively). Table I shows

the statistics for the subject systems used in this paper.

In each of these subject systems, the goal is too ideal; it

presupposes that nothing in the environment will prevent the

goal from being achieved. Obstacles for preventing this goal

from being fulfilled could be related to software, hardware,

or interaction of both. Examples of such obstacles are: wheel

speed sensors malfunctions (physical), ABS master controller

failure (cyber), or any other obstacles (system behavior under

different road conditions). Identifying obstacle under which

goals may be violated is essential for not missing requirements

that would prescribe what the system should do to properly

handle such unexpected situations [38].

As mentioned earlier, we used a combination of two tech-

niques for obstacles generation: OR refinement pattern and

informal obstacle identification. Figure 1 shows the resulting

obstacle tree for the ABS case study. Objectiver1, a tool

designed to support KAOS, was used for creating the trees

in our study. The root of the tree is the leaf goal Achieve[Full
control of vehicle]. Its root obstacle is obtained by negating

the goal (i.e., loss of control) using an obstruction link. The

root obstacle is then refined to sub-obstacles, and the leaves

are elementary obstruction conditions that are satisfiable by

the environment (e.g., dump valve fails).

Obstacles at the leaves should correspond to cyber, physical,

but not cyber-physical components. However, in practice,

especially in CPS, it is not clear whether the obstacles are

due to cyber or physical components or both. Thus, we incor-

porate machine learning algorithms to automatically classify

the obstacles generated from KAOS into four components

(i.e., cyber, physical, cyber-physical, and uncertain). Figure 2

shows an overview of our approach. Obstacles are identified

and then classified using machine learning algorithms. The

obstacles then are imported to Magic Draw tool in which

test cases are derived from the obstacles and executed using

the Cameo Simulation Toolkit. Section V demonstrates our

approach. Next, we present our experiments of classifying

these obstacles.

IV. CLASSIFYING OBSTACLES

In machine learning, classification is the problem of clas-

sifying a new observation into a given set of categories

based on a training data set (past observations whose cat-

egory memberships are known). Many problems could be

formulated as the classification problem, which has wide

applications, including object recognition, behavior analysis,

speech recognition, face recognition and verification, etc [39].

For example, object recognition and behavior analysis with

camera sensors data will help smart transportation systems

have a better understanding of their surrounding environments,

which is necessary for autonomous vehicles to support auto-

mated planning and control to achieve desired destinations.

The uncertainty in physical environment makes future CPS

1http://www.objectiver.com/index.php?id=4

49



Fig. 1. Obstacles refinement for Achieve[Full control of vehicle]

TABLE II
SAMPLES OF MANUAL LABELING OF OBSTACLES INTO CYBER (C), PHYISCAL (P), CYBER-PHYSICAL (CP), AND UNCERTAIN (U).

Obstacles Leaf obstacle Non-satisfaction Inaccuracy Hazard Non-information Threat Soft-Goal Class-Label

ABS malfunction 0 0.14 1 1 0 0 0 CP

Wheel Speed sensor malfunction 1 0.02 1 1 0 0 0 P

ABS master controller failure 1 0.07 1 1 0 0 0 C

Failure related to road condition 0 0.14 1 0 0 0 0 U

Naïve Bayes
J48

SVM

Obstacles Analysis

Features 
selection

Import obstacles using 
Cameo Requirements 

plugin

Classification
Magic Draw

SysML modeling

Testing using Cameo 
simulation tool kit

Set of classified 
obstacles

Fig. 2. Overview of our approach: Classification of obstacles (dotted arrows)
are shown in which classified obstacles are used in SysML modeling;
Identified obstacles are imported to the SysML tool in which obstacles are
validated during modeling and testing (solid arrows).

more reliant on machine learning algorithms which can learn

and accumulate knowledge from historical data to support

intelligent decision making [39]. Adapting machine learning

algorithms into obstacle analysis will assist engineers of CPS

in identifying obstacles that occur in the different components

of CPS (i.e., cyber, physical, or cyber-physical). We added

uncertainty as a fourth category for obstacles that cannot be

determined at RE time, either because of lack of knowledge

or if it is based on assumptions. This means to systematically

classify and specify obstacles of CPS, especially the ones that

might arise under uncertain conditions. Below, we present our

feature selection for classifying obstacles, experimental setup,

and results.

A. Feature Selection

We identified attributes for obstacles based on their classifi-

cation in [19]. According to van Lamsweerde and Letier [19],

obstacles could correspond to:

• Non-satisfaction obstacles: obstacles that obstruct the

satisfaction of agent requests.

• Inaccuracy obstacles: obstacles that obstruct the consis-

tency between the state of objects in the environment and

its representation in the software.

• Hazard obstacles: obstacles that obstruct safety goals.

• Non-information obstacles: obstacles that obstruct the

generic goal of making agents informed about object

states.

• Threat obstacles: obstacles that obstruct security goals.
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Other than these attributes, we derive two features based on

the goal model of the system: Softgoal obstacles: obstacles

that obstruct softgoals, and

Leaf obstacles: obstacles that obstruct an expectation or

a requirement; assignable to an environment agent or to a

software agent, respectively.

Based on these attributes, we develop an automated way

of classifying obstacles using machine learning algorithms.

Specifically, we derive 7 attributes for our classification, using

different scales. Non-satisfaction obstacles are assessed in a

range between (0–1), based on each obstacle’s weight in the

obstacles tree. For each parent obstacle, we give equal weight

of its sub obstacle. For example, non-satisfactions weight for

“loss of control obstacle” is 1 and all its child obstacles is 0.14.

While the rest of attributes are assessed in a clear-cut sense (0

or 1). We built the training sets by manually labeling obstacles

according to our features selection as being cyber, physical,
cyber-physical, or uncertainty. In CPS, each obstacle could be

assigned to one or more features. For example, the obstacle

Wheel Speed sensor malfunction is assigned to: leaf obstacle

(based on the obstacle tree), inaccuracy obstacle (obstructing

consistency between vehicle speed in the environment and its

representation in the software), and non-satisfaction obstacle

(based on the obstacle’s weight in the refinement tree). Table II

shows an example of labeling obstacles of the ABS subject

system. We made our datasets, together with other materials

available in [40] for replications and cross validation purposes.

B. Experimental Setup

To evaluate our approach, we used the obstacles of the three

subject systems as our datasets (24, 54 and 25 in ABS, bCMS,

and TCM, respectively). We performed experiments on several

classifiers, from different types of algorithms namely, SVM,

Naive Bayes, and J48 decision-tree induction, which is the

Weka implementation of C4.5. We evaluated all algorithms

under a WEKA-based framework running under Java JDK

1.8 2, an open-source machine learning package.

An appropriate validation method is necessary to measure

the generalization error of the implemented model. Recent

experimental and theoretical results show that for selecting

a good classifier, the ten-fold cross-validation may perform

better than more expensive leave-one out cross-validation [41].

Therefore, we used the 10-fold cross validation technique to

identify the best model with the optimal parameters and to

test its performance on new instances. The corrected paired

t-test was run ten times for each pair of learning schemes and

a 0.05 significance level was used.

In a cross validation, the dataset consists of samples par-

titioned into k equal size subsamples, where k-1 are used in

each iteration to train the model, and the remaining one is

used for testing. This procedure is then repeated until all folds

are used exactly once in the testing set and k-1 in the training

set. The classification accuracy is then evaluated as the mean

2https://www.cs.waikato.ac.nz/ml/weka/

Fig. 3. Classifiers performance for the three datasets: AntiLock-Braking
System (ABS), Transmission Control Module (TCM), and the barbados Car
Crash Management System (bCMS), according to Area Under the Curve
(AUC).

of all obtained results in the different iterations. To identify

the best classifier, we need to determine which one results in

the highest accuracy (i.e., AUC).

C. Results
The performance of the different classifiers is assessed by

the area under the receiver operating characteristics curve

(AUC). The AUC can be derived from the confusion matrix.

AUC is a cut-off independent measure that accounts for the

overall performance of a classification technique, since it

considers all the possible cut-off values. The results show that

Naive Bayes performs statistically better than J48 and SVM

in all the three datasets. Specifically, the average AUC is 92%,

95%, and 82% for ABS, bCMS, and TCM, respectively. This

may be reasonable since we only have a small instance in

our datasets. It is possible that SVM and J48 do not have

enough data for training the model, while Naive Bayes works

better for such cases. While SVM performs better than J48

in two datasets, namely ABS and bCMS, J48 outperforms

SVM in the TCM dataset. Figure 3 presents the average

cross-validated results over the different datasets in terms of

AUC. As more data we fit to the classifier, the performance

gets better. For example, Figure 4 presents learning curves

that clearly demonstrate error rate reduction of Naive Bayes

classifier.
Next, we integrate the classified obstacles into model testing

using a SysML tool, namely, Magic Draw3, an industry leading

cross-platform collaborative Model-Based Systems Engineer-

ing (MBSE) environment.

V. OBSTACLE-DRIVEN MODEL TESTING

In order to test the manifestation of these obstacles coming

from different disciplines, SysML is considered as a stan-

3https://www.nomagic.com/products/cameo-systems-modeler#intro
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Fig. 4. Learning curve for Naive Bayes across the three datasets.

dard modeling language to be used. SysML is a graphical

language for building models of large-scale, complex, and

multi-disciplinary systems. SysML shows a great promise for

creating object-oriented models of systems that incorporate

not only software, but also hardware, devices, and other

software control components [42], expressing both structure

and behavior for complex systems.

In our work, we used multiple SysML diagrams. To express

structure, we used Block Definition Diagram which describes

the system hierarchy and system/component classifications,

Internal Block Diagram which gives greater detail regarding

the specific nature of the relationships between blocks (e.g.,

showing the details of flows or information transfer among

blocks), and Parametric Diagram which represents constraints

on system property values such as performance, reliability,

and mass properties. To express behavior, we used State

Machine Diagrams and Activity Diagrams. For documenting

the requirements, we used Requirements Diagram. In this

diagram, systems engineers document system requirements

and show the relationships that exist between requirements and

other system artifacts (e.g., satisfy, refine, derive, testcase).

The built-in mechanism SysML has for modeling the re-

quirements allows engineers to relate requirements and design

elements/models described at different levels of abstraction.

Since Magic Draw allows for importing and updating re-

quirements from other data sources using the capabilities pro-

vided by Cameo Requirements Modeler plugin, we imported

the generated obstacles to the tool as extended requirements.

Using extended requirements helps us capture the source of the

requirement, associate risk level, and specify the verification

method (i.e., test in our case). Then these obstacles are linked

to the main requirement (i.e., leaf requirement in the goal

model) by a “deriveReq link” or a “containment link”. Fig-

ure 5 shows a partial view of Requirements Diagram for ABS

subject system. Since we view these obstacles as extended

requirements to be tested, we derive a new requirement from

each obstacle. For example, the requirement derived from

the obstacle “ABS malfunction” is “ABS shall prevent wheel
lockup under all braking conditions”. If this requirement is

violated, answering the question “what are the conditions
that causes this violation?” is our way of integrating obstacle

analysis to model testing. In other words, testing is not only

driven by requirements but also by obstacles.

Some of these obstacles must be formalized in order to

derive a test case. As these obstacles are based on textual

information, they present the same problems of an informal

specification. Thus, we need to refine and formalize them so

that the underlying natural language engine of Magic Draw

can convert them to equations (e.g., the amount of brake

fluid shall not fall below a certain minimum). Otherwise, we

have to write the needed equations manually. Obstacles that

cannot be refined to a level that we can derive a test case

for, means they require a deep expertise knowledge to be

tested (e.g., mechanical engineer). Formalizing and refining

these requirements helps engineers in identifying the lower

level of abstraction for the requirement.

A challenge in SysML is that it has to be tailored for use

in a specific domain [43] (e.g., differentiating between the

different components of CPS). Therefore, we have defined

a UML requirements profile with four stereotypes, namely:

cyber, physical, cyber-physical, and uncertain to stereotype

each obstacle. The predicted labels from our classifier can also

help in this step. After modeling the obstacles (i.e., extended

requirements) in the Requirements Diagram and the structure

model of the system, we can check Requirements Diagram

model completeness by applying validation rules (e.g., con-

straints in a form of OCL expressions). For example, we

define a validation rule to check that each obstacle has a name.

This is useful especially for new derived obstacles (discussed

below). We then derive test cases to automatically execute

model testing. We used Cameo Simulation Toolkit [44], a

Magic Draw plugin, for this purpose.

The Cameo Simulation Toolkit provides the first in the

industry extendable model execution framework [44]. It allows

engineers not only to model any subject at a higher level of

abstraction but also to do so in sufficient detail that it can

be executed and simulated. Cameo Simulation Toolkit also

allows engineers to perform system testing in both manual

and automated modes. Manual testing is performed in the

executed models to verify expected results (e.g., value ranges),

while automated testing is performed by modeling test case

scenarios to test the desired behavior [44]. In fact, the derived

test cases in our ABS subject system can be verified using

Parametric Diagrams, Activity Diagrams, or State Machine

Diagrams. For example, when ABS is running, stopping

distance should not exceed a certain value (i.e., constraint).

Parametric Diagram was used to verify this constraint. While

performing simulation, we can test different values to check

the satisfaction of the requirement and further do analysis in

the system.

While creating the structure model of the system, and during

the process of testing the ABS subject system, we realized

that some of the obstacles are redundant. This is because

some obstacles are linked to the same block system or the

same activity action. For example, we found that the obstacle
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Fig. 5. Requirements diagram for ABS case study (partial view)

“ECU fails to respond” is the same as “ABS control module

failure”. Similarly, the obstacle “Wheel monitor failure” is

the same as “Wheel Speed sensor malfunction”. We also

found that some obstacles need more refinement (e.g., CAN

communication failure must be refined to CAN bus failure

and loose bus connector). As we analyze the system, we

identify new obstacles in addition to the identified obstacles

in the obstacle tree (e.g., “Brake line leak” as new derived

obstacle from “Loss of brake fluid”), and we also create

new links between already identified obstacles (e.g., a derive

requirement link between “Loss of brake fluid” and “Master

cylinder failure”), since one obstacle could be a condition for

violating more than one requirement.

Thus, we created four properties to the requirements profile

stereotype to check each obstacle status:

• Confirmed: to confirm that the obstacle is accurate and

testable.

• To-be-refined: the obstacle needs a refinement.

• To-be-removed: the obstacle is redundant and thus must

be removed.

• Not-testable: the obstacle cannot be tested within the

SysML tool and requires other simulation tools (e.g.,

Modelica [45]) to describe the precise behavior of the

system.

Our results for the ABS case study show that 2 obstacles are

redundant, 2 obstacles need more refinements, 3 obstacles are

not testable within the tool (1 of them was a cyber obstacle),

and 17 obstacles are confirmed and can be model tested

(mostly phyiscal obstacles). This shows that within SysML

physical obstacles are addressed more readily than the cyber

obstacles. Figure 6 shows the status of each obstacle after

model testing, which can also be seen in the Requirements

Diagram (Figure 5). We created a Verify Traceability Matrix

in which we can visualize and verify that all obstacles are

covered with test cases. The tool will automatically identify

if there is any suspect links to be resolved. Figure 7 shows

the traceability matrix for obstacles and their associated test

cases. Our results indicate that while model testing is guided

by our obstacles identification, it provides a mechanism for

validating these obstacles during model testing via deriving

new or identifying redundant obstacles. In other words, model

testing is not only driven by the obstacles but also provides

a mechanism for making obstacle analysis more robust at RE

time.

VI. THREATS TO VALIDITY

In this section, we discuss the potential threats to the

validity of our findings. Several factors can affect the validity

of our study. Threats to external validity [46] impacts the

generalizability of results. The primary threat to our study’s

external validity is the limited size of the datasets used in this

experiment. However, we believe that the use of three datasets

with different complexity helps to mitigate this threat. Another

external validity could be our chosen tool. For example, Magic

Draw allows executing SysML diagrams (e.g., parametric

diagrams) and testing different values while simulation, which

may not apply to other SysML tools.
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Fig. 6. Obstacles status using requirements profile

Fig. 7. Verify traceability matrix where rows represent obstacles (i.e.,
extended requirements), and columns represent test cases.

Threats to internal validity are influences that can affect the

independent variable with respect to causality [46]. Internal

validity could be our selection of attributes. However, we

follow the classification of obstacles according to KAOS

model in [19], and also base on the elements of the KAOS goal

model. Construct validity is the degree to which the variables

accurately measure the concepts they claim to measure [46].

To mitigate the threats, we adopt AUC metric, which is

extensively used in classification problems.

VII. PRACTICAL APPLICATION

Integrating obstacles analysis techniques helps requirements

engineers to identify obstacles at RE time. However, in prac-

tice, especially in the context of CPS, it is not clear whether

the obstacles are due to cyber or physical components, or

both. Thus, classifying and categorizing these obstacles via

machine learning algorithms can provide an initial mechanism

for: 1) identifying these components, especially for obstacles

that might arise under uncertain conditions (i.e., obstacles due

to uncertainty), and 2) successfully enabling specific domain

modeling approach at earlier stages, (e.g., guide in identifying

requirements stereotypes).

One of the challenges that modelers have when writing

requirements in SysML is that there is little information on

how to properly layout the Requirements Diagrams [47]. We

observed that obstacle tree (also goal model) can be mapped to

a Requirements Diagram in SysML, in which the negated goal

is the main requirement (i.e., a general requirement in SysML),

and the obstacles are extended requirements. This could guide

modelers to better layout the Requirements Diagram.

As mentioned earlier, the deeper we trace the obstacle tree;

the more finer obstacles are. Specifically, obstacles at the

leaves should correspond to cyber, physical, but not cyber-

physical components. SysML model testing then can be used

for validating these obstacles, and further helps engineers dur-

ing maintenance in identifying the responsible disciplines (i.e.,

software engineers, electrical engineers, and/or mechanical

engineers) for handling these obstacles, which saves efforts

and time.

VIII. CONCLUSION

In this paper, we investigated machine learning’s capa-

bilities of automatically classifying the obstacles generated

from KAOS into four components (i.e., cyber, physical, cyber-

physical, and uncertain). We then derived test cases based on

the classified obstacles to automatically execute model testing

within a state-of-practice SysML tool, namely, Magic Draw.

Our results show that Naive Bayes are among the most stable

obstacle classifiers. In particular, Naive Bayes outperforms J48

and SVM using three different datasets. Additionally, while

model testing is guided by our obstacles identification, it

provides a mechanism for validating these obstacles during

model testing.

Our future work includes defining heuristics for deriving and

testing obstacles in the context of CPS, and further integrating

obstacle resolutions techniques of the derived obstacles in case

of their occurrence. We also plan to identify specific properties

and constraints for each of the created CPS stereotypes.
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