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Abstract—Automated production systems are design-to-order,
custom-built mechatronic systems that are intended to deliver
automation capabilities to satisfy the stakeholder requirements
in the manufacturing/production domain. Traceability has its
research root in requirements engineering (RE) and is defined
as “the ability to describe and follow the life of a requirement”.
Such descriptions and followings have mainly been scoped within
a single software project’s process and artifacts. We argue that,
in the context of automated production systems, the scope of
traceability shall go beyond the software engineering boundary
into the environments which the software is operated. We outline
in this position paper our aim to define a new form of the
trace links and to explore the role of these links in the RE of
automated production systems. In particular, we adapt a formal
interaction-oriented RE framework that focuses on specifying
the commitments of participants rather than the goals of each
individual participant. We then integrate model checking into the
framework to elaborate when, why, and how much traceability
should be instrumented. We demonstrate our approach with a
bench-scale automated production system where model-driven
engineering practices such as constructing and evolving SysML
models are adopted.

Index Terms—Automated production systems, requirements
traceability, systems traceability, SysML, model checking.

I. INTRODUCTION

In their seminal work, Gotel and Finkelstein [1] defined

traceability as “the ability to describe and follow the life of a

requirement, in both a forwards and backwards direction (i.e.,

from its origins, through its development and specification, to

its subsequent deployment and use, and through all periods

of on-going refinement and iteration in any of these phases).”

Since then, much effort has been made in researching specific

areas of the traceability problem, such as trace link creation,

visualization, and maintenance.

The scope of current traceability work is primarily within a

single software project. This is reflected in a recent definition

where traceability is referred to as “the ability to interrelate any

uniquely identifiable software artifact to any other, maintain re-

quired links over time, and use the resulting network to answer

questions of both the software product and its development

process” [2].

Scoping traceability within the software engineering bound-

ary shapes the form of the trace links, i.e., what counts as

a link and what does not. For example, in many trace link

recovery approaches like [3, 4, 5], a link is composed of a

source artifact (e.g., a textual requirement serving as the trace

query) and a target artifact (e.g., a Java method implementing

the requirement). Such a form (the “what”) is tightly coupled

with the “how”, i.e., the use of information retrieval (IR)

techniques to automatically generate the candidate links for

a given trace query. The coupling, in turn, influences when
to trace and how much traceability information is needed. IR-

based techniques support after-the-fact tracing (the “when”)

and strive to retrieve all the correct links and only the correct

ones, i.e., to achieve both recall and precision at a 100% level

(the “how much”).

The “what”, “how”, “when”, and “how much” are all

driven by the “why” [6], and for requirements traceability,

an important “why” is to understand the fulfillment of a

particular requirement or a set of requirements. In certain kinds

of software-intensive systems such as a Web application, a

requirement (e.g., automatic logout) can be fulfilled within

software engineering. In other words, it is sufficient to estab-

lish trace links between the requirement and other software

artifacts such as source code, test cases, etc. However, the

requirements of some other systems cannot be satisfied by

software alone. This is especially the case for automated pro-

duction systems where software must integrate and coordinate

well with the mechatronic environments in which it operates.

Automated production systems are the key enablers for

Industry 4.0 that is aimed to fully leverage cyber-physical sys-

tems in the manufacturing/production domain [7]. An example

is the special-purpose machinery for producing consumer

goods like yogurt. A more complex example of automated

production systems is the wood-working plant integrating

hybrid processes (continuous and discrete facility modules)

and logistic processes such as warehouse management [8].

Clearly, tracking the life of a requirement in these systems

cannot and should not be limited only to the software artifacts.

Our objective of this paper is to explore the form and the usage

of trace links in automated production systems where model-

driven development is practiced.

II. BACKGROUND AND RELATED WORK

We use the Pick & Place Unit (PPU) to ground our

discussions about automated production systems, as well as the

requirements and the traceability information in these systems.

The PPU is a bench-scale demonstrator derived from industrial

use cases to evaluate research results at different stages of

the engineering process in the mechatronic manufacturing

domain [9]. Although being a simple case, the PPU is complex

enough to demonstrate an excerpt of the challenges that arise
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Fig. 1. High-level structural overview of the PPU: � stack, � ramp, � stamp,
and � crane [9].

Fig. 2. Manufacturing process of the PPU [9].

during engineering of automated production systems in the

context of Industry 4.0.

Figure 1 shows four mechatronic components that consist of

sensors and actuators requiring control for operation. Although

these hardware components are common in embedded sys-

tems, automated production systems like the PPU are designed

specific for manufacturing/production domains. Functionality

wise, the stack (Figure 1�) acts as an input storage where

black plastic, white plastic, and metallic work pieces are

fed for the PPU to process. The work pieces are pushed

from the stack into a handover position. At the handover

position, sensors are installed to identify the type of work

piece provided by the stack.

The ramp (Figure 1�) serves as the work piece depot storing

the outputs after the processing from the stamp (Figure 1�).

Depending on the type of the work piece, different pressures

are applied over the stamp. The crane (Figure 1�) transports

work pieces by picking and placing them between the three

positions: stack, stamp, and ramp. Note that Figure 1 shows

only a high-level structural view of the PPU. More detailed

ones can be found in [9], e.g., zooming in the crane shows that

the work pieces are gripped or released by a vacuum gripper,

which is mounted on a boom.

For the initial configuration of the PPU, the manufacturing

process is illustrated in Figure 2 using a Systems Modeling

Language (SysML)1 activity diagram. SysML is now com-

monly used in many industry sectors and has become a de

1http://www.omgsysml.org

facto standard for systems engineering [10]. While extensively

reusing UML2, SysML also provides its own extensions like

the parametric diagram. A key distinction is that SysML

expresses systems engineering semantics (interpretations of

modeling constructs) better than UML, allowing different

engineering disciplines to externalize and communicate their

concerns.

Like other automated production systems, the PPU contin-

uously experiences the changing requirements. Because these

systems are design-to-order and custom-built, it is to the

best interest of all the stakeholders (customers, end users,

engineering team, etc.) if the automated production systems

can sustain the various kinds of changes rather than being

short lived and then expensively recreated [11]. The PPU case

study provides a rich set of engineering tradeoffs when the

changing requirements are introduced [9]. For example, one

change requires the addition of two more conveyors and the

respective pushing cylinders to the ramp. Although software

alone cannot fully address the changes, it plays an important

and integral role in satisfying the requirements.

Software in the PPU, and in automated production systems

in general, is developed on Programmable Logic Controllers

(PLCs) [8]. PLCs are characterized by their cyclic data pro-

cessing behavior: reading sensor input values, storing them in a

process image, computing, and writing output values to control

the actuators. While variants exist (e.g., PLCopen, Siemens

PLC, and Rockwell PLC), PLCs currently are and will remain

the state of industrial practice for some decades [8]. The co-

existence and the interdependency of different engineering

artifacts such as SysML models and PLC codes challenge how

the PPU meets the requirements. We next survey the research

on traceability related to model-driven systems development.

The use of IR methods has received much attention to

automatically recover the traceability information within a

software project [2]. Beyond the software boundary, the appli-

cability of textual cues is weakened though not entirely lost.

For example, Czauderna et al. [12] extended the probabilistic

network IR models to trace how product requirements comply

with regulatory standards. Nejati et al. [13] proposed an

automated approach to identify the impact of requirements

changes on system design, when the requirements and design

elements are expressed using SysML models. Two steps are

involved in [13]: extracting estimated set of impacted model

elements via static slicing, and ranking those model elements

based on textual information.

While the textual information is helpful in identifying

and ranking the candidate traceability links, the scope of

applicability of IR-based trace recovery techniques is the set

of systems which are “textually rich”. However, automated

production systems have become increasingly “model rich”.

Abilov et al. [14] pointed out the lack of traceability support

for model transformations and defined a general mapping

scheme and rule to achieve model synchronization. Li and

colleagues performed variability analysis of SysML-based

2http://www.uml.org
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Fig. 3. Establishing and using the trace links to refine, verify, and fulfill
requirements of automated production systems.

requirements for embedded real-time systems to improve the

consistency among system models [15].

In summary, identifying the traceability information via

textual cues has been attempted in model-driven RE [16,

17, 18, 19]. The reported experience on the PPU suggests

that deep domain knowledge is of crucial importance in

linking the elements from the many heterogeneous models:

A case in point is the trace link between the SysML element

“expVelocity” and the Simulink variable “in1” [20]. Orthogonal

to the specific way that the trace links are generated, our

approach presented next embeds the traceability information

in a broad array of model-driven RE activities for automated

production systems.

III. TRACEABILITY FOR FULFILLING REQUIREMENTS OF

AUTOMATED PRODUCTION SYSTEMS

Our vision of creating, updating, and using the trace links

in the RE for automated production systems is overviewed in

Figure 3. To illustrate our proposed approach, we use a change

scenario of the PPU where the ramp is replaced for the purpose

to increase throughput [9]. Such a change is regarded as a

requirement to be satisfied, and in Figure 3, this is expressed

as part of the stakeholder needs that drive the entire process

of our approach.

Because satisfying the requirements of automated produc-

tion systems like “changing the ramp to increase through-

put” involves interacting engineers (e.g., mechanical engineers

and software engineers), we base our approach on an RE

framework called Protos [21] that formalizes the rules of en-

counter in a socio-technical system. Different from traditional

requirements models emphasizing the goals of the individual

principals [22], Protos gives prominence to their social rela-

tionships, specifically the commitments that the principals have

for each other. A commitment is formally expressed as a four-

tuple C(debtor, creditor, antecedent, consequent): the debtor

is committed to the creditor that if the antecedent holds, the

consequent will hold.

Fig. 4. Creation, maintenance, and use of the trace links.

Table I shows an example of Protos-based requirements

modeling for our ramp change scenario. This example is based

on the scenario change Sc0→Sc1 documented in [9]. The

change set groups related needs to be satisfied by the PPU,

e.g., R(Ramp, IncreaseStorage) represents the requirement for

the output of the PPU (Ramp) to increase its storage. The

commitment, C(ME, Ramp, T, ReplaceStorage), specifies the

expectation where the mechanical engineer (ME) is committed

to the Ramp in such a way that under no specific conditions

(True) the output storage shall be replaced (ReplaceStorage).

Besides the built-in modeling construct explicating the com-

mitments, Protos allows for a series of refinements to system-

atically derive the specifications from the requirements [21].

Formally, refinement is a relation between problems p and

p′ where p′ is an incremental improvement of p such that a

solution for problem p′ also constitutes a solution for p. The

rightmost column of Table I shows the types of refinement

applied at each Protos step: need refinement, commitment

introduction, etc. While other refinements exist in model-

driven RE [23], Protos defines its own refinement types [21].

The main benefits of Protos are the considerations of

openness and autonomy [24], facilitated by a process whose

starting point consists of only the needs/requirements and

whose completion point is reached when the needs are empty.

However, a limitation is the lack of checking of whether a

commitment is met or not. While the participants should have

their own autonomy, the commitment that they have of each

other must be guaranteed.

To provide support for checking the actual delivery of the

specified commitment, we complement Protos with the trace

links of the automated production systems. Figure 4 presents

our idea in which an interface is drawn between the informa-

tion exposed to the model checker (discussed below) and the

information used for the development and management of the

trace links themselves. It is the interface that we consider as the

new form of traceability in automated production systems. In

another word, much information should not be shared among

the principals in order to promote autonomy and innovation
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TABLE I
COMMITMENTS AND REFINEMENTS IN PROTOS

Specification Assumptions Needs in terms of change set (CS) Refinement Type

1 φ φ
R(Ramp, IncreaseStorage),
CS1 = {R(Stack, BlackWP) . . .}

2 φ
A1 = {IncreaseStorage

R(Ramp, ReplaceStorage), CS1 Need Refinement
↪→ ReplaceStorage}

3 C(ME, Ramp, �, ReplaceStorage) A1 R(Ramp, ReplaceStorage), CS1 Commitment Introduction II

4 C(ME, Ramp, �, ReplaceStorage)
A2 = A1 ∪ R(Stack, BlackWP),

Onus
O(ME, ReplaceStorage) CS2 = CS1 − R(Stack, BlackWP)

. . . . . . . . . . . . . . .

of a principal. However, once the traceability information

impacts the interactions of the principals, it must be properly

established and maintained. Tracing is not simply attaching a

piece of information (e.g., a code snippet, a model element,

etc.) from one principal to another; rather, the management of

the trace links must be performed in a mutual manner.

In our example, when the mechanical engineer attempts to

discharge the commitment, C(ME, Ramp, T, ReplaceStorage),
the throughput requirement, “number of output work pieces

= 3”, guides the work on the trace links. The engineer with

tool support queries existing links relevant to the throughput

property, investigates the changes made, and updates the

traceability information. As a result, the throughput property

of the PPU is re-asserted to be equal to six work pieces.

In Figure 4, the change reflected in the SysML model helps

justify the storage increase of the output of the PPU (Ramp).

Making the relevant traceability information explicit yet just-

in-time [25] underpins our ongoing work.

Properties like “# output throughput : 6” supported by

the trace links are verified automatically in our approach.

Currently, we explore the use of modeling checking tools for

this purpose. This is inspired by Telang and Singh’s work

that preceded Protos [26] in which the syntactic properties

are verified by temporal model checking tools. Note that we

distinguish between the syntactic properties of the correctness

and completeness of refinements in Protos and the semantic

properties related to the specific automated production system

(e.g., the throughput constraint of the PPU). Figure 5 shows

a simple state transition diagram in which the commitment

under discussion is progressed. In each state of Figure 5,

we explicitly separate the syntactic state variables from the

semantic ones. We implement the model using TLA+3 as

shown in Figure 6.

IV. CONCLUDING REMARKS

In this position paper, we outline an approach to making the

traceability information valuable in the RE for automated pro-

duction systems. The trace links, along with model checking,

complement the Protos framework in that commitments can

be explicitly tracked and automatically verified. Altogether, the

approach provides a formal, thorough, and machine-checkable

way for fulfilling the stakeholder needs and desires in the long-

living and ever-changing automated production systems. As far

3http://lamport.azurewebsites.net/tla/tla.html

Fig. 5. State transition diagram amenable for model checking.

Fig. 6. TLA+ model snippet.

as the trace links are concerned, we realize that the “what”

and the “how” are coupled; however, this coupling offers

insights into the “when” and the “how much”. Specifically, we

believe that, each time a participant delivers a commitment,

the trace links shall be created, queried, or otherwise updated.

While the trace links can be of different abstraction and
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detail, our approach suggests an interface where only the

checkable properties are exposed and therefore need to be

stored and maintained. Our future work includes testing more

changing requirements of the PPU and other instances of

automated production systems, as well as developing reusable

components for TLA+ model construction and templates for

temporal property specification.
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incremental bidirectional partial model synchronization between organi-
zational and functional requirements models,” in International Model-
Driven Requirements Engineering Workshop (MoDRE), Ottawa, Canada,
August 2015, pp. 1–10.

[15] M. Li, F. Batmaz, L. Guan, A. Grigg, M. Ingham, and P. Bull, “Model-
based systems engineering with requirements variability for embedded
real-time systems,” in International Model-Driven Requirements Engi-
neering Workshop (MoDRE), Ottawa, Canada, August 2015, pp. 36–45.

[16] M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in International
Model-Driven Requirements Engineering Workshop (MoDRE), Karl-
skrona, Sweden, August 2014, pp. 67–76.

[17] O. B. Badreddin, A. Sturm, and T. C. Lethbridge, “Requirement
traceability: A model-based approach,” in International Model-Driven
Requirements Engineering Workshop (MoDRE), Karlskrona, Sweden,
August 2014, pp. 87–91.

[18] N. Sannier and B. Baudry, “Toward multilevel textual requirements
traceability using model-driven engineering and information retrieval,”
in International Model-Driven Requirements Engineering Workshop
(MoDRE), Chicago, IL, USA, September 2012, pp. 29–38.

[19] C. Robinson-Mallett, “An approach on integrating models and textual
specifications,” in International Model-Driven Requirements Engineer-
ing Workshop (MoDRE), Chicago, IL, USA, September 2012, pp. 92–96.

[20] S. Feldmann, S. J. I. Herzig, K. Kernschmidt, T. Wolfenstetter, D. Kam-
merl, A. Qamar, U. Lindemann, H. Krcmar, C. J. J. Paredis, and
B. Vogel-Heuser, “Towards effective management of inconsistencies in
model-based engineering of automated production systems,” in IFAC
Symposium on Information Control Problems in Manufacturing (IFAC),
Ottawa, Canada, May 2015, pp. 916–923.

[21] A. K. Chopra, F. Dalpiaz, F. B. Aydemir, P. Giorgini, J. Mylopoulos, and
M. P. Singh, “Protos: foundations for engineering innovative sociotech-
nical systems,” in International Requirements Engineering Conference
(RE), Karlskrona, Sweden, August 2014, pp. 53–62.

[22] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” in International Symposium on Requirements Engineering (RE),
Toronto, Canada, August 2001, pp. 249–262.
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