
Continuously Delivered? Periodically Updated?
Never Changed? Studying an Open Source Project’s
Releases of Code, Requirements, and Trace Matrix

Wentao Wang∗, Arushi Gupta∗, and Yingbo Wu†
∗ Department of Electrical Engineering and Computing Systems, University of Cincinnati, USA

† School of Software Engineering, Chongqing University, China

{wang2wt, gupta2ai}@mail.uc.edu, wyb@cqu.edu.cn

Abstract—Many open source software projects deliver code
continuously. How are the project’s requirements updated? What
about the traceability information of those requirements? To
answer these questions, this paper reports our initial analyses of
the iTrust medical care project’s all publicly accessible releases.
The results show that, as iTrust releases two versions per year, the
code growth is smooth but the requirements growth experiences
periodic mass updates. The asynchronous evolving paces cause
the RTM stagnant, outdated, and inaccurate. Our work provides
concrete insights into what updates should be applied to the
requirements and the RTM in the face of the code changes,
and illustrates the need for new ways to automatically keep
requirements in sync over continuous release cycles.

Index Terms—Traceability, trace matrix, just-in-time require-
ments, continuous delivery, software evolution, iTrust.

I. INTRODUCTION

Requirements traceability matrix (RTM) establishes the

mapping between a project’s requirements and other types of

artifacts such as source code and test cases. RTM can support

many software engineering tasks [1]: verification and valida-

tion, risk assessment, system-level test coverage analysis, just

to name a few.

One area that RTM can be specially helpful is continuous
delivery where the development team keeps producing valu-

able software in short cycles and ensures that the software

can be reliably released at any time [2]. In each release

cycle, RTM can assist developers in managing the backlog

of implementation issues, reasoning about the dependencies

of upcoming new features with existing ones, and assessing

the impact of requirements change on code and architecture.

Creating the RTM for a single release is no simple matter.

Despite automated support (e.g., candidate traceability link

generation via information retrieval [1]), much manual effort

is still required to make sure that the traceability information

is accurate and complete [3]. Having an explicit RTM as part

of a release, therefore, is rare, and having RTMs in continuous

releases is much rarer.

One project falling into this rare category is iTrust

(http://agile.csc.ncsu.edu/iTrust), an open-source Java applica-

tion aimed at providing patients with a means to keep up

with their medical records, as well as to communicate with

their doctors. The project is developed by students from the

North Carolina State University, and follows an agile way

of releasing a new version of the software (including source

code, requirements-level use cases, RTM documenting the

implementation relationship between use cases and code, etc.)

in every academic semester (i.e., twice a year in Fall and in

Spring) [4]. Because the RTM released by the project team

is so valuable, it has been used as the “answer set” (also

known as “gold standard” or “ground truth”) extensively by

researchers to evaluate the effectiveness of automated methods

(e.g., [5, 6]) and to understand human analyst’s behavior in

requirements tracing (e.g., [7, 8]).

How accurate is the RTM in the face of a software project’s

continuous delivery? We set out to answer the research ques-

tion by analyzing all publicly available iTrust’s releases. This

paper reports our initial study showing that iTrust’s source

code and requirements follow different increase patterns, and

that some requirements changes appear later than the corre-

sponding code changes. Such an asynchronous evolving pace

leads to a stagnant, outdated, and inaccurate RTM as part

of the project release. The results not only challenge the

“ground truth” of manually maintained RTMs, but also suggest

new ways to automatically keep requirements in sync over

continuous release cycles.

II. ITRUST AND ITS RELEASES

The iTrust electronic health care system is an active team

project for undergraduate students in North Carolina State

University’s Software Engineering course. Dr. Laurie Williams

created iTrust in the Fall of 2005 as a patient-centric ap-

plication for maintaining electronic health records. The main

rationale is to have a software-intensive system that combines

medical information from multiple sources to provide a sum-

mary or detailed view of a particular patient’s history in a way

that is useful to the health care practitioners [4].

The project employs Java Server Pages (JSPs) to handle

user interfaces and HTTP requests. The business logics and

data accesses are coded in Java production classes. The project

portal uses a wiki style to organize the release information

including source code, testing documents (acceptance test plan

and test data), requirements (glossary, functional requirements

defined by use cases, non-functional requirements, constraints,

and data field formats), and RTM stored in a spreadsheet.

.
UC32S1 No links
UC32S2 /auth/hcp/viewPrescriptionRenewalNeeds.jsp
UC32S2 ViewPrescriptionRenewalNeedsAction.get

RenewalNeedsPatients()
UC32S2 PersonnelDAO.getPersonnel()
UC32S2 PatientDAO.getRenewalNeedsPatients()
UC32E1 /auth/hcp/viewPrescriptionRenewalNeeds.jsp

.

Fig. 1. Excerpt of iTrust’s RTM.

TABLE I
PUBLICLY AVAILABLE ITRUST’S RELEASES TILL JULY 13, 2015

Ver- Date # of Java Methods # of Req.s Units
sion (mm/dd/yy) total new total new
v4 12/12/07 1106 − 92 −
v6 08/23/08 1496 522 128 37
v7 01/15/09 1548 180 140 19
v8 08/17/09 1500 86 153 14
v9 01/11/10 1636 153 181 20

v10 08/17/10 1737 103 198 23
v11 01/17/11 1856 123 287 140
v12 08/14/11 2135 344 194 48
v13 01/17/12 2342 202 199 6
v14 08/16/12 2336 133 203 7
v15 01/06/13 2378 73 208 5
v16 08/19/13 2421 72 205 11
v17 01/09/14 2665 256 211 10
v18 08/20/14 2849 181 227 16
v19 01/08/15 2946 97 242 15

In iTrust, the RTM specifies how the sub-flows and alter-

native flows of a use case are implemented by JSPs and Java

methods. An excerpt is shown in Fig. 1 where 3 requirements-

level elements are traced: 2 sub-flows (UC32S1 and UC32S2)

and 1 alternative flow (UC32E1). We therefore use “require-

ments unit” to refer to a sub-flow or an alternative flow, and

select Java method as the implementation-level unit of analysis

in our study. “No links” in Fig. 1 indicates that no traceability

information for UC32S1 is recorded in this RTM.

The release of iTrust became open source since version 4

in December 2007. Starting from version 6, the source code

was released twice a year (Fall and Spring) over Source-

Forge (http://sourceforge.net/projects/itrust/). The two leftmost

columns of Table I display the basic information of all publicly

accessible iTrust versions. The latest version up to this writing

is v19 released in January 2015. It is clear from iTrust’s

portal that source code changes drive project release, though

requirements are maintained separately in the project wiki. It

is important to note that the spreadsheet defining the RTM can

only be downloaded as part of the code release.

The code-driven releases of iTrust present challenges for

keeping other artifacts on track. Requirements, for example,

may not be kept up-to-date. In fact, Charrada et al. [9] studied

iTrust in their work and identified 14 outdated use cases when

the software evolved from v10 to v11. While their work helped

automatically identify which requirements might be updated

between two consecutive versions, our analyses in the next

section investigate the actual changes that should be applied

to the requirements and trace those changes throughout the

entire project history.

0

1

2

3

4

5

v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19

Java methods
Requirements units

Fig. 2. Cumulative increase rate (y-axis) over continuous releases (x-axis).

III. CHANGES OF CODE, REQUIREMENTS, AND RTM

Our analyses are based on iTrust’s release versions. For

each version, we used an automated tool [7] to extract all

the Java methods in the code base. We consider a method of

the latter version to be new if it does not exist in the previous

version. The diff is performed on the basis of a method’s name

and its full path. Because iTrust’s requirements are maintained

in the project wiki, we take a requirements snapshot on the

release day or on the prior day closest to the release to

be the one associated with a particular code release. Each

requirements unit (i.e., sub-flow or alternative flow) is then

identified manually following the unique ID (e.g., UC32S1,

UC32E1, etc). Similar to Java method, a requirements unit

is new if it does not appear in the previous version. Table I

provides the quantities of total and new methods, as well as

the requirements counterparts.

To analyze the change trends, we plot in Fig. 2 the cumu-

lative increase rate of code and requirements. By cumulative,

we mean the number of new methods (or requirements units)

accumulated up to the current version. The cumulative increase

rate then equals to the method-cumulative (or requirements-

unit-cumulative) divided by the baseline number (i.e., v4 in

our case). Fig. 2 shows that the growth of Java methods is

smooth, complying particularly well with Lehman’s law of

“continuing growth” [10]. The requirements growth is smooth

in the beginning, experiences an abrupt jump from v10 to

v11, and flattens down after that. The main reason of the

jump is due to the “mass update of all requirements to

reflect actual implementation of iTrust” logged by the actual

developers between v10 and v11 on 12/31/2010. As a result,

140 new requirements units were added (shown in Fig. 2),

and meanwhile 52 outdated units were removed (not shown

in Fig. 2). This indicates the periodic, catching-up nature of

requirements update in a project whose releases are driven by

code changes.

Compared to Java method’s continuously smooth growth

and requirements unit’s periodically jumpy increase, iTrust’s

RTM never changed. The RTM spreadsheet first appeared in

v10’s release and stayed the same since then in every release

till v19. Interestingly, the manually constructed RTM was

released together with v10’s code. This was before the mass

update mentioned above, which resulted in better synchroniza-

tion between code and requirements. We speculate that, by

creating the RTM, the project team realized many requirements

2%

7%

22%

69%

5%

12% 2%

81%

3% 1% 2%

94%

Extension

New

Realization

Others

v6 v12 v17

Fig. 3. Classifying new Java methods as they relate to requirements.

were outdated and hence the need for mass update. Testing the

speculation will require future work. In any event, the stagnant

status of the RTMs motivates our analyses of what changes

that the requirements and the RTM should have in order to

keep up with the continuous code change.
We observe that each newly added Java method can be

linked to the requirements in three different ways.

• Extending an existing requirement. A pair of ad-

ditions in v6 corresponded to each other. On the re-

quirements side, UC11S2 (document office visit) was

expanded to have an optional ordering by the lab

procedures. Accordingly, the new method OfficeVisit-
DAO.addLabProcedureToOfficeVisit() was implemented to

fulfill the requirements extension.

• Implementing a new requirement. In v17, Auth-
DAO.setDependent() was created to implement UC58S2

(manage dependency). UC58S2 appeared as a new re-

quirements unit in v18 — an instance of delayed re-

quirements update compared to the corresponding code

change.

• Realizing a previously unfulfilled requirement. Al-

though UC3S4 (authenticate users) appeared in v4, it

had not been fulfilled. Had the RTM existed in v4,

UC3S4 would have “no links”. The method LabProce-
dureDAO.getLabProceduresForLHCPForNextMonth() was

added to the code base in v6 to implement UC3S4. In

this way, the new code helped clean up the backlog of

existing but unfulfilled requirements.

We choose to analyze 3 iTrust versions (v6, v12, and v17) as

they exhibit the greatest number of new Java methods (522,

344, and 256) shown in Table I. For each new method, we

manually classify it based on the above categories. If none of

the 3 categories applies, we place the method into “others”.

The analysis results are presented in Fig. 3. In an early version

(v6), 22% of the methods were created to fulfill previously un-

fulfilled requirements. Such cleaning ups, whose proportions

decreased in proportion in v12 and v17, had direct impact on

RTM changes, namely, the “no links” should be replaced by

the methods to accurately capture the updated requirements

traceability information. Requirements extensions remained

relatively stable in Fig. 3. This may suggest the addition of

new requirements-code tuples is expected to be normal during

evolution, confirming Lehman’s law of “self regulation” [10].

TABLE II
DETAILING THE CATEGORIES OF NEW METHODS

Method

Req.s

v6 v12 v17
Ext. New Realiz. Total Ext. New Realiz. Total Ext. New Realiz. Total

v4 11 103 114 17.5 17.5 6 4 10
v6 30.5 30.5 1 1 2 2
v7 2 2
v8 1 1
v9 0.5 0.5 7 7 2 2
v10
v11
v12 12.5 12.5
v13
v14 2 2
v15
v16
v17 27 27
v18 3 3
v19
Total 11 36 103 150 18.5 39.5 7 64 10 3 4 17

The category of new requirements shows fluctuated distri-

butions in Fig. 3. To better understand the extent to which

requirements addition synchronizes with code addition, we

present a detailed view in Table II. Take the set of Java meth-

ods created in v6 as an example, 36 appeared to implement

the requirements that did not exist in v4. While a majority of

the new requirements were synchronized in v6, some were

delayed (e.g., 2 showed up in v14). The reason of non-

integers in Table II is due to the many-to-many relation be-

tween code and requirements [11]. The newly created method

PatientDAO.getRepresenting(), for instance, was responsible

for 2 requirements’ implementation: UC23S3 (view compre-

hensive patient report) appeared in v6 and UC34S4 (report

telemedicine monitoring details) appeared in v9. Similarly,

PatientInstructionsDAO.add() of v12 both extended UC11S2

(document office visit) of v4 and implemented a new require-

ment UC44S1 (patient specific instructions) of v12.

Recognizing the delayed update of new requirements also

helps explain the large proportions of “others” in Fig. 3.

Although some methods were added to the code base in a

particular release, the requirements that these methods were

implementing might appear much later in the project repos-

itory. One explanation is that the developers perceive future

requirements and start experimenting them with the current

code base. For example, several new methods containing

“CDC” in their names were created in v17, possibly foreseeing

features related to the U.S. Centers for Disease Control (CDC).

However, “CDC” was not mentioned in the requirements

at all (v17, v18, and v19). The use of such foreseeably

targeted requirements was reported as part of just-in-time

requirements engineering [12]. Developers can take advantage

of the traceability information of the targeted requirements to

refactor the code to facilitate the fulfillment of the upcoming

requirements.

Another possible reason why requirements are documented

later is that complete implementation of the requirements has

not been achieved yet, even though partial implementation may

be already on the way. This incremental delivery fits well with

agile development. However, it presents a specific challenge

on keeping the requirements and the RTM in sync with the

continuous code changes.

Limitations. A major limitation of our study is to rely only

on the name and full path to distinguish new method. Original

analysis [13] and heuristics derived from observations [9] can

help improve the accuracy of new methods’ identification.

Another limitation is that we examine only additions as the

software evolves but ignore other changes such as removals

and refactorings. Clearly, when the mass requirements update

was conducted from v10 to v11, not only a great number

of new requirements were added (140), but many outdated

requirements were removed as well (52). Analyzing other

types of changes will likely offer new insights and implica-

tions. For the traceability-related analyses, we select only 3

release versions with highest number of new methods. Looking

into other versions will provide more data points to uncover

patterns; however, as our current analyses show, considering

only two consecutive releases can miss important change

correlations across multiple versions. Finally, our analyses are

driven by the source code release dates. Although we feel the

choice is reasonable for iTrust, sticking strictly to the release

date may pose some threats. As mentioned before, iTrust uses

the project wiki to maintain and evolve requirements artifacts.

Oftentimes, after a code version was released, requirements

would experience some changes ranging from a few days to a

few weeks [9]. The practice may be unique to student projects

like iTrust, but taking project-specific release practices into

account is important.

IV. SUMMARY

Researchers working on requirements tracing need datasets

to evaluate their approaches. Although many open-source

software projects exist, few maintain requirements evolutions

let alone the traceability information about the requirements.

Having these valuable pieces of information has made iTrust a

well-adopted traceability benchmark used in numerous studies.

Our work is motivated by the question concerning the accuracy

of manually maintained RTMs. The initial analyses reported in

this paper show that the RTM released together with iTrust’s

source code was never updated, despite considerable changes

at the requirements and code levels happened in software

evolution. One possible cause of RTM’s stagnancy, according

to our analyses, can be the asynchronous evolution paces of

code and requirements. In another word, because iTrust’s RTM

records the implementation relationship between requirements

and code, the update of RTM relies heavily on the update

of requirements and the update of code. When the code and

requirements updates are not very well coordinated, keeping

the RTM up-to-date faces significant challenges.

Approaches supporting automated identification of outdated

requirements began to emerge [9]. Building on this research

thread, our work further contributes 3 types of requirements

changes (extension of an existing requirement, implementa-

tion of a new requirement, and realization of a previously

unfulfilled requirement) that could be applied to an evolving

software project. Our future work includes conducting more

in-depth studies on iTrust and other software projects and

developing automated ways to updating requirements and their

traceability information.

ACKNOWLEDGEMENT

Funding for this work was partially provided by the U.S. National
Science Foundation (Grant CCF-1350487) and the National Natural
Science Foundation of China (Grant No. 61375053).

REFERENCES

[1] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: the study of methods,” IEEE
Transactions on Software Engineering, vol. 32, no. 1, pp. 4–19, January
2006.

[2] L. Chen, “Continuous delivery: huge benefits, but challenges too,” IEEE
Software, vol. 32, no. 2, pp. 50–54, March/April 2015.

[3] D. Cuddeback, A. Dekhtyar, and J. H. Hayes, “Automated requirements
traceability: the study of human analysts,” in International Requirements
Engineering Conference (RE), Sydney, Australia, September-October
2010, pp. 231–240.

[4] A. Meneely, B. Smith, and L. Williams, “iTrust electronic health care
system case study,” in Software and Systems Traceability, J. Cleland-
Huang, O. Gotel, and A. Zisman, Eds. Springer, 2012, pp. 425–438.

[5] N. Niu and A. Mahmoud, “Enhancing candidate link generation for
requirements tracing: the cluster hypothesis revisited,” in International
Requirements Engineering Conference (RE), Chicago, IL, USA, Septem-
ber 2012, pp. 81–90.

[6] A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness approach
for traceability link recovery,” in International Conference on Program
Comprehension (ICPC), Passau, Germany, June 2012, pp. 183–192.

[7] W. Wang, N. Niu, H. Liu, and Y. Wu, “Tagging in assisted tracing,” in
International Symposium on Software and Systems Traceability (SST),
Florence, Italy, May 2015.

[8] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, “Departures from
optimality: understanding human analyst’s information foraging in as-
sisted requirements tracing,” in International Conference on Software
Engineering (ICSE), San Francisco, CA, USA, May 2013, pp. 572–581.

[9] E. B. Charrada, A. Koziolek, and M. Glinz, “Identifying outdated
requirements based on source code changes,” in International Require-
ments Engineering Conference (RE), Chicago, IL, USA, September
2012, pp. 61–70.

[10] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proc. of IEEE, vol. 68, no. 9, pp. 1060–1076, September 1980.

[11] N. Niu and S. Easterbrook, “Analysis of early aspects in requirements
goal models: a concept-driven approach,” Transactions on Aspect-
Oriented Software Development, vol. III, pp. 40–72, 2007.

[12] N. Niu, T. Bhowmik, H. Liu, and Z. Niu, “Traceability-enabled refactor-
ing for managing just-in-time requirements,” in International Require-
ments Engineering Conference (RE), Karlskrona, Sweden, August 2014,
pp. 133–142.

[13] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp. 166–181, February 2005.

