
Short-Term Revisit during Programming Tasks

Xiaoyu Jin, Nan Niu

Department of Electrical Engineering and Computing Systems

University of Cincinnati

Cincinnati, OH, 45221, USA

jinxu@mail.uc.edu, nan.niu@uc.edu

Abstract—Previous studies of Web page revisitation were only
focused on long-term revisit ranging from hours to days. In this
paper, we study the short-term revisit of less than one hour such
as the revisit behavior during a small programming task. We first
perform an exploratory study to observe the short-term revisit
phenomenon. We then perform controlled experiments with our
designed tool support as treatment by inviting 20 biomedical
software developers to perform two software change tasks. Our
results show that the participants with tool support used 19.7%
less time than the ones without tool support.

Keywords-revisitation; foraging theory; software change tasks;
end-user programming

I. INTRODUCTION

Programmers constantly need to go back and revisit various

kinds of documents during programming, which could be inef-

ficient thus hurting productivity [9]. Previous effort on revisit

behavior mainly focuses on 4 aspects: (1) high percentage of

revisit behavior occupied in the overall browsing history, (2)

various revisit patterns, (3) reasons behind the revisit behavior,

and (4) revisit prediction. Previous studies consistently found

a high revisit rate ranging from 45% to 81% during Web

browsing and usage [4]–[6], indicating the revisit behavior

is an important research topic. However, these studies were

all based on log analysis for a long time span ranging from

days to months. We would like to zoom in to further study

the short-term revisit behavior within several hours during end-

user developers’ everyday programming tasks. In this work, we

first perform an exploratory experiment to observe the revisit

behavior and further develop tool support. We then perform

controlled experiments with our designed tool support as a

treatment. The results show that our preliminary tool support

reduced 19.7% of programmers’ time in finishing their tasks.

II. RELATED WORK

The study of revisit behavior started with the focus of

the rates that the revisits are occupied during searching and

browsing. Although previous studies reported varying revisit

rates of 58% [10], 81%[5], and 51%[6], we can draw a

consistent conclusion that revisit is a constant and repeti-

tive behavior worth research attentions. Obendorf et al. [7]

categorized revisit behavior according to the time span. As

shown in Fig. 1, they reported the categories of revisit as

short-term revisit, medium-term revisit, and long-term revisit

along with the observed proportions for each category. They

Fig. 1. Categories of revisit behaviors (adopted from [7])

also identified users’ strategies for each category. For short-

term revisits, people switch between windows or tabs instead

of navigating back and forth to achieve fewer revisits and

page requests. For medium-term revisits, direct access strate-

gies (URL-entry, bookmark selection) were most frequently

used. Long-term revisits generally aim to rediscover content

accessed earlier, and hyperlinks initiated the most long-term

revisitations. Although they concluded that users encountered

severe problems in the category of long-term revisits, we

study short-term revisit in this paper. Our rationale is that

even though people have no problem re-finding previously

visited information after a short while, the time used for revisit

can still be reduced whereby improving overall efficiency,

especially for programming, which involves large volume of

information digestion and highly intelligent challenges.

III. EXPLORATORY STUDY

Our first objective is to investigate how the revisit behavior

looks like during end-user developers’ programming. Specif-

ically, we invited five bioinformatics researchers to perform

the same software change task we designed. Each participant

was given one hour to perform the task, and the process

was recorded as a video. By analyzing these videos, we have

three observations. First, if a participant revisited an entity, he

would probably revisit it more times later. Second, even though

participants have no difficulty finding the entity information

previously visited, the process can be costly sometimes. Since

there are always many windows, tabs, and pages opened when

performing the change task, the participants may continuously

go to the wrong places to find information and sometimes even

get lost and forget what he wanted initially. Third, the revisit

behavior itself is essential in finishing the task since it follows

participants’ inner goal, but the context switch can interrupt

participant’s flow. It takes time for the participant to refocus on

the source code file that he was working on and to figure out

which step he was in. The longer the participant was deviated

by the revisit, the longer he would need to re-concentrate on

the source code file to be edited.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.93

320

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

320

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

320

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.93

322

Fig. 2. A use case of our tool support

Based on the three observations, we designed a tool (Fig. 2)

to help improve the revisit efficiency. There are two features

for the tool. First, it utilized the screenshot tool and set the

hot key to access the function conveniently. Second, the image

generated by the screenshot tool has the feature of always-on-

top of the screen, adapted from FileBox Extender [1]. Our tool

can also support multiple windows simultaneously floating on

top. Fig. 2 shows that the user can program on the source

code file and always refer to the two small floating windows in

the meantime. The design will reduce the redundant behavior

in programming and keep programmer’s flow smoothly. We

expect the tool to be practical and effective in reducing the

time cost of revisit because the tool is designed to address the

three observations we made earlier.

IV. CONTROLLED EXPERIMENT

After having a designed tool support that we named as

EasyRevisit, we redesigned our experiment to integrate our

tool as treatment and also added a second change task. The

two change tasks were designed by adding features to two

software systems named ImageJ [2] and StochKit [3] respec-

tively. The aim is to test if EasyRevisit is effective during

the actual software change tasks. We invited 20 biomedical

researchers to perform the two change tasks. Each participant

performed one task with EasyRevisit and the other without it.

We counterbalanced both EasyRevisit-treatment order and the

task order. We present our analysis and results next.

Tables I and II summarized the results for ImageJ task

and StochKit task respectively. The results were generated

by calculating the average and standard deviation of the 20

participants’ data. The number of visits and revisits were

calculated in two ways: nonredundant and redundant. Nonre-

dundant means that we only count the distinct entities that a

participant visited while redundant means we count all entities

visited including the ones visited repeatedly. From the two

tables, we can first draw some general conclusions that when

there is no tool support, the time of revisit occupies about

20% of total time, and the number of revisits correspondingly

occupies 25.9% to 32.5% out of total number of revisits.

TABLE I
STATISTICAL RESULTS FOR IMAGEJ.

Average # Average time (min)
with EasyRevisit with EasyRevisit

(without) (without)
Total visits (nonredundant) 32.4 (29.8)

39.2 (48.8)
Total visits (redundant) 73.2 (128.3)
Revisits (nonredundant) 7.5 (6.8)

4.2 (10.3)
Revisits (redundant) 13.8 (33.2)

Revisits rate (nonredundant) 23.1% (22.8%)
10.7% (21.1%)

Revisit rate (redundant) 18.9% (25.9%)

TABLE II
STATISTICAL RESULTS FOR STOCHKIT.

Average # Average time (min)
with EasyRevisit with EasyRevisit

(without) (without)
Total visits (nonredundant) 17.3 (18.5)

54.8 (59.6)
Total visits (redundant) 66.4 (86.7)
Revisits (nonredundant) 5.8 (5.5)

7.2 (10.3)
Revisits (redundant) 16.8 (28.2)

Revisits rate (nonredundant) 33.5% (29.7%)
13.1% (17.3%)

Revisit rate (redundant) 25.3% (32.5%)

For ImageJ task, although the distinctly revisited entities

increased only from 6.8 to 7.5 when using EasyRevisit,

the total number of revisits decreased 58.4% from 33.2 to

13.8, which is significant. Correspondingly, the revisit time

decreased 59.2% from 10.3 minutes to 4.2 minutes. The total

task completion time also decreased from 48.8 minutes to 39.2

minutes. These decreased trends show the effectiveness of our

tool support. We also noticed that the revisit time reduced

6.1 minutes while the total task completion time reduced 9.6

minutes. We speculate this is because the reduced revisit can

further reduce distraction thus improving efficiency.

For StochKit task, however, the effect is not as significant

as ImageJ task. The average revisit time decreased from 10.3

to 7.2 minutes and the average task completion time reduced

only 8% from 59.6 to 54.8 minutes. We found the reason is

probably because the complexity of StochKit task lies mainly

in the original source code comprehension. The features to

be added by participants are relatively simpler than ImageJ

task. Participants need more external information to solve

ImageJ task, while they mainly focus on source code for

StochKit task. We label the two kinds of tasks as external

information intensive task and internal information intensive

task. We expect that our tool can facilitate former kind of task

more effectively by reducing the time cost for revisit behavior.

In summary, our tool support is effective in improving

the efficiency of revisit and overall task completion that it

reduced 19.7% of programmers’ time averagely in finishing

their change tasks. The tool support is helpful especially

when a programming task needs to refer largely to external

information besides the original source code.

ACKNOWLEDGMENT

This research is partially supported by the U.S. National

Science Foundation (Award CCF-1350487) and the National

Natural Science Foundation of China (Fund No. 61375053).

321321321323323323323323323323

REFERENCES

[1] C. Nicora, “FileBox eXtender” https://www.hyperionics.com/files/ Last
accessed: February 2017.

[2] W.S. Rasband, C.A. Schneider, and K.W. Eliceiri, ”ImageJ: Image Pro-
cessing and Analysis in Java.” https://imagej.nih.gov/ij/ Last accessed:
February 2017.

[3] K.R. Sanft and S. Wu, M. Roh, J. Fu, R.K. Lim, and L.R. Petzold,
”StochKit: Stochastic Simulation Kit.” http://www.engineering.ucsb.edu/
∼cse/StochKit/ Last accessed: February 2017.

[4] P. Baldi, P. Frasconi, and P. Smyth, 2003. Modeling the Internet and the
Web: Probabilistic Methods and Algorithms. John Wiley and Sons.

[5] A. Cockburn and B. McKenzie, 2001. What do Web users do? An
empirical analysis of Web use. International Journal of Human-Computer
Studies, 54(6), pp. 903-922.

[6] E. Herder, 2005. Characterizations of user Web revisit behavior. In Pro-
ceedings of the Workshop on Adaptivity and User Modeling in Interactive
Systems (pp. 32-37). DFKI.

[7] H. Obendorf, H. Weinreich, E. Herder, and M. Mayer, 2007, April. Web
page revisitation revisited: implications of a long-term click-stream study
of browser usage. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 597-606). ACM.

[8] D.W. Stephens and J.R. Krebs, 1986. Foraging theory. Princeton Univer-
sity Press.

[9] N. Sawadsky, G.C. Murphy, and R. Jiresal, 2013, May. Reverb: Recom-
mending code-related Web pages. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering (pp. 812-821). IEEE Press.

[10] L. Tauscher and S. Greenberg, 1997. How people revisit Web pages:
Empirical findings and implications for the design of history systems.
International Journal of Human-Computer Studies, 47(1), pp.97-137.

322322322324324324324324324324

