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ABSTRACT 
A major software engineering challenge is to understand the 
fundamental mechanisms that underlie the developer’s code 
navigation behavior. We propose a novel and unified theory based 
on the premise that we can study developer’s information seeking 
strategies in light of the foraging principles that evolved to help 
our animal ancestors to find food. Our preliminary study on code 
navigation graphs suggests that the tenets of information foraging 
provide valuable insight into software maintenance. Our research 
opens the avenue towards the development of ecologically valid 
tool support to augment developers’ code search skills. 

Categories and Subject Descriptors 
D.2.3 [Software Engineering]: Coding Tools and Techniques. 

General Terms 
Design, Human Factors. 

Keywords 
Software maintenance, program comprehension, foraging theory. 

1. INTRODUCTION 
Program comprehension is a key developer activity during 
software maintenance. Before attempting any modification, 
developers must navigate, locate, and understand the parts of the 
software system relevant to the desired change. Because the code 
fragments involved in a software maintenance task are typically 
distributed throughout multiple system modules, code navigation 
can be both time-consuming and difficult [1]. Therefore, a major 
challenge in software engineering research is to understand the 
fundamental mechanisms that underlie the developers’ code 
navigation behaviors and further develop tool support to augment 
their information seeking skills during software maintenance. 
Current code navigation research falls mainly into two categories: 
ad hoc tools developed without any underlying theoretical basis 
and derivation of descriptive theories from observing developer 
behavior. What is not known is to what extent a unified theory can 
explain and predict developers’ behaviors by taking their 

maintenance goals and the source code environment into 
consideration. Lack of such knowledge is an important problem, 
because ad hoc tool building can cover the fundamental principles 
only partially and the many descriptive theories are already too 
specific to be generalizable. 
In this paper, we propose to develop a unified code navigation 
theory based on information foraging whose validity has been 
empirically confirmed in the domain of Web navigation [2]. The 
appeal of developing a unified theory is that a set of general 
assumptions can both account for all descriptive models and guide 
tool builders toward principled ways to increase practical support 
for developers. We hypothesize that developers’ search for 
relevant code can be mathematically modeled in terms of the 
“built-in” foraging mechanisms that evolved to help our animal 
ancestors to find food and help users to find useful information on 
the Web. In other words, we contend that developers are well 
adapted to the plethora of information in the code space, and that 
they have evolved the strategies to maximize the gains of useful 
information to their tasks per unit cost. 
Only recently has information foraging theory been applied to 
code navigation. Ko et al. were among the first to relate foraging 
theory to developers’ seeking relevant code in maintenance [3]. 
Lawrance and colleagues mapped foraging theory’s constructs to 
the debugging domain in a series of studies [4-6] and presented 
encouraging results that matched the theory’s predictions with the 
developers’ actual navigations. Even these efforts have not 
examined the assumptions of the foraging model to determine 
whether or not they are met in program comprehension.  
This paper aims to shed light on the scope of information foraging 
theory’s applicability in software engineering. Section 2 traces the 
theory’s root to optimal food foraging and reviews its recent 
extension to debugging. Section 3 presents our vision of a unified 
code navigation theory. Section 4 describes our ongoing efforts in 
realizing the vision by highlighting a preliminary study on code 
navigation graphs. Section 5 concludes the paper and overviews 
challenges and potential applications of information foraging in 
software maintenance. 
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Information foraging theory was originally inspired by appeals 
in the psychology literature for an ecological approach to 
understanding human information-gathering and sense-making 
strategies [2]. The general idea is that we can scientifically study 
human and technological adaptations to the flux of information in 
the social environment in much the same manner as biological 
adaptations to the flux of energy in the physical environment. 



Information foraging derives from optimal foraging theory in 
biology and anthropology, which analyzes the adaptive value of 
food-foraging strategies [7]. A key assumption is that animals 
(including humans) should have well-designed food-seeking 
strategies because higher rates of energy consumption should 
generally translate in higher reproductive success. Central to 
optimal foraging theory are the patch model and the diet model. 
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(a) Patchy environment              (b) Charnov’s Theorem [8] 

Figure 1. The patch model 

The patch model deals with predictions of the amount of time an 
organism would forage in a patch before leaving for another 
patch. Figure 1a illustrates the model by presenting a hypothetical 
bird foraging in an environment that consists of patches of berry 
clusters. The forager must expend some amount of between-patch 
time (tB) getting to the next patch. Once in a patch, the forager 
faces the decision of keeping within-patch foraging (tW) or leaving 
to seek a new patch. As the forager gains energy, the amount of 
food diminishes or depletes. In such cases, there will be a point at 
which the expected future gains from foraging within a current 
patch diminish to the point that they are less than the expected 
gains that could be made by leaving for a new one. Figure 1b 
shows Charnov’s Theorem [7], which mathematically models an 
optimal forager’s time allocation. In Figure 1b, g(tW) represents a 
decelerating expected net gain function. The amount of energy 
gained per unit time of foraging is R = g(tW) / (tB+ tW). Thus, the 
optimal time to spend in patch, t*, occurs when the derivative of 
g(tW) is equal to the slope of the tangent line R*. 
The diet model deals with the tradeoffs when a predator forages in 
a habitat that contains a variety of prey. If a predator’s diet is too 
narrow (e.g., it eats only a few types of prey), it will spend all of 
its time searching. If the predator’s diet is too broad (e.g., it eats 
every type that encountered), then it will pursue too much 
unprofitable prey. Optimal diet selection algorithms are based on 
two principles [7]. The profitability principle states that the prey 
is predicted to be ignored if its profitability, π = g/tW, is less than 
the expected rate of gain, R, of continuing search for other types 
of prey. The prevalence principle states that increases in higher 
profitability prey’s prevalence (i.e., encounter rate), λ = 1/tB, 
make it optimal to be more selective. Although the patch model 
and the diet model assume that the forager has “global” 
information concerning the environment, the models are 
elementary building blocks of optimal foraging theory and have 
generally proven to be productive and resilient in addressing 
food-foraging behaviors studied in the field and the lab [7]. 
Pirolli [2] laid out the basic analogies between food foraging and 
information seeking: predator (human in need of information) 
forages for prey (the information itself) along patches of resources 
and decides on a diet (what information to consume and what to 
ignore) based on profitability and prevalence. Pirolli raised 

foraging theory from biological and physical levels to knowledge 
and rational levels. In particular, he built the task environment 
into the underpinnings of information foraging theory. The task 
environment is concerned with adaptive-level analysis and models 
information forager’s intentional constructs like goals and 
perceptions [2]. Pirolli has successfully applied the core 
mathematics of optimal foraging theory to study human behaviors 
during information-intensive tasks such as Web navigation [2]. As 
a result, information foraging theory has become extremely useful 
as a practical tool for Web site design and evaluation [8, 9]. 

Code navigation is central to software maintenance, but its 
support in contemporary programming environments is far from 
satisfactory. For example, Ko et al. [3] reported Eclipse’s 
substantial navigational overhead by observing that the 
developers spent 35% of their time on software maintenance tasks 
simply navigating through the code and that only half of the 
searches returned task-relevant code. Research on improving code 
navigation has a substantial history, which can only be briefly 
mentioned here. 
Historical analysis relies on project memory. For example, Team 
Tracks [1] supports collaborative filtering by recording fellow 
team members’ navigation paths. Static analysis exploits the 
lexical, syntactic, and structural information in the source code. 
For example, Hipikat [10] employs a textual similarity matcher 
that assigns weights to words based on global prevalence of the 
word in the repository and local prevalence of the word in the 
artifact. Dynamic analysis leverages runtime information. For 
example, WhyLine [11] facilitates navigation by mapping 
developers’ questions about a program’s output to its executions. 
As will be discussed in Section 3, applying information foraging 
theory to these tools offers a unified account for why the tools 
work. Lawrance et al. recently pioneered the application of 
information foraging to debugging [4-6]. They viewed developer 
as predator and bug-fix as prey. They used a well-known word 
similarity measure (tf-idf) between the bug report and the source 
code as an approximation of information scent, and demonstrated 
the developers’ scent-following behavior by matching navigation 
recommendations computed by tf-idf with those actually observed. 
However, the theoretical underpinnings of Lawrance’s model are 
incomplete (e.g., task environment is not mentioned) and 
inconsistent (e.g., their notion of a developer’s evolving goals 
during foraging [6] contradicts the assumption of a steady goal in 
information foraging). Next, we tease out a more complete, but 
succinct, set of constructs of a unified code foraging theory. 

3. A UNIFIED THEORY 
Figure 2 shows our unified code navigation model in Bachman 
notation, a variant of an entity-relationship diagram [12]. Boxes, 
arrows, and ovals represent entities, relationships, and attributes 
respectively. The three entities are interconnected, indicating that 
the task and the information environments will re-shape the 
developer’s code navigation behavior. The two attributes 
associated with each entity form the model’s core set of concepts. 
The information environment is the navigation medium with 
resources distributed in patches. Because there are no neutral 
representations available to solving a problem [13], cues, such as 
code comments and bug reports, are signposts that either degrade 
or support a developer’s performance. The task environment, 
which has not been made explicit in previous work, assumes that 
code navigation fulfills software maintenance goals, such as bug 
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fixing and refactoring. Developers will iteratively decompose a 
high-level goal into sub-goals and tasks, and will form hypotheses 
of where to go next. The task environment guides the actual 
navigation, and the information collected along the way will 
confirm or refute the hypotheses, and further refine the tasks and 
goals. During foraging, developers follow an information scent to 
reach productive patches of code. Scent might be conveyed by 
finding a number of matches for a search term in a package [5]. 
Note that the three labeled relationships in Figure 2 (informs, 
guides, and enriches) exemplify the situation in which the 
developers’ behavior and their environments will co-evolve, each 
shaping the other in important ways. 
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Figure 2. An information-foraging theoretic code navigation model 
• Because intentional constructs like hypotheses exist only in 

the developer’s mind, accessing and applying them in 
practice are difficult. The information encountered along the 
navigation trails often informs the developer’s goals. 

• Because developers usually have firm maintenance goals, the 
task environment guides their behaviors. This allows a 
steady foraging goal to direct code navigation. 

• A key difference between food-foraging and information-
foraging is that foragers can actively enrich the environment 
to increase the information-gain rate. For instance, developer 
often deliberately rearranges the IDE’s layout. Thus, the 
profitability and prevalence of patches can be manipulated. 

It is worth emphasizing that the entities and the relationships 
presented in Figure 2 reflect the information foraging theory’s 
parsimony. The small set of intuitive constructs contributes to a 
unified account for code navigation. Referring back to the 
navigation tools reviewed in Section 2, the concept of “patches” 
could explain why developers collectively tend to visit files in 
clusters, a clue that Team Tracks relies upon. The theory also 
suggests why “scent”, as per Hipikat’s textual similarity, could be 
a navigation predictor. Finally, an information-foraging theoretic 
explanation of WhyLine’s success may be that re-creating the 
bug’s failure is such a critical debugging task that distilling the 
runtime semantics makes it easier to form a “hypothesis”. 
Although the succinct set of primitives is desired for tool builders 
to understand and leverage the theoretical principles, the 
challenge is to determine whether these principles apply to code 
navigation in the first place. The following list provides a minimal 
set of assumptions that must be examined, yet the current 
literature is deficient in addressing these fundamental issues. 
• The task model: Is navigating code a goal-oriented foraging 

task? 
The points in favor include that developers who made a plan to 
attain maintenance goals and stuck to the plan were more 

successful [14]. The points against include developers’ 
evolving goals in performing debugging tasks [6]. 

• The patch model: Are code fragments distributed in patches 
that exhibit topical localities? 
The points in favor include that source code was patched in 
word clusters [6]. What is not known is whether the within-
patch and between-patch navigations follow foraging principles 
like Charnov’s Theorem (cf. Section 2). 

• The diet model: Do developers follow scent in finding relevant 
information? 
The points in favor include using word similarity to predict 
information scent [4]. What is not known is whether the 
developer’s diet (what code to navigate and what to skip) 
conforms to the principles of profitability and prevalence [7]. 
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The answers to these questions will provide valuable insight into 
information foraging theory’s scope of applicability. While map-
ping the basic concepts (e.g., patch and scent) to code navigation 
requires creativity, thorough and rigorous empirical studies must 
be conducted to search for answers to the core software 
maintenance questions. This is precisely the focus of our research. 

4. PRELIMINARY STUDY AND RESULTS 
In a first stage of this research, we investigated the premises of 
the patch model. We studied SharpNLP [15], a large open-source 
C# project containing a collection of natural language processing 
(NLP) tools. The 1.0.2529 Beta release of SharpNLP under our 
study has 24 packages and 277 classes. We adopted two 
maintenance tasks from SharpNLP’s issue tracker [15]. SIZE 
(issue #1899970) is a perfective maintenance task that requires 
refactoring a fixed, hard-coded prefix and suffix size to a new 
form of instance variables. TYPE (issue #2750882) is a corrective 
maintenance task that aims to fix the bug of not being able to 
successfully generate tags for a proper noun. 
We recruited 15 developers that included both graduate students 
and staff programmers. All developers had previous experience 
with C# and were quite familiar with the application domain of 
SharpNLP. We asked the developers to navigate SharpNLP’s 
code space to identify relevant code fragments that would fulfill 
the given maintenance tasks. The developers used only our tool 
for code navigation in the controlled experiment. The tool logged 
fine-grained user interactions, and provided two basic navigation 
facilities: searching by keywords and viewing (drilling-down) one 
particular portion of the code. Each developer worked on two 
maintenance tasks, and was given 5 minutes to perform each task. 
To control for learning effects, the order of presentation of the 
two tasks was counterbalanced. 
Figure 3 shows the results in code navigation graphs. Due to 
space constraints, only two developers’ navigations are reported 
here, chosen arbitrarily. The developer is analyzed as working in 
a problem space, which is defined by a set of states, a set of 
operators for moving between states, an initial state, a goal state, 
and a current state. Two problem spaces appear in our analysis. 
• The “keyword” problem space’s states are all search strings and 

search results. Moves consist of matching case, matching whole 
word, Boolean operator, wild card, and regular expression. 

• The “view code” problem space’s states are all classes. Moves 
consist of hitting the back button and clicking on a snippet that 
shows class name, number of matches, and package name. 



 

 

 

 

 

 
 
 

 

 
 

Figure 3. Code navigation graphs. Boxes are states (oval boxes are distinguished to show search result pages). Arrows are moves. Double 
vertical arrows are returns to a previous state. Color surrounding the boxes represents distinct packages (patches). Dotted enclosing lines 
show that the states and moves are part of the “keyword” problem space. Solid lines enclose the “view code” problem space. 
A code navigation graph is a variant of a Web behavior graph [2]. 
Time in the graph proceeds left to right and top to bottom. The 
graph is particularly good at showing the structure of navigation. 
Similar to [5], we treat each package (i.e., a group of classes) as 
an information patch. Thus, each surrounding color in Figure 3 
represents a distinct patch. It can readily be seen from Figure 3 
that TYPE is a more difficult task than SIZE, since each TYPE task 
requires more states and more backtracking than the 
corresponding SIZE task for the same developer. Among the 24 
patches, the 15 participating developers visit an average of 5.1 
patches for TYPE and 2.8 patches for SIZE. This concentrated 
navigation pattern implies that patches indeed exhibit topical 
localities. Another key finding is that there are more transitions 
(navigations) within a patch than between patches. The ratio of 
within to between transitions is 3.2 for TYPE and 5.5 for SIZE. Our 
qualitative results therefore support the patch model’s premises. 

5. EMERGING RESEARCH DIRECTIONS 
The need to ease program comprehension and reduce the cost of 
code navigation has led us to propose a novel and unified 
information foraging model. We traced the model’s root to food 
foraging and conducted a preliminary study to test the model’s 
underlying tenets. As with any research at this stage, there is 
much left to do. First, in-depth empirical studies are in order. Also 
of interest would be uncovering (un)successful trails in the code 
navigation graph to better visualize and analyze the search 
behavior. Finally, the notion of maximizing cumulative reward in 
reinforcement learning may contribute to a better characterization 
of code navigation strategies, in that the assumption of forager’s 
“global” knowing of the environment is relaxed. 
The application of optimal foraging theory hinges largely on 
mapping the theory’s constructs to the application domain. A 
small number of constructs may improve the theory’s parsimony, 
but at the expense of explanatory power or scope [5]. “Patch” in 
source code, for example, has already been instantiated at the 
class [4], package (group of classes) [5], and method (member of 
a class) [6] levels. As with Pirolli’s work, we also expect 

developers to make practical use of our code foraging theory to 
design and evaluate navigation tools. The theoretical challenges 
(e.g., choosing the right constructs) and the practical ones (e.g., 
using proximal cues to inform navigation goals) are likely to be 
met only if software engineering researchers and practitioners 
build on each others’ foundations in a principled manner. 
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