
Information Foraging as a Foundation for Code Navigation
(NIER Track)

Nan Niu
Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

niu@cse.msstate.edu

Anas Mahmoud
Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

amm560@msstate.edu

Gary Bradshaw
Department of Psychology
Mississippi State University
Mississippi State, MS 39762

glb2@ra.msstate.edu

ABSTRACT
A major software engineering challenge is to understand the
fundamental mechanisms that underlie the developer’s code
navigation behavior. We propose a novel and unified theory based
on the premise that we can study developer’s information seeking
strategies in light of the foraging principles that evolved to help
our animal ancestors to find food. Our preliminary study on code
navigation graphs suggests that the tenets of information foraging
provide valuable insight into software maintenance. Our research
opens the avenue towards the development of ecologically valid
tool support to augment developers’ code search skills.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques.

General Terms
Design, Human Factors.

Keywords
Software maintenance, program comprehension, foraging theory.

1. INTRODUCTION
Program comprehension is a key developer activity during
software maintenance. Before attempting any modification,
developers must navigate, locate, and understand the parts of the
software system relevant to the desired change. Because the code
fragments involved in a software maintenance task are typically
distributed throughout multiple system modules, code navigation
can be both time-consuming and difficult [1]. Therefore, a major
challenge in software engineering research is to understand the
fundamental mechanisms that underlie the developers’ code
navigation behaviors and further develop tool support to augment
their information seeking skills during software maintenance.
Current code navigation research falls mainly into two categories:
ad hoc tools developed without any underlying theoretical basis
and derivation of descriptive theories from observing developer
behavior. What is not known is to what extent a unified theory can
explain and predict developers’ behaviors by taking their

maintenance goals and the source code environment into
consideration. Lack of such knowledge is an important problem,
because ad hoc tool building can cover the fundamental principles
only partially and the many descriptive theories are already too
specific to be generalizable.
In this paper, we propose to develop a unified code navigation
theory based on information foraging whose validity has been
empirically confirmed in the domain of Web navigation [2]. The
appeal of developing a unified theory is that a set of general
assumptions can both account for all descriptive models and guide
tool builders toward principled ways to increase practical support
for developers. We hypothesize that developers’ search for
relevant code can be mathematically modeled in terms of the
“built-in” foraging mechanisms that evolved to help our animal
ancestors to find food and help users to find useful information on
the Web. In other words, we contend that developers are well
adapted to the plethora of information in the code space, and that
they have evolved the strategies to maximize the gains of useful
information to their tasks per unit cost.
Only recently has information foraging theory been applied to
code navigation. Ko et al. were among the first to relate foraging
theory to developers’ seeking relevant code in maintenance [3].
Lawrance and colleagues mapped foraging theory’s constructs to
the debugging domain in a series of studies [4-6] and presented
encouraging results that matched the theory’s predictions with the
developers’ actual navigations. Even these efforts have not
examined the assumptions of the foraging model to determine
whether or not they are met in program comprehension.
This paper aims to shed light on the scope of information foraging
theory’s applicability in software engineering. Section 2 traces the
theory’s root to optimal food foraging and reviews its recent
extension to debugging. Section 3 presents our vision of a unified
code navigation theory. Section 4 describes our ongoing efforts in
realizing the vision by highlighting a preliminary study on code
navigation graphs. Section 5 concludes the paper and overviews
challenges and potential applications of information foraging in
software maintenance.

2. BACKGROUND AND RELATED WORK
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0445-0/11/05…$10.00.

Information foraging theory was originally inspired by appeals
in the psychology literature for an ecological approach to
understanding human information-gathering and sense-making
strategies [2]. The general idea is that we can scientifically study
human and technological adaptations to the flux of information in
the social environment in much the same manner as biological
adaptations to the flux of energy in the physical environment.

Information foraging derives from optimal foraging theory in
biology and anthropology, which analyzes the adaptive value of
food-foraging strategies [7]. A key assumption is that animals
(including humans) should have well-designed food-seeking
strategies because higher rates of energy consumption should
generally translate in higher reproductive success. Central to
optimal foraging theory are the patch model and the diet model.

Forager’s search

Time

Gain

tB tW

t*
g(tW)

R*

(a) Patchy environment (b) Charnov’s Theorem [8]

Figure 1. The patch model

The patch model deals with predictions of the amount of time an
organism would forage in a patch before leaving for another
patch. Figure 1a illustrates the model by presenting a hypothetical
bird foraging in an environment that consists of patches of berry
clusters. The forager must expend some amount of between-patch
time (tB) getting to the next patch. Once in a patch, the forager
faces the decision of keeping within-patch foraging (tW) or leaving
to seek a new patch. As the forager gains energy, the amount of
food diminishes or depletes. In such cases, there will be a point at
which the expected future gains from foraging within a current
patch diminish to the point that they are less than the expected
gains that could be made by leaving for a new one. Figure 1b
shows Charnov’s Theorem [7], which mathematically models an
optimal forager’s time allocation. In Figure 1b, g(tW) represents a
decelerating expected net gain function. The amount of energy
gained per unit time of foraging is R = g(tW) / (tB+ tW). Thus, the
optimal time to spend in patch, t*, occurs when the derivative of
g(tW) is equal to the slope of the tangent line R*.
The diet model deals with the tradeoffs when a predator forages in
a habitat that contains a variety of prey. If a predator’s diet is too
narrow (e.g., it eats only a few types of prey), it will spend all of
its time searching. If the predator’s diet is too broad (e.g., it eats
every type that encountered), then it will pursue too much
unprofitable prey. Optimal diet selection algorithms are based on
two principles [7]. The profitability principle states that the prey
is predicted to be ignored if its profitability, π = g/tW, is less than
the expected rate of gain, R, of continuing search for other types
of prey. The prevalence principle states that increases in higher
profitability prey’s prevalence (i.e., encounter rate), λ = 1/tB,
make it optimal to be more selective. Although the patch model
and the diet model assume that the forager has “global”
information concerning the environment, the models are
elementary building blocks of optimal foraging theory and have
generally proven to be productive and resilient in addressing
food-foraging behaviors studied in the field and the lab [7].
Pirolli [2] laid out the basic analogies between food foraging and
information seeking: predator (human in need of information)
forages for prey (the information itself) along patches of resources
and decides on a diet (what information to consume and what to
ignore) based on profitability and prevalence. Pirolli raised

foraging theory from biological and physical levels to knowledge
and rational levels. In particular, he built the task environment
into the underpinnings of information foraging theory. The task
environment is concerned with adaptive-level analysis and models
information forager’s intentional constructs like goals and
perceptions [2]. Pirolli has successfully applied the core
mathematics of optimal foraging theory to study human behaviors
during information-intensive tasks such as Web navigation [2]. As
a result, information foraging theory has become extremely useful
as a practical tool for Web site design and evaluation [8, 9].

Code navigation is central to software maintenance, but its
support in contemporary programming environments is far from
satisfactory. For example, Ko et al. [3] reported Eclipse’s
substantial navigational overhead by observing that the
developers spent 35% of their time on software maintenance tasks
simply navigating through the code and that only half of the
searches returned task-relevant code. Research on improving code
navigation has a substantial history, which can only be briefly
mentioned here.
Historical analysis relies on project memory. For example, Team
Tracks [1] supports collaborative filtering by recording fellow
team members’ navigation paths. Static analysis exploits the
lexical, syntactic, and structural information in the source code.
For example, Hipikat [10] employs a textual similarity matcher
that assigns weights to words based on global prevalence of the
word in the repository and local prevalence of the word in the
artifact. Dynamic analysis leverages runtime information. For
example, WhyLine [11] facilitates navigation by mapping
developers’ questions about a program’s output to its executions.
As will be discussed in Section 3, applying information foraging
theory to these tools offers a unified account for why the tools
work. Lawrance et al. recently pioneered the application of
information foraging to debugging [4-6]. They viewed developer
as predator and bug-fix as prey. They used a well-known word
similarity measure (tf-idf) between the bug report and the source
code as an approximation of information scent, and demonstrated
the developers’ scent-following behavior by matching navigation
recommendations computed by tf-idf with those actually observed.
However, the theoretical underpinnings of Lawrance’s model are
incomplete (e.g., task environment is not mentioned) and
inconsistent (e.g., their notion of a developer’s evolving goals
during foraging [6] contradicts the assumption of a steady goal in
information foraging). Next, we tease out a more complete, but
succinct, set of constructs of a unified code foraging theory.

3. A UNIFIED THEORY
Figure 2 shows our unified code navigation model in Bachman
notation, a variant of an entity-relationship diagram [12]. Boxes,
arrows, and ovals represent entities, relationships, and attributes
respectively. The three entities are interconnected, indicating that
the task and the information environments will re-shape the
developer’s code navigation behavior. The two attributes
associated with each entity form the model’s core set of concepts.
The information environment is the navigation medium with
resources distributed in patches. Because there are no neutral
representations available to solving a problem [13], cues, such as
code comments and bug reports, are signposts that either degrade
or support a developer’s performance. The task environment,
which has not been made explicit in previous work, assumes that
code navigation fulfills software maintenance goals, such as bug

Patch 1 Patch 2

Within-patch
search time (tW)

Between-patch
search time (tB)

fixing and refactoring. Developers will iteratively decompose a
high-level goal into sub-goals and tasks, and will form hypotheses
of where to go next. The task environment guides the actual
navigation, and the information collected along the way will
confirm or refute the hypotheses, and further refine the tasks and
goals. During foraging, developers follow an information scent to
reach productive patches of code. Scent might be conveyed by
finding a number of matches for a search term in a package [5].
Note that the three labeled relationships in Figure 2 (informs,
guides, and enriches) exemplify the situation in which the
developers’ behavior and their environments will co-evolve, each
shaping the other in important ways.

co-evolve
guides enriches

informs

Figure 2. An information-foraging theoretic code navigation model
• Because intentional constructs like hypotheses exist only in

the developer’s mind, accessing and applying them in
practice are difficult. The information encountered along the
navigation trails often informs the developer’s goals.

• Because developers usually have firm maintenance goals, the
task environment guides their behaviors. This allows a
steady foraging goal to direct code navigation.

• A key difference between food-foraging and information-
foraging is that foragers can actively enrich the environment
to increase the information-gain rate. For instance, developer
often deliberately rearranges the IDE’s layout. Thus, the
profitability and prevalence of patches can be manipulated.

It is worth emphasizing that the entities and the relationships
presented in Figure 2 reflect the information foraging theory’s
parsimony. The small set of intuitive constructs contributes to a
unified account for code navigation. Referring back to the
navigation tools reviewed in Section 2, the concept of “patches”
could explain why developers collectively tend to visit files in
clusters, a clue that Team Tracks relies upon. The theory also
suggests why “scent”, as per Hipikat’s textual similarity, could be
a navigation predictor. Finally, an information-foraging theoretic
explanation of WhyLine’s success may be that re-creating the
bug’s failure is such a critical debugging task that distilling the
runtime semantics makes it easier to form a “hypothesis”.
Although the succinct set of primitives is desired for tool builders
to understand and leverage the theoretical principles, the
challenge is to determine whether these principles apply to code
navigation in the first place. The following list provides a minimal
set of assumptions that must be examined, yet the current
literature is deficient in addressing these fundamental issues.
• The task model: Is navigating code a goal-oriented foraging

task?
The points in favor include that developers who made a plan to
attain maintenance goals and stuck to the plan were more

successful [14]. The points against include developers’
evolving goals in performing debugging tasks [6].

• The patch model: Are code fragments distributed in patches
that exhibit topical localities?
The points in favor include that source code was patched in
word clusters [6]. What is not known is whether the within-
patch and between-patch navigations follow foraging principles
like Charnov’s Theorem (cf. Section 2).

• The diet model: Do developers follow scent in finding relevant
information?
The points in favor include using word similarity to predict
information scent [4]. What is not known is whether the
developer’s diet (what code to navigate and what to skip)
conforms to the principles of profitability and prevalence [7].

Information
Environment

Task
Environment

patch goal

scent diet

Developer’s Code
Navigation Behavior

hypothesis cue

The answers to these questions will provide valuable insight into
information foraging theory’s scope of applicability. While map-
ping the basic concepts (e.g., patch and scent) to code navigation
requires creativity, thorough and rigorous empirical studies must
be conducted to search for answers to the core software
maintenance questions. This is precisely the focus of our research.

4. PRELIMINARY STUDY AND RESULTS
In a first stage of this research, we investigated the premises of
the patch model. We studied SharpNLP [15], a large open-source
C# project containing a collection of natural language processing
(NLP) tools. The 1.0.2529 Beta release of SharpNLP under our
study has 24 packages and 277 classes. We adopted two
maintenance tasks from SharpNLP’s issue tracker [15]. SIZE
(issue #1899970) is a perfective maintenance task that requires
refactoring a fixed, hard-coded prefix and suffix size to a new
form of instance variables. TYPE (issue #2750882) is a corrective
maintenance task that aims to fix the bug of not being able to
successfully generate tags for a proper noun.
We recruited 15 developers that included both graduate students
and staff programmers. All developers had previous experience
with C# and were quite familiar with the application domain of
SharpNLP. We asked the developers to navigate SharpNLP’s
code space to identify relevant code fragments that would fulfill
the given maintenance tasks. The developers used only our tool
for code navigation in the controlled experiment. The tool logged
fine-grained user interactions, and provided two basic navigation
facilities: searching by keywords and viewing (drilling-down) one
particular portion of the code. Each developer worked on two
maintenance tasks, and was given 5 minutes to perform each task.
To control for learning effects, the order of presentation of the
two tasks was counterbalanced.
Figure 3 shows the results in code navigation graphs. Due to
space constraints, only two developers’ navigations are reported
here, chosen arbitrarily. The developer is analyzed as working in
a problem space, which is defined by a set of states, a set of
operators for moving between states, an initial state, a goal state,
and a current state. Two problem spaces appear in our analysis.
• The “keyword” problem space’s states are all search strings and

search results. Moves consist of matching case, matching whole
word, Boolean operator, wild card, and regular expression.

• The “view code” problem space’s states are all classes. Moves
consist of hitting the back button and clicking on a snippet that
shows class name, number of matches, and package name.

Figure 3. Code navigation graphs. Boxes are states (oval boxes are distinguished to show search result pages). Arrows are moves. Double
vertical arrows are returns to a previous state. Color surrounding the boxes represents distinct packages (patches). Dotted enclosing lines
show that the states and moves are part of the “keyword” problem space. Solid lines enclose the “view code” problem space.
A code navigation graph is a variant of a Web behavior graph [2].
Time in the graph proceeds left to right and top to bottom. The
graph is particularly good at showing the structure of navigation.
Similar to [5], we treat each package (i.e., a group of classes) as
an information patch. Thus, each surrounding color in Figure 3
represents a distinct patch. It can readily be seen from Figure 3
that TYPE is a more difficult task than SIZE, since each TYPE task
requires more states and more backtracking than the
corresponding SIZE task for the same developer. Among the 24
patches, the 15 participating developers visit an average of 5.1
patches for TYPE and 2.8 patches for SIZE. This concentrated
navigation pattern implies that patches indeed exhibit topical
localities. Another key finding is that there are more transitions
(navigations) within a patch than between patches. The ratio of
within to between transitions is 3.2 for TYPE and 5.5 for SIZE. Our
qualitative results therefore support the patch model’s premises.

5. EMERGING RESEARCH DIRECTIONS
The need to ease program comprehension and reduce the cost of
code navigation has led us to propose a novel and unified
information foraging model. We traced the model’s root to food
foraging and conducted a preliminary study to test the model’s
underlying tenets. As with any research at this stage, there is
much left to do. First, in-depth empirical studies are in order. Also
of interest would be uncovering (un)successful trails in the code
navigation graph to better visualize and analyze the search
behavior. Finally, the notion of maximizing cumulative reward in
reinforcement learning may contribute to a better characterization
of code navigation strategies, in that the assumption of forager’s
“global” knowing of the environment is relaxed.
The application of optimal foraging theory hinges largely on
mapping the theory’s constructs to the application domain. A
small number of constructs may improve the theory’s parsimony,
but at the expense of explanatory power or scope [5]. “Patch” in
source code, for example, has already been instantiated at the
class [4], package (group of classes) [5], and method (member of
a class) [6] levels. As with Pirolli’s work, we also expect

developers to make practical use of our code foraging theory to
design and evaluate navigation tools. The theoretical challenges
(e.g., choosing the right constructs) and the practical ones (e.g.,
using proximal cues to inform navigation goals) are likely to be
met only if software engineering researchers and practitioners
build on each others’ foundations in a principled manner.

6. REFERENCES
[1] M. Cherubini, G. Venolia and R. DeLine. Building an ecologically-

valid large-scale diagram to help developers stay oriented in their
code. In VL/HCC, pages 157-162, 2007.

[2] P. Pirolli. Information Foraging Theory: Adaptive Interaction with
Information. Oxford Univ. Press, 2007.

[3] A. Ko, B. Myers, M. Coblenz and H. Aung. An exploratory study of
how developers seek, relate and collect relevant information during
software maintenance tasks. TSE, 32(12): 971-987, 2006.

[4] J. Lawrance, R. Bellamy and M. Burnett. Scents in programs: Does
information foraging theory apply to program maintenance? In
VL/HCC, pages 15-22, 2007.

[5] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy and K. Rector. How
people debug, revisited: an information foraging theory perspective,
IBM Technical Report, RC24783 (W0904-064), April 2009.

[6] J. Lawrance, M. Burnett, R. Bellamy, C. Bogart and C. Swart.
Reactive information foraging for evolving goals. In CHI, pages 25-
34, 2010.

[7] D. Stephens and J. Krebs. Foraging Theory. Princeton Univ. Press, 1986.
[8] J. Nielsen. Why Google makes people leave your site faster.

http://www.usiet.com/alertbox/20030630.html, June 2003.
[9] J. Spool et al. Designing for the scent of information. UI Eng., 2004.
[10] D. Cubranic and G. Murphy. Hipikat: recommending pertinent

software development artifacts. In ICSE, pages 408-418, 2003.
[11] A. Ko and B. Myers. Finding causes of program output with the Java

WhyLine. In CHI, pages 1569-1578, 2009.
[12] Wikipedia. http://en.wikipedia.org/wiki/Entity-relationship_model.
[13] N. Leveson. Intent specifications: an approach to building human-

centered specifications. TSE, 26(1): 15-35, 2000.
[14] M. Robillard et al. How effective developers investigate source

code: an exploratory study. TSE, 30(12): 889-903, 2004.
[15] SharpNLP website: http://sharpnlp.codeplex.com.

Developer B on SIZE

Developer A on TYPE

Developer A on SIZE

Developer B on TYPE

S1 S4S3 S2 S5 S6

S6

S7

S6 S10

S19

S14 S15

S8 S9

S13S12

S20 S21

S20

S22

S24

S23 S19S18

S27 S28

S28

S29

S31

S30

S11

S16 S17

S25 S26

S1 S3S2 S4 S5

S5

S6

S4 S7 S8

S3 S9 S10 S11

S5 S6 S2 S3 S7S1 S4

S8S6

S1 S2 S4 S5 S6 S3

S5

S4 S10 S11

S13 S14 S15 S16

S9 S8 S7

S12

S13 S18 S16 S17 S19

http://www.usiet.com/alertbox/20030630.html
http://en.wikipedia.org/wiki/Entity-relationship_model
http://sharpnlp.codeplex.com/

	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	3. A UNIFIED THEORY
	4. PRELIMINARY STUDY AND RESULTS
	5. EMERGING RESEARCH DIRECTIONS
	6. REFERENCES

