
Concept Analysis for Product Line Requirements

Nan Niu
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada M5S 3G4

nn@cs.toronto.edu

Steve Easterbrook
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada M5S 3G4

sme@cs.toronto.edu

ABSTRACT
Traditional methods characterize a software product line’s
requirements using either functional or quality criteria. This
appears to be inadequate to assess modularity, detect inter-
ferences, and analyze trade-offs. We take advantage of both
symmetric and asymmetric views of aspects, and perform
formal concept analysis to examine the functional and qual-
ity requirements of an evolving product line. The resulting
concept lattice provides a rich notion which allows remark-
able insights into the modularity and interactions of require-
ments. We formulate a number of problems that aspect-
oriented product line requirements engineering should ad-
dress, and present our solutions according to the concept
lattice. We describe a case study applying our approach
to analyze a mobile game product line’s requirements, and
review lessons learned.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.10 [Software Engineering]: Design—Representation

General Terms
Design, Documentation

Keywords
Functional requirements profiles, quality attribute scenarios,
product line engineering, formal concept analysis

1. INTRODUCTION
Software product line (SPL) engineering [13, 35] is one

of the success stories of software reuse whose purpose is to
improve quality and productivity. Although much of the
SPL research to date has focused on code reuse, anecdotal
evidence abounds in support of treating requirements as an
asset. Core, a SPL for avionics simulators, owed its suc-
cess largely to the conceptual analysis of requirements [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

Not only was reuse identified early, but also the effective-
ness of reuse was enhanced as the engineer can work on the
abstractions closer to the system’s initial concepts.

Requirements abstractions are decomposed functionally
in most contemporary SPL approaches like FODA (feature-
oriented domain analysis) [18] and PRS (product-line re-
quirements specification) [14], since system functionality rep-
resents the very noticeable aspect of a feature [18]. The situ-
ation becomes messier when quality requirements, like safety
and portability, are considered: they impact and crosscut
multiple functional modules. The work on definition hierar-
chies [23] used quality requirements as the primary decom-
position criteria because quality concerns drive architectural
design. However, the resulting hierarchies are rather iso-
lated with each rooted in a distinct concern. This presents
an obstacle to quality trade-off analysis, and also causes SPL
features to repeat themselves across different hierarchies.

Aspect-oriented requirements engineering (RE) aims to
overcome the deficiencies of traditional abstractions by de-
veloping richer notions of modularity for requirements [37].
The role of aspects in modeling SPL variabilities was ex-
amined in [25]. We view the role of aspects in SPL RE,
rather broadly, as a means of enhancing modularity, detect-
ing conflicts, analyzing trade-offs, and supporting evolution.
Our view is suited for the extractive and reactive SPL ap-
proaches [22]. The extractive approach reuses existing arti-
facts for the SPL’s initial baseline. The reactive approach
is like the spiral or extreme programming approach to con-
ventional software: it embraces change and makes assets
and products co-evolve. We argue that, in both approaches,
aspects play an essential role in understanding a SPL’s re-
quirements dependencies and interactions.

In our earlier work, we developed a semi-automated tech-
nique for extracting a SPL’s functional requirements profiles
(FRPs) from natural language documents [29]. FRPs, which
capture the domain’s action themes at a primitive level, are
identified on the basis of lexical affinities that bear a verb-
DO (direct object) relation. We also analyzed the essential
semantic cases associated with each FRP in order to model
SPL variabilities [29] and uncover early aspects [30]. How-
ever, identifying aspects was achieved by organizing FRPs
into overlapping clusters [30] without explicitly considering
quality requirements.

In this paper, we investigate both functional and qual-
ity requirements via concept analysis [15]. Our goal is to
efficiently capture and evolve a SPL’s assets so as to gain
insights into requirements modularity. To that end, we first
set the context by leveraging FRPs and the SEI’s quality

137

attribute scenarios [5]. By analyzing the relation in context,
the interplay among requirements is identified and arranged
in a so-called concept lattice. We then formulate a number of
problems that aspect-oriented SPL RE should address, and
present our solutions according to the concept lattice. In
particular, we locate quality-specific functional units, detect
interferences, update the concept hierarchy incrementally,
and analyze the change impact.

The contributions of our work lie in the novel use of con-
cept lattice for investigating the relationships among sets of
requirements. Our approach complements traditional meth-
ods by automating some laborious RE tasks in the presence
of an evolving SPL. We evaluate our approach on a case
study of a mobile game SPL. We not only analyze the re-
quirements artifacts, but also discuss the requirements prac-
tice in the organization. The study shows that concept lat-
tice offers remarkable insights into modularity and abstrac-
tions, and that lightweight analysis can be integrated into
an organization’s current RE practice to facilitate the devel-
opment of reusable assets.

2. PRELIMINARIES

2.1 RE for SPLs
It is argued that the nature of a product line is to manage

the commonality and variability of products by means of a
“requirements engineering (RE) – change management”pro-
cess [13]. Most SPL approaches therefore advocate reusing
RE artifacts, as well as processes. Key RE activities include:
plan and elicit, model and analyze, communicate and agree,
and realize and evolve requirements [33]. In addition, SCV
(scope, commonality, variability) analysis is a central theme
running throughout a SPL’s life cycle [47].

Domain analysis [36] is often used to identify requirements
of a class of similar systems. An underlying premise of do-
main analysis is that proactively building a domain model
pays off in subsequent application engineering. In practice,
the up-front cost and the level of manual effort associated
with proactive domain analysis present a prohibitive SPL
adoption barrier for many organizations that could other-
wise benefit. Krueger addressed this problem by showing
that building a SPL extractively and reactively was more
economical [22]. The tenets of these flexible models are:
1) Mining legacy software repositories readily spots reuse
opportunities; 2) Incrementally exposing small variations
avoids over-specifying and inaccurately predicting a com-
plete feature set; and 3) Under-specified assets will be en-
riched when abstractions are refactored as they emerge from
an evolving SPL.

The results from SPL RE include the scope of the do-
main, domain vocabulary and concepts, and feature mod-
els describing the commonalities and variabilities of domain
concepts and their interdependencies [47]. The use of SPL
“features” is motivated by realizing that customers and de-
velopers communicate requirements in terms of“features the
product has and/or delivers” [18]. Features, then, are dis-
tinctively identifiable functional abstractions that must be
implemented, tested, delivered, and maintained [19]. This
view pays little attention to quality requirements 1, such as
reliability and usability.
1We have chosen to use the umbrella term “quality require-
ments” [8] in this paper to mean requirements that describe
desired system qualities, which are also known as nonfunc-

Quality requirements not only describe how well system
functions are accomplished, but also represent global con-
cerns that are natural to be implemented as aspects [21].
In addition, they guide the selection between various design
options, so they are a SPL’s architectural drivers (also called
architecturally significant requirements). Real life SPL de-
velopment often emphasizes on satisfying a few significant
requirements because any change in them is very likely to
affect the entire architecture. Therefore, quality require-
ments, especially the architectural drivers, should be used
as the top most elements in analysis and design [23]. Our
work takes both quality and functional requirements into
account. Next, we show how we identify functional require-
ments primitives and make use of quality attribute informa-
tion.

2.2 FRPs and Quality Attribute Scenarios
The benefits of getting quality requirements “right” are

substantive in SPL engineering [9], but applying them raises
many practical questions. First of all, quality requirements
tend to exhibit trade-offs that must be carefully negoti-
ated and resolved. For example, modifiability affects per-
formance, scalability affects reliability, and everything af-
fects cost. Engineers must find an architectural solution
that balances these competing needs. Moreover, quality re-
quirements are difficult to measure because they tend to
be achieved within acceptable limits rather than absolutely.
The fact that globally concerned qualities cut across many
subsystems [21] also makes tracking such concerns a difficult
task.

Before starting any analysis work, we must proactively
elicit quality requirements. A fundamental challenge of com-
municating quality requirements is that stakeholders do not
use consistent terminologies [28], even though several stan-
dards (e.g., ISO/IEC 25030) exist [8]. On one hand, a stan-
dard hardly covers all stakeholder concerns in every possible
domain. On the other hand, stakeholders may use quality
terms in idiosyncratic ways, resulting in ambiguous and con-
flicting requirements descriptions.

Our previous work showed that concrete functional re-
quirements profiles (FRPs) could form a common ground
for tackling the terminological mismatches between quality
requirements [28]. We further contributed an information re-
trieval technique to effectively extract the FRPs from exist-
ing requirements documents [29]. FRPs, consisting of verb-
DO (direct object) pairs, characterize product functional-
ities and action-oriented concerns in the domain. Sample
FRPs for the media shop domain [27] are “navigate shop”
and“customize toolbox”. Note that many RE methods have
implicitly used the verb-DO pair to model the functional
unit: a use case, a primitive requirement [26], a goal concern
(task) [24], to name a few. Our work has made this strategy
explicit and operational in RE. The validated FRPs become
assets of the SPL because they represent the domain’s action
themes and every product in the product line shall address
them in one way or another.

Although the FRPs help identify the functional units,
there is still a gap in relating them to quality requirements,
e.g., a great deal of domain expertise was spent in uncov-
ering their relationships [28]. To bridge the gap, we take

tional requirements, softgoals, and quality attributes in the
literature [33]. This chosen terminology shall not be con-
fused with high-quality requirements.

138

Φ

Φ

c1MEDIA
SHOP

(b) Concepts for the formal context.

X

X

CD

BOOK

c2

c3

c4

c5

c6

({CD, VIDEOTAPE}, {sound})

({CD, NEWSPAPER}, {free−distribution})

({MAGAZINE, NEWSPAPER, BOOK}, {paper})

({MAGAZINE, NEWSPAPER}, {timely, paper})

({NEWSPAPER}, {free−distribution, timely, paper})

({CD}, {free−distribution, sound})

(, {free−distribution, timely, paper, sound})

paper sound

X

X

X

({CD, MAGAZINE, NEWSPAPER, VIDEOTAPE, BOOK},)

(a) Formal context.

NEWSPAPER

timely

X

X

X

X

distribution
free−

MAGAZINE

VIDEOTAPE

Figure 1: Binary relation.

advantage of the SEI’s quality attribute scenarios [5]. Sce-
narios – brief narratives of expected or anticipated system
uses from both user and developer views – provide a look
at how the system satisfies quality attributes in various use
contexts. The main difference between these scenarios and
the use case scenarios or user stories is that they must spec-
ify quality attribute information. In another word, every
scenario 2 provides an operational definition for some qual-
ity attributes [5]. For example, it is meaningless to say that
a system is modifiable. Every system is modifiable with re-
spect to one set of changes and not modifiable with respect
to another. It is more meaningful to cast the requirement
as a scenario, such as:

“A developer wishes to add a searching input field
and button to the UI code, as well as to resize
the toolbar icons; modifications shall be made
with no side effect in three hours; the resulting
system addresses items 5 and 13 in version 1.0.2’s
bug report so usability is expected to increase.”

The scenarios make quality requirements measurable, and
also help resolve terminological ambiguities by capturing the
stakeholders’ precise concerns. This let us supplement the
terms different stakeholders use with a specification that is
independent of any standard or taxonomy. Since scenarios
are an asset that can be reused in analyzing a family of
related systems [20], our work uses them to investigate the
relationship and modularity of a SPL’s requirements.

2.3 Concept Analysis
Concept analysis, or formal concept analysis (FCA), is a

mathematical technique for analyzing binary relations. The
mathematical foundation of concept analysis was laid by
Birkhoff [7] in 1940. For more detailed information on FCA,
we refer to [15], where the mathematical foundation is ex-
plored. FCA deals with a relation I ⊆ O × A between
a set of objects O and a set of attributes A. The tuple
C = (O,A, I) is called a formal context. For a set of objects
O ⊆ O, the set of common attributes σ(O) is defined as:
σ(O) = {a ∈ A | (o, a) ∈ I for all o ∈ O}. Analogously, the
set of common objects τ(A) for a set of attributes A ⊆ A is
defined as: τ(A) = {o ∈ O | (o, a) ∈ I for all a ∈ A}.

A formal context can be represented by a relation table
R, where rows represent the objects and columns represent
the attributes. An object oi and attribute aj are in the re-
lation I if and only if the cell of R at row i and column
j is marked by “×”. As an example related to the media
shop, a binary relation between a set of objects {CD, MAG-
AZINE, NEWSPAPER, VIDEOTAPE, BOOK} and a set of
attributes {free-distribution, timely, paper, sound} is shown

2For the rest of the paper, “scenario” refers to the quality
attribute scenario, unless otherwise noted.

sound

free-distribution

VIDEOTAPE

paper

timely

CD NEWSPAPER

MAGAZINE

BOOK

Figure 2: Concept lattice in sparse representation.

in Fig. 1a. For that formal context, we have: σ({CD}) =
{free-distribution, sound}, and τ({timely, paper}) = {MAG-
AZINE, NEWSPAPER}.

A tuple c = (O, A) is called a concept if and only if A =
σ(O) and O = τ(A), i.e., all objects in c share all attributes
in c. For a concept c = (O, A), O is called the extent of
c, denoted by extent(c), and A is called the intent of c,
denoted by intent(c). In Fig. 1b, all concepts for the relation
in Fig. 1a are listed. The set of all concepts of a given
formal context forms a partial order via the subconcept-
superconcept ordering: c1 ≤ c2 ⇔ extent(c1) ⊆ extent(c2),
or dually, with c1 ≤ c2 ⇔ intent(c1) ⊇ intent(c2). If we
have c1 ≤ c2, then c1 is called a subconcept of c2 and c2 is a
superconcept of c1. For instance, in Fig. 1b, we have c5 ≤ c3.

The set L of all concepts of a given formal context and
the partial order ≤ form a complete lattice, called concept
lattice: L(C) = {(O, A) ∈ 2O × 2A | A = σ(O) and O =
τ(A)}. The infimum (�) of two concepts in this lattice is
computed by intersecting their extents, and the supremum
(�) is determined by intersecting the intents. The infimum
describes a set of common attributes of two sets of objects,
whereas the supremum yields the set of common objects,
which share all attributes in the intersection of two sets of
attributes.

The concept lattice for the formal context in Fig. 1a can
be depicted as a directed acyclic graph whose nodes repre-
sent the concepts and whose edges denote the relation ≤ as
shown in Fig. 2. By convention, the edges are not provided
with arrowheads; instead, the superconcept always appears
above its subconcepts. In the sparse concept lattice, a node
n is marked with an attribute a if the node is the most gen-
eral concept that has a in its attribute set. Similarly, a node
n is marked with an object o if the node is the most special
concept with o in its object set. Attribute sets are shown
just above each node, whereas object sets are shown below
the node. For example, consider the node labeled above
by “timely” and below by “MAGAZINE”. This node repre-
sents the concept ({MAGAZINE, NEWSPAPER}, {timely,
paper}), i.e., c4 in Fig. 1b.

2.4 Running Example
We use the media shop [27] in the e-commerce domain

to illustrate our approach; a fuller case study is presented
in Section 5. Media shop is a store selling different kinds
of media items such as books, magazines, audio CDs, and
videotapes. A family of media shops can vary in the prod-
ucts to sell, the payment methods, the accepted currencies,
and the like. In order to make requirements analysis more
straightforward, we develop the following quality attribute
scenarios:

139

Table 1: Extracted Requirements Constructs
Functional Requirements Profiles Quality Requirements
FRP1: navigate shop Q1: +U (positively contribute
FRP2: search product to usability)
FRP3: customize toolbox Q2: +A (positively contribute
FRP4: select language to accessibility)
FRP5: monitor quantity Q3: −M (negatively contribute
FRP6: generate report to maintainability)
FRP7: create account

Sce1: A user is able to navigate the media shop by cate-
gories, search the product, customize her own toolbox,
and select her native language (e.g., English, Span-
ish, Japanese) for displaying the product and price
information; usability is enhanced due to navigation
aids and customization capabilities, but maintenance
is likely to experience extra overhead.

Sce2: An administrator wants to monitor product quantities
while navigating the shop; he also wishes to customize
toolbox for automatically generating the reports; this
makes the system easier for him to use and access.

Sce3: To support the accessibility requirements, the devel-
oper must create admin account(s) and provide mech-
anisms for navigating the shop, searching the product,
and monitoring the quantities; these features will make
further maintenance troublesome.

Several points are worth mentioning. First, scenarios are
descriptions of tasks associated with stakeholder roles [20],
so we characterize system uses from various views. Second,
although some scenario formatting template (e.g., stimulus,
artifact, response) is proposed [5], we tend not to impose
how a scenario is structured, but support narratives in the
general sense [20]. Third, each scenario necessarily contains
some action-oriented concerns, and by definition, each sce-
nario provides quality attribute information. Table 1 lists
the FRPs and the quality requirements considered in the
scenarios. Finally, scenarios are inherently incomplete so
their use may be limited in supporting some RE activities
like elicitation. However, they play an important role in
our work for analyzing the interplay of functional and qual-
ity requirements. In fact, the under-specifying principle [22]
suggests that attempting to build a complete set of require-
ments is counterproductive; the assets will be enriched when
abstractions emerge from the SPL’s evolution.

3. EXTRACTIVE REQUIREMENTS ANAL-
YSIS — SYMMETRIC VIEW OF ASPECTS

The symmetric view does not support the notion of base
where aspects are weaved. Rather, every aspect represents
a concern in its own dimension, and is projected to other di-
mensions according to its impacts on other concerns [42]. In
dealing with the requirements extracted from existing sys-
tems, every functional unit or quality attribute represents
a concern in its own right. Thus, we adopt the symmetric
view to help understand interactions and trade-offs between
requirements.

Context is critical for concerns, especially quality ones, to
be precisely specified in the multi-dimensional space. There
are no simple (scalar) “universal” measurements for quality
requirements such as safety or portability. Rather, there are
only context-dependent measures, meaningful solely in spe-
cific circumstances. Safety for a power plant control software
and that for an e-mail client are a fine example. Scenarios

Table 2: Crosscutting Relations
FRP Q

1 2 3 4 5 6 7 1 2 3
Sce1 × × × × × ×
Sce2 × × × × × ×
Sce3 × × × × × ×

offer a way to take context into account since they capture
system uses in more specific circumstances [20].

In the running example, the concerns are clearly inter-
locked. Namely, each scenario expresses multiple FRPs that
affect more than one quality attribute. For example, usabil-
ity is scattered over Sce1 and Sce2, and both usability and
maintenance are tangled in Sce1. The same can be said for
many functional concerns. Table 2 shows how we use sce-
narios to sort out the relations between FRPs and quality
requirements: rows represent scenarios and columns repre-
sent FRPs or quality requirements. A check mark, “×”,
indicates the requirements construct is included in a partic-
ular scenario. Determining such relations is straightforward.
Note that the table does not specify the order of FRPs in
a scenario; only inclusion relation is considered. Also, as
shown in Table 1, we use “+” (resp. “−”) to denote a quality
requirement is positively (reps. negatively) affected, though
finer scales of measuring contributions [27] may be applied.

Although we are primarily interested in the relationship
between functional (FRP) and quality (Q) requirements, di-
rectly forming a formal context (binary relation) between
these two constructs is improbable, as demonstrated by the
crosscutting relations in Table 2. We exploit scenarios to
bridge this gap. In particular, we instantiate formal context
by setting the objects (O) to be the FRPs and the attributes
(A) to be the scenarios. The binary relation (I) is given by
the inclusion relation, as illustrated in Table 2. The basic
idea of gluing the third set (quality requirements) to the con-
text is to explore the concept lattice through combinations
of overlapping scenarios.

Let’s call the above instantiation INS1 (O = FRPs, A =
scenarios), in which mapping the functional units to objects
seems natural. However, three other instantiations of formal
context exists:

• INS2 (O = quality requirements, A = scenarios);

• INS3 (O = scenarios, A = FRPs); and

• INS4 (O = scenarios, A = quality requirements).

If we adopt INS2, we would employ the same strategy of
examining the concept lattice by combining scenarios in or-
der to uncover requirements interactions. INS3 and INS4

are isomorphic to INS1 and INS2, respectively, due to the
duality principle of lattice theory [7]. In concept analysis,
objects and attributes are symmetric so we can switch them
without affecting the resulting concept lattice. Objects and
attributes are labels used for distinguishing the two sets; the
result of concept analysis is determined solely by the binary
relation which is independent of these labels [15]. Therefore,
in all instantiations, scenarios glue the functional and qual-
ity requirements together. No matter which instantiation
we choose, the analysis will produce essentially the same re-
sult – our view of the concerns is truly symmetric. For the
convenience of our discussion in this section, we follow INS1.

The concept lattice of our running example is shown in
Fig. 3, where concepts are marked fully by pairs of ex-
tents and intents. For extractive SPL requirements anal-
ysis, we address two issues concerning aspect-oriented RE:
locate quality-specific FRPs and detect interferences. For

140

({FRP1, FRP2, FRP3,

FRP4}, {Sce1}) FRP7}, {Sce3})

({FRP1, FRP2, FRP5,

({FRP1, FRP3, FRP5, FRP6}, {Sce2})

({FRP1, FRP3}, {Sce1, Sce2}) ({FRP1, FRP5}, {Sce2, Sce3})

({FRP1}, {Sce1, Sce2, Sce3})

({FRP1, FRP2}, {Sce1, Sce3})

Φ({FRP1, FRP2, FRP3, FRP4, FRP5, FRP6, FRP7},)

Figure 3: Concept lattice for the running example.

each issue, we state the problem, present the algorithmic
or heuristic solution, and discuss the implications. We will
follow a similar presentation style in the next section when
addressing the issues in reactive SPL analysis.

− Issue 1: Locate Quality-Specific FRPs.

Problem: Identify the functional units of the software re-
quirements, i.e., the functional requirements profiles (FRPs),
that contribute to a particular system quality.

Solution: We classify the concepts in the lattice into dif-
ferent categories according to the quality attribute under
investigation. This is achieved by inspecting combinations
of overlapping scenarios in the context. The results can be
visualized as regions in the lattice.

Let’s take Q1 (supporting usability) for example. FRPs
specific to Q1 can be found in the intersection of the FRPs
of the two scenarios Sce1 and Sce2 because Q1 is supported
in both these scenarios, as shown in Table 2. The intersec-
tion of the FRPs for Sce1 and Sce2 can be identified as the
extent of the infimum of the concepts associated with Sce1

and Sce2: ({FRP1, FRP3}, {Sce1, Sce2}). Since Sce1 and
Sce2 do not share any other quality requirement, the FRPs
particularly relevant to Q1 are FRP1 (navigate shop) and
FRP3 (customize toolbox).

We notice that FRP1 is also used in all other scenarios in
the running example, so that one cannot consider FRP1 a
specific functional unit for any of Q1, Q2, or Q3. FRP3, in
contrast, is used only in scenarios defining Q1. We therefore
state the hypothesis that FRP3 is specific to Q1 whereas
FRP1 is not. It is worth bearing in mind that this is just
a hypothesis because other quality requirements might be
involved to which FRP3 is truly specific and that are not
explicitly listed in the scenarios. Recall that scenarios are
inherently incomplete. Another explanation could be that,
by accident, FRP3 is involved in both Q2 (in Sce2) and Q3

(in Sce1); then, it appears in both scenarios but nevertheless
is not specific to Q1. However, chances are high that FRP3

is specific to Q1 because FRP3 is not involved when Q2 and
Q3 are jointly expressed in Sce3, which suggests that FRP3

at least comes into play only when Q1 interacts with Q2 or
Q3. At any rate, the categorization is hypothetic and needs
to be validated by the requirements analyst.

FRPs that are somehow related to but not specific for Q1

are such FRPs that are included in scenarios specifying Q1

among other quality requirements. In the running example,
both Sce1 and Sce2 define Q1. FRPs in extents of concepts
which contain Sce1 or Sce2 are therefore potentially relevant
to Q1. In our case, FRP2, FRP4, FRP5, and FRP6 are
potentially relevant in addition to FRP1 and FRP3. FRP7

Φ(,)Φ

({FRP1}, {Sce1, Sce2, Sce3})

Relevant

({FRP5}, {Sce2, Sce3})

Shared
({FRP3}, {Sce1, Sce2})

Specific

({FRP7}, {Sce3})

Irrelevant

({FRP4}, {Sce1})

Pertinent

({FRP2}, {Sce1, Sce3})

({FRP6}, {Sce2})

Figure 4: Categorizing the concept lattice.

is included only in Sce3, which does not define Q1. Based
on the above analysis, we can identify five categories for
FRPs according to their relations to Q1. This categorization
is displayed in Fig. 4 by dividing the concept lattice into
different regions. We use the sparse representation of the
lattice as the classified FRPs are more easily identifiable.
The five categories for FRPs with respect to Q1 (supporting
usability) are:

• Specific: FRP3 (customize toolbox) is specific to Q1

because it is included in all the scenarios defining Q1

but not in others.

• Relevant: FRP1 (navigate shop) is relevant to Q1 be-
cause it is included in all the scenarios specifying Q1.
However, it is more general than FRP3 since it is also
included in scenarios not relating to Q1 at all.

• Pertinent: FRP4 (select language) and FRP6 (gener-
ate report) are included only in scenarios defining Q1.
They are less specific than FRP3 because they are not
used in all scenarios that define Q1, i.e., these FRPs
are only pertinent to Q1. It should be pointed out
that, based on the concept lattice, it is not decidable
whether the pertinent FRPs (FRP4 and FRP6) are
more or less specific than the relevant FRP (FRP1).

• Shared: FRP2 (search product) and FRP5 (monitor
quantity) are included in scenarios defining Q1 but
they are also included in scenarios not defining Q1,
i.e., they are shared with other quality requirements.
These FRPs are presumably less specific than perti-
nent and relevant FRPs.

• Irrelevant: FRP7 (create account) is irrelevant to Q1

because it is included only in scenarios not specifying
the quality requirement Q1.

The above procedure is amenable to full automation. Our
approach not only identifies quality-specific FRPs, but also
reveals a relevance ordering regarding the system quality.
Four levels of specificity can be inferred: 1) specific, 2) rel-
evant, pertinent, 3) shared, and 4) irrelevant.

Implications: As aforementioned, our treatment of func-
tional and quality requirements in this section is symmetric.
Analogously, we can locate quality concerns that are specific
to a particular system function. The results can help under-
stand the degree to which requirements concerns correlate
and interact. A key problem in aspect-oriented requirement
engineering is to identify join points for concerns to be co-
ordinated with. The regions in the concept lattice enable us
to focus on more specific concerns, identify join points more
accurately, and define pointcuts more efficiently.

141

Φ(,)Φ

({FRP2}, {Sce1, Sce3, Sce4})

({FRP6}, {Sce2})

({FRP5}, {Sce2, Sce3})

Shared to +U

both +U and −U
Relevant to

({FRP1}, {Sce1, Sce2, Sce3, Sce4})

Shared to −U

({FRP3}, {Sce1, Sce2})

({FRP4}, {Sce1}) ({FRP7}, {Sce3})

Figure 5: Detecting interferences.

Locating concerns within the concept lattice also influ-
ences SPL variabilities. When multiple concepts are iden-
tified being specific to a concern, we should reconcile and
integrate them. If the identified concepts are in a subcon-
cept relation to each other, the superconcept represents a
natural merge and is viewed as a strict extension of the be-
havior of the concern. If, on the other hand, the concepts are
incomparable, they may indeed reflect the varying context-
dependent behaviors in the SPL, or they may demand more
scenarios to be considered so as to discriminate the concerns
and disentangle the crosscuts in the lattice.

− Issue 2: Detect Interferences.

Problem: Since the previous issue has addressed interac-
tions between functional and quality requirements, we now
concentrate on determining how homogeneous requirements,
e.g., a pair of quality attributes, interfere with each other.
The discussion is generalizable to functional concerns thanks
to our symmetric view of aspects.

Solution: It should be made clear that we regard interfer-
ence as a syntactic phenomenon. This view is in accordance
with Snelting’s work on using concept analysis to restruc-
ture software configurations [41]. Deciding whether or not
an interference is harmful is a semantic or pragmatic issue re-
quiring domain knowledge and human judgments. Our goal
is to support such decision making by bringing susceptible
interferences to light and examining their causes.

In analyzing attributes, coupling arises whenever concepts
have objects in common. In [41], two attributes interfere if
the intersection of the extent of their concepts in the sparse
lattice is not empty. This definition is not directly appli-
cable to our context, but if we leverage the advantage of
the concern-locating results described earlier, we are able to
adapt the definition as follows: Two quality attributes in-
terfere if the intersection of the specific FRPs contributing
to them is not empty.

Let’s use the running example to illustrate the idea. Sup-
pose a novice user expresses her concern that searching prod-
ucts by wild card when navigating the shop is not very ef-
fective as mastering the wild card usage is non-trivial. This
adds a new scenario, Sce4, to our analysis. Sce4 includes
FRP1 and FRP2 (cf. Table 1), and specifies Q4: −U (hurt-
ing usability), according to the novice user. The updated
concept lattice 3 is shown in Fig. 5. If we choose the speci-
ficity level up to shared to analyze Q1 and Q4, two interfer-

3We address the issue of reactively updating the concept
lattice in Section 4.

ences can be spotted and shaded in the lattice. Determining
trade-offs calls for a deeper, semantic look.

• FRP1 (navigate shop) is relevant to both Q1 and Q4.
In fact, it is the extent of the bottom concept in the
lattice, meaning that it is included in all four scenarios
in the context. We conjecture that FRP1 is a basic
service in the domain. It could be implemented as a
utility function and reused in all systems of the product
line. Such an interference shows an intentional design
so it is not harmful.

• FRP2 (search product) appears in the intersection of
Q1 and Q4 shared regions. This shows coupling be-
tween these two concerns and further suggests a join
point for coordinating aspect composition. An inter-
esting observation is that Q1 and Q4 are both about us-
ability but they specify opposite ends of the attribute.
Semantically, we would expect Q1 and Q4 to be dis-
joint, so this interference (FRP2) is an inconsistency
that is potentially harmful.

• Interference between quality concerns often appears at
the terminological level [28], e.g., stakeholders use the
same term to mean different concepts. In reviewing
the novice user’s scenario, we postulate that her con-
cern may be more accurately characterized as learn-
ability. This may induce a subconcept-superconcept
relation between learnability and usability, or indi-
cate the interfering FRP behaves variably in the SPL,
e.g., “search product by wild card” can hurt learnabil-
ity, whereas “search product by keyword”may support
learnability, depending on the user experience and use
context.

Implications: A key benefit of aspect-oriented RE is to de-
tect conflicting concerns early when trade-offs can be re-
solved more economically [3]. Our work shows that syntac-
tic interferences in the concept lattice can easily be detected
automatically. With the domain expert’s additional knowl-
edge, we can make sense of interferences at the semantic and
pragmatic levels. Not all interferences are harmful as some
show the utility services common in the domain.

Some interferences do have “bad smell”, e.g., those be-
tween disjoint or orthogonal concerns [41]. Two concerns
are disjoint if they cannot be defined toward the same di-
mension, e.g., “supporting usability”and“hurting usability”.
Two concerns are orthogonal if they deal with independent
dimensions of the concern space, e.g., “exception handling”
versus “caching and buffering”. Interfering disjoint concerns
shows an inconsistency, which indicates a conflict or a vary-
ing behavior in the SPL. Interfering orthogonal concerns is
also very suspicious: it implies coupling between modules
that should be separated rather cleanly.

Detecting interferences helps assess requirements modu-
larity. Based on the analysis of an interference’s cause and
effect, the engineer can decide how to react in practice. If it
is designed to be there as a service, he may ignore the inter-
ference. If it is a term clash or mismatch, he may elicit more
scenarios to clarify the subtleties. If it is a variation point,
he may capture and model the variabilities in the product
line. If it is a conflict, he may prioritize the requirements
so he can trade one concern off another. If it is a coupling,
he may perform refactoring then use aspect composition to
achieve better modularity. At any rate, interferences raise a
flag of caution and urges further investigation to crystallize
the concepts involved.

142

4. REACTIVE REQUIREMENTS ANALYSIS
— ASYMMETRIC VIEW OF ASPECTS

When analyzing requirements extracted from existing sys-
tems of the product line, we took the symmetric view in Sec-
tion 3 to allow every concern, either functional or quality-
related, to express itself in its own dimension. This is a
static and micro-level view within the SPL, which focuses
on the requirements concerns and their relationships. Al-
though we can form an initial baseline for the SPL, the ex-
traction results are inevitably incomplete so the assets are
under-specified. The purpose of reactive SPL development
is to enrich the asset base during the SPL’s evolution [22].

In this section, we take the asymmetric view of aspects to
analyze the evolving SPL’s requirements. This view distin-
guishes the base from aspects: The base presents the domi-
nant way of organizing the concerns; the aspects cut across
this organization and offer advices to the base at certain join
points [3]. An underlying assumption of the reactive model
is that there must exist an asset base to react. This base
maps naturally to the base in the asymmetric view; the re-
active increments, then, are aspects that need to be weaved
into the base to enrich the assets. This is a dynamic and
macro-level view over the SPL, which focuses on require-
ments changes and their impacts.

The extractive and reactive models are not isolated pieces
but are integral components for flexible SPL development.
Thus, the issues discussed in Section 3 can help tackle the
problems we face in reactive requirements analysis. An ex-
ample would be aspect weaving, in which a key problem is
to identify the join points so that the aspect advises the
base at the right places. Issue 1, locating concerns and cat-
egorizing them by the specificity ordering, provides a so-
lution: the more specific region in which a point appears,
the more intense its interaction with the interested aspect
(concern) and the more likely it represents a join point. A
pointcut may be formulated by examining patterns of the
points within certain relevance regions. Another example is
aspect interference, which concerns about weaving multiple
aspects might adversely influence each other’s effect. Issue
2, detecting interferences, addresses this problem for obvious
reasons.

As was mentioned, the reactive model assumes the ex-
istence of the SPL’s requirements assets. Since these as-
sets have undergone in-depth analysis, e.g., the activities
described in Section 3, they exhibit a high level of quality
and stability. It is likely that, at this phase, stakeholders
have established a shared domain vocabulary and agreed on
the SPL’s architectural drivers 4. The FRPs are also vali-
dated and their contributions to the architectural drivers are
more directly identifiable. As a result, we instantiate the for-
mal context by setting the objects (O) to be the FRPs and
the attributes (A) to be the architectural drivers. The bi-
nary relation (I) refers to the contribution relation [27]. Of
course, we can (and should) always develop scenarios to help
clarify requirements constructs and relations in the context,
as discussed in Section 3.

The new instantiation (O = FRPs, A = architectural
drivers) by no means indicates the relations between func-
tional and quality requirements are fixed. Rather, we antici-

4A set of quality requirements that guide the SPL’s archi-
tecture design (cf. Section 2.1). In practice, the number of
architectural drivers is often less than a dozen [34].

pate the context to change as the SPL evolves. In particular,
we want to react when: 1) new FRPs (e.g., features, services,
and system functions) are added to the asset base; and 2) the
priority of the architectural drivers changes as the trade-offs
are constantly balanced among competing requirements.

− Issue 3: Update Concept Lattice Incrementally.

Problem: Modify the concept lattice efficiently as the SPL
evolves. The update should be incremental without having
to do a complete re-computation from scratch. As was dis-
cussed, we assume the architectural drivers, i.e., the set of
attributes (A), are already identified at this stage, though
their priorities may change during the evolution. The major
type of modification we consider is in light of new FRPs be-
ing added to the context. We plan to investigate other types
of modification, such as removing deprecated features, in the
near future.

Solution: Our solution utilizes Godin et al.’s incremental
lattice update algorithm, which takes as input the current
lattice L and the new object with its attributes and outputs
a new lattice L′ that incorporates the changes [16]. The
efficiency of the algorithm comes from the observation that
once an initial concept lattice L has been constructed from
the relation table R, there is no need to maintain R. The
incremental lattice update may create new nodes, modify
existing nodes, add new edges, and change existing edges
that represent the partial ordering ≤. As a result, nodes that
were at a specific level p (where p is defined as the length of
the longest path from the bottom, ⊥, to the node) may now
be raised in L′ and new nodes may have been created at
the level p. However, existing internal nodes will never sink
in the lattice because the partial ordering between existing
nodes is unchanged by the addition of new nodes [16].

Let |O| denote the cardinality of the set of objects O, and
|A| denote the cardinality of the set of attributes A. In the
worst case, the time complexity for Godin et al.’s incremen-
tal algorithm is quadratic in the size of the input relation,
i.e., quadratic to (|O| × |A|) [16]. Our problem, which is
concerned only with adding new FRPs (objects), is a spe-
cial case in which the incremental update is linearly bounded
by the number of objects |O| [16]. Figure 6 illustrates the
algorithm via the media shop example. The context is given
in Fig. 6a. The attributes are a set of architectural drivers.
For simplicity, we choose the quality attributes appeared in
the scenarios (cf. Section 2.4), namely, usability (U), ac-
cessibility (A), and maintainability (M). Each attribute has
two poles (supported and hurt) that are preceded by + and
−, respectively.

We use FRP1 through FRP5 as baseline requirements, and
treat FRP6 and FRP7 as incremental updates. The FRP
labels were defined in Table 1. The concept lattice for base-
line FRPs is shown in Fig. 6b. The bottom (⊥) has intent
{−A} because, through FRP1 to FRP5, no object relates to
−A. The top (
) has intent {+U} because it relates to all
the FRPs in the context. The lattice after adding FRP6 is
shown in Fig. 6c. The newly emerged concept is annotated
in stripes. This node is inserted at level 1 as the infimum
of ({FRP1, FRP6}, {+M, +A, +U}) and ({FRP4, FRP6},
{−M, +A, +U}). The remaining lattice structure of Fig. 6b
is preserved in this modification.

Similarly, Fig. 6d shows the concept lattice after adding
FRP7. The basic structure of Fig. 6c remains intact and
incremental changes are shaded in crossed stripes. FRP7

143

(a) Formal context (b) Concept lattice (FRP1 through FRP5) (d) Concept lattice (FRP7 added)(c) Concept lattice (FRP6 added)

FRP1

FRP2

FRP3

FRP4

FRP5

FRP7

FRP6

−U −A +A +M

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

−M+U

+U

−U

+A −M

+M

FRP2

FRP5

FRP3

FRP1 FRP4

+U

−A

−U

+A −M

+M

FRP1

FRP2 FRP6

FRP5

FRP3

−U

−M

+M

FRP1

FRP6

FRP5

FRP3

FRP2

−A +A

FRP7

+U

FRP4

−A

FRP4

Figure 6: Updating concept hierarchy incrementally.

adds the relation to −A in the context, so −A is lifted from
the bottom (⊥) to level 1. In the updated lattice, +U is
no longer the top (
) because FRP7 has no relation to it.
Note that adding new objects does not always result in cre-
ating new nodes; new edges may be added or existing nodes
and edges may be modified. In all cases, the basic lattice
structure is preserved and the increments do not cause the
existing nodes to sink in the hierarchy. This provides the
linear-order computational efficiency for updating the con-
cept lattice incrementally [16].

Implications: Incorporating incremental changes is essential
in reactive SPL development [22]. Adding FRPs to the asset
base may be caused by introducing new product functions,
upgrading services, eliciting new features, and the like. Up-
dating the concept lattice in a lightweight fashion enables
stakeholders to react promptly in order to accommodate the
change. We use the term “lightweight” to indicate that our
methods can be used to perform partial analysis on under-
specified requirements, without a commitment to developing
a complete asset base. Lightweight also means the employed
algorithm is so efficient and incremental that a complete lat-
tice re-building can be avoided and the changes can be easily
spotted visually.

Our view of reactive analysis is asymmetric: weaving the
incremental aspects inevitably affects the structure of the
base. This helps assess modularity of the evolving SPL. In
Fig. 6b, for example, +M and −M are kept disjoint, showing
a desired low coupling between the poles of maintainability.
Adding FRP6 (generate report) introduces an interference
node, as depicted in stripes in Fig. 6c. Although this seems
to destroy the modularity of the base, a semantic case anal-
ysis [29] uncovers the SPL’s variability: while generating
testing and failure report can ease maintainability, generat-
ing consistent sales report may demand extra resources from
the maintenance team. In order to perform such assessments
and acquire insights to the evolving SPL, quickly and easily
identifying the increments is indispensable.

− Issue 4: Analyze Change Impact.

Problem: The general question we address through impact
analysis is: Does a change of the fulfillment of a requirement
affect the fulfillment of another requirement?

Solution: The solution to the previous issue allows the in-
crements to be recognized easily. This permits automatic
generation of sliced lattice according to the change so that a
more focused view is obtained [44]. Our approach relies on
the subconcept-superconcept relation exposed in the sliced

HTTPS
enable

password
enforce

manage
account

search productdeploy SSL

+Accuracy

+Confidentiality

Figure 7: Analyzing trade-offs on a sliced lattice.

lattice to comprehend the SPL’s requirements change. The
solution includes a couple of heuristics:

1). When coping with the change with respect to architec-
tural drivers (quality requirements), adopt a top-down
(superconcept to subconcept) strategy. The rationale
is that fulfillment of general quality requirement (su-
perconcept) dictates fulfillment of one or more specific
requirements (subconcepts).

2). When coping with the change with respect to FRPs
(functional requirements), adopt a bottom-up (sub-
concept to superconcept) strategy. The rationale is
that fulfillment of specific function (subconcept) lays
the foundation for fulfillment of higher-level require-
ments (superconcepts).

Figure 7 shows a sliced concept lattice, adapted from [27].
Suppose this lattice is the result of some requirements change
in the SPL. If the change is about architectural drivers, we
would pay more attention to +Accuracy since it appears to
be the most general attribute in the hierarchy. This indi-
cates that the change makes SPL’s accuracy a more valu-
able driver. In the updated context, how to fulfill accuracy
drives architectural decisions. For instance, if the SPL’s con-
fidentiality is achieved, so is accuracy. However, if for some
reason, e.g., due to conflicting requirements or product vari-
ations, confidentiality cannot be fulfilled, we still have an
option of implementing the function, search product, to ad-
dress the accuracy concern.

If the change is about FRPs, we may start by investigating
the concept toward the bottom of the hierarchy. In Fig. 7,

144

(b) Genuine Soccer Pro (a) Genuine Soccer Trial

Figure 8: Products in the Genuine Soccer SPL.

for example, the concept marked with “deploy SSL” is at
level 1, which suggests that this FRP is one of the basic ser-
vices in the SPL. If a product wishes to include higher-level
features (superconcepts), such as “enable HTTPS” or “en-
force password”, it must select the subconcept,“deploy SSL”,
in its configuration. In another word, changing a base-level
function’s availability can have a broad impact for members
of the SPL.

Implications: Comprehending the SPL’s requirements change,
as well as the impact of change, plays an important role
in balancing trade-offs, determining priorities, and setting
preferences. The constraints and dependencies discovered
will direct product configurations in the SPL. Our approach
takes incremental steps to investigate requirements evolu-
tion. The insight comes from exploiting the natural ordering
given by the subconcept-superconcept relation in the lattice.
However, it is important to keep in mind that change impact
analysis requires a deep understanding of the domain. Our
heuristics serve as an aid to this understanding and should
be treated as such.

5. CASE STUDY
We used an exploratory case study [48] as the basis for our

empirical evaluation. The objective is to assess the useful-
ness and the scope of applicability of our approach, and more
importantly, to identify areas for improvement. In addition,
we would like to explore how requirements abstraction and
modularity are handled in practice.

5.1 Background
The subject system of our study is a commercial mobile

soccer game SPL produced by a small software company.
In order to honor confidentiality agreements, we will use the
pseudonyms“FC” for the company and“Genuine Soccer” for
their SPL. FC started in 1998 with six people specializing
in real-time video game development. Genuine Soccer, one
of FC’s proprietary systems developed in-house, was first re-
leased in 2002 as an embedded game for a specific cell phone
provider to exploit the business opportunities offered by the

FIFA World Cup
TM

. At first, Genuine Soccer was a single,
custom-built product. After serially building different ver-
sions and variants of the product, FC began adopting SPL
technologies to manage Genuine Soccer in 2005 when the
company had approximately 50 employees. The small team
size and the short development cycle of Genuine Soccer left

Table 3: Extractive Analysis Results
Constructs # Concerns # Pre.� Interferences #
Roles 3 Specific 2.7 88.9% Utility 2
FRPs 17 Rel., Pert.∗ 6 78.9% Conflict 2
Drivers 7 Shared 6 57.5% Variability 0
Scenarios 12 Irrelevant 2.3 54.4% Coupling 5
� Precision
∗ Relevant, Pertinent

little margin for error or resource wastage when performing
such a migration.

We studied two variants in the Genuine Soccer family:
the Trial version and the Pro version. The screenshot of
each version is shown in Fig. 8. We used the Trial ver-
sion to perform extractive analysis. FC shared with us sev-
eral Trial version’s documents, including the software re-
quirements specification, software design description, and
integrated test plan. We applied an information retrieval
method [29] to mine FRPs from the documents. A two-hour
meeting was held in FC to validate the extracted FRPs, and
further elicit the architecturally significant quality require-
ments from and develop scenarios together with the domain
experts. The Pro version was used for reactive analysis. We
used the ToscanaJ suite [6] to implement our concept anal-
ysis methods. The results were discussed in a half-day joint
application development (JAD) workshop in FC.

5.2 Results
In preparing the analysis, we identified three stakeholder

roles: user, developer, and maintainer. We extracted about
40 FRPs from Genuine Soccer Trial’s project documents.
During the first meeting with FC’s experts, we elicited 7
quality requirements as the mobile game SPL’s architectural
drivers. It is interesting to note that these drivers include
not only typical software engineering quality attributes like
performance and modifiability, but also emotional require-
ments in video games like excitement and frustration [10].
We collaborated with the domain experts and devised 12
scenarios, making use of 17 FRPs to define the architec-
tural drivers. For each role, 4 scenarios were elicited. Each
scenario helped specify 1 to 3 quality attributes, and was ex-
pressed within the 5-sentence narratives. A brief summary
of this setup is shown in the left column of Table 3.

To evaluate the effectiveness of the concern-locating re-
sults (Issue 1, cf. Section 3), we used 3 architectural drivers
(positive poles): excitement, performance, and modifiability.
These requirements were chosen in order to have a fair cov-
erage of various stakeholders’ interests. For each driver, we
ranked the 17 FRPs in the context by the specificity ordering
introduced in Section 3: 1) Specific, 2) Relevant, Pertinent,
3) Shared, and 4) Irrelevant. The number of concerns cat-
egorized by specificity levels (average of three architectural
drivers) is shown in the middle of Table 3. Meanwhile, we
asked the experts to manually identify the quality-specific
units among the 17 FRPs. This allows us to compute pre-
cision [39] of our results. Precision measures accuracy and
is defined as the proportion of located concerns which are
relevant. The average precision achieved at each specificity
level is listed in Table 3.

The findings demonstrate the usefulness of our concern-
locating method and the specificity ordering, since higher
precision is achieved at more specific levels. Ideally, we
would like to also compute recall [39], the proportion of lo-
cated relevant concerns to the total number of all relevant
concerns, in order to measure the coverage of our results.

145

In this case study, recall values were not obtained. On one
hand, the incomplete nature of scenarios would not favor the
coverage measure. For example, among the 40 or so FRPs
extracted from the Genuine Soccer Trail project documents,
only 17 appeared in the context used for the analysis. On the
other hand, the under-specifying principle [22] challenges the
value of measuring coverage for extractive SPL engineering.
While further testing is in order, current results showed that
our method could accurately identify the relevant concerns.

Based on the concern-locating results, we chose the specific-
level FRPs of each architectural driver for detecting inter-
ferences (Issue 2, cf. Section 3). We presented the concept
lattice to FC’s experts, and discussed 9 interferences and
their causes and effects (right column of Table 3). We were
unable to find the SPL’s variability; part of the reason was
due to one product (Genuine Soccer Pro) being a strictly
enhanced version of the other (Genuine Soccer Trial). We
expect the results to be supplementary, i.e., more variations
would be identified, when reconciliation, instead of consoli-
dation, is prevalent in merging artifacts of the SPL. Among
the 9 interferences, we identified more than half as coupling.
We ended up recommending a restructure or refactoring of
the requirements portion so as to improve modularity. The
results also included a few utilities and terminological con-
flicts. Through interviews, the experts confirmed the effec-
tiveness of visualizing the overlaps in the concept lattice.

Genuine Soccer Pro shares most system functions with
its Trial counterpart, such as setting line up and displaying
score. Notably, it has a bunch of advanced features, e.g.,
showing weather conditions and controlling detailed player
moves like bicycle kick, elastico, and penetrative pass. We
used some of these features for reactive analysis: updating
lattice and analyzing change impact (cf. Section 4). The re-
sults were presented in the JAD workshop, and the feedback
was very positive regarding the usefulness of the heuristics
and the capability of accommodating requirements changes.

Several factors can affect the validity of the exploratory
case study [48]. As for construct validity, for example, the
interpretation of concern “specificity” may vary among ex-
perts, but we believe visualizing lattice regions could over-
come this limitation. As for external validity, Genuine Soc-
cer Pro is an enhancement of the Trial version, so our re-
active analysis focused on adding features. Other reactive
modifications may exhibit different properties, but should
not change the key insights from our study significantly. As
for reliability, we expect that replications of the study would
offer similar results. Of course, the characteristics of each
SPL under study will differ from our reports.

5.3 Discussion and Lessons Learned
We are confident that the proposed framework is scalable

because: 1) the algorithmic solutions are in polynomial time,
2) the implementation has been be leveraged from off-the-
shelf toolkits (e.g., ToscanaJ [6]), and 3) the mobile-game
case is reasonably sized among SMEs (small and medium-
sized enterprises), which are the main beneficiaries of the
extractive SPL model [22]. In practice, more focused extrac-
tion can be carried out first, followed by reactive increments.

However, manual effort is indispensable in our framework,
which includes devising quality attribute scenarios, identify-
ing architectural drivers, teasing out the relationship among
requirements artifacts and scenarios, reasoning about inter-
ferences, etc. Although we are keen to research more heuris-

tics, guidelines, and automation support in these respects,
domain expertise is essential since our framework is not a
replacement, but a complement, to existing SPL methods.

We now share some key observations from meeting and
interviewing FC’s experts. We found scenario generation is
much like software testing: We cannot prove we have a suffi-
cient number of test cases, but we can determine a point at
which adding new test cases yields only negligible improve-
ment. In practice, the available resource is another factor.
We devised 4 scenarios for each of the 3 stakeholder roles
in half an hour, which seemed adequate for our analysis.
Having a set of FRPs extracted from requirements docu-
ments [29] enabled us to generate scenarios more easily.

We realized that our methods should be applied itera-
tively, not in a strict “extractive then reactive” manner. For
example, even though no variability was identified in ex-
amining Genuine Soccer Trial’s requirements, when adding
new features to the SPL, variations emerged and so did other
types of interference. This requires efficient updates to catch
and visualize the change and impact, which our lightweight
approach offers.

“Crosscut follows form; form follows function” was FC’s
view of modularity in practice. The Genuine Soccer SPL’s
requirements were written in a textual form following IEEE-
STD-830 standard [17], which had an emphasis on system
functionalities. Quality requirements inevitably cut across
this form. Teasing out basic constructs like FRPs and ana-
lyzing requirements interaction on the fly were not just an
academic exercise, but something FC considered incorpo-
rating in daily practice because they could identify many
potential problems early in the software life cycle and at an
extremely low cost.

On an organizational level, coupling is not necessarily a
bad thing – it decreases latency, according to FC. The com-
pany enjoyed the culture of small project teams, supported
by their flat organizational structure. They learned the
lesson that the organizational structure can artificially re-
duce the throughput of business processes. A structure that
caused information to flow through many roles not only in-
creased latency, but also caused loss of information fidelity.
FC’s experience suggested that taking advantage of coupling
was to open communication paths between roles to increase
the overall coupling/role ratio, particularly between central
process roles.

6. RELATED WORK
Our work is related to several different efforts. Baniassad

et al. were among the first to discover early aspects and
exploit them throughout the software development life cy-
cle [3]. The benefit is to detect conflicting concerns early,
when trade-offs can be resolved more economically. Their
view is asymmetric in that aspects depend on the author’s
chosen organization of requirements artifacts. A taxonomy
of asymmetric requirements aspects is described in [31].

The symmetric view of aspects was formulated in [42],
but most contemporary SPL methods still exhibit “tyranny
of the dominant decomposition” [42]: they use either func-
tional or quality requirements as the primary criteria for
organizing and structuring. We argued that both asymmet-
ric and symmetric views can be leveraged to understand the
SPL’s requirements modularity and interactions. In par-
ticular, we described how isomorphic context instantiations
could result in a symmetric view of concerns.

146

Likewise, our work is related to the effort of managing
SPL feature relation and dependency via aspects [12]. The
authors introduced some aspect-oriented patterns for imple-
menting variable features on top of an object-oriented (OO)
approach. Similarly, Liu et al. [25] used aspects to address
the crosscutting variabilities in an OO SPL design. Both
work demonstrated the benefit that, by exploiting aspects,
inclusion or exclusion of variable SPL features would cause
little change to components implementing or modeling other
features. To support aspect tracing from requirements to
implementation and testing, we contributed a goal-driven
framework that made aspects discovered in requirements
analysis become true engineering assets [32]. In [46], the
authors used a traceability matrix to identify aspects.

Most research into SPL requirements assets has worked
in a proactive fashion. Recently, effort has been made in
order to extract requirements assets from software reposito-
ries. Natural language processing and information retrieval
techniques have attracted much attention (e.g., [40, 1]), since
legacy requirements are mostly documented in natural lan-
guage. Semantic analysis was also performed to model SPL
variabilities [29] and to intentionally compose the aspectual
requirements [11]. In terms of reactive development, Bald-
win and Coady discussed their experience of introducing a
distribution implementation as aspects into the JVM [2].
The aspect-oriented increments improved the internal code
structure and made external interactions explicit. Our work
deals with the increments in order to enrich the requirements
assets in reactive SPL engineering.

Concept analysis [15] has traditionally been applied in
the field of software engineering to support software main-
tenance activities [43], such as program understanding [44],
reengineering configuration structures [41], and code-level
aspect mining [45]. In the analysis of software systems, es-
pecially source code exposing certain structural and behav-
ioral properties, several relationships among the composing
entities emerge. For this reason, concept analysis has found
a very productive application area associated with software
reengineering and program comprehension. Recent work,
such as [38], has also reported the application of concept
analysis in requirements engineering activities. Our earlier
work exploited structural properties in requirements goal
models to analyze aspects [27]. The current endeavor re-
fines and extends our proposal, thereby enhancing the over-
all competence of concept analysis in investigating crosscut-
ting properties in early phases of software development.

7. CONCLUSIONS
In this paper, we contributed a lightweight conceptual

framework to analyze the requirements assets in support of
extractive and reactive SPL development. By taking advan-
tage of both symmetric and asymmetric views of aspects, we
were able to ameliorate “tyranny of the dominant decompo-
sition” [42]. We used scenarios in defining the context to
bridge functional and quality requirements. Their relation-
ships are organized in a concept lattice, which provides a
richer notion of modularity for understanding requirements
abstractions. We formulated a number of issues faced in
aspect-oriented product line requirements engineering, pre-
sented our solutions according to the concept lattice, and
discussed the implications. Studying a mobile game SPL
demonstrated the applicability and usefulness of our ap-
proach.

Our future work involves several different strands. First,
more in-depth empirical studies are needed to lend strength
to the preliminary findings reported here. Second, more
user-friendly interpretations of the lattice, which shield the
user from the mathematical complexities, are in order. Third,
we would like to support other types of reactive changes be-
sides adding new product functions. And finally, we want to
incorporate the current concept analysis framework into our
previous SPL RE work on extracting and modeling [29], clus-
tering [30], and managing terminological interferences [28].
The main thrust of our continuing work is to promote a set
of low-threshold, lightweight techniques as a critical enabler
for practitioners to capitalize on the order-of-magnitude im-
provements offered by SPL engineering.

8. ACKNOWLEDGMENTS
We would like to thank all the management and staff at

the partner company for supporting us during the case study,
for sharing not only their data but also time and exper-
tise, and especially to Jia Wang for setting up and coordi-
nating the meetings. We also thank John Mylopoulos and
Krzysztof Czarnecki for careful comments on earlier drafts
of this paper. Funding was provided by NSERC.

9. REFERENCES
[1] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,

P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
exploratory study of information retrieval techniques
in domain analysis. In Int’l SPL Conf, pages 67–76,
Limerick, Ireland, September 2008.

[2] J. Baldwin and Y. Coady. Are patches cutting it?
structuring distribution within a JVM using aspects.
In IBM CAS Conf, pages 29–39, Toronto, Canada,
2005.

[3] E. Baniassad, P. C. Clements, J. Araújo, A. Moreira,
A. Rashid, and B. Tekinerdoğan. Discovering early
aspects. IEEE Software, 23(1):61–70,
January/February 2006.

[4] T. Bardo, D. Elliott, T. Krysak, M. Morgan, R. Shuey,
and W. Tracz. Core: A product line success story.
http://www.stsc.hill.af.mil/crosstalk/1996/03/Core.asp.

[5] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 2003.

[6] P. Becker and J. Correia. The ToscanaJ suite for
implementing conceptual information systems. LNCS,
3626:324–348, 2005.

[7] G. Birkhoff. Lattice Theory. Providence, RI.: Am.
Math. Soc., 1940.

[8] J. D. Blaine and J. Huang. Software quality
requirements: how to balance competing priorities.
IEEE Software, 25(2):22–24, March/April 2008.

[9] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, 2000.

[10] D. Callele, E. Neufeld, and K. Schneider. Emotional
requirements in video games. In Int’l Reqs Eng Conf,
pages 299–302, Minneapolis, USA, September 2006.

[11] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters.
Semantics-based composition for aspect-oriented
requirements engineering. In Int’l Conf on AOSD,
pages 36–48, Vancouver, Canada, March 2007.

147

[12] H. Cho, L. Kwanwoo, and K. C. Kang. Feature
relation and dependency management: an
aspect-oriented approach. In Int’l SPL Conf, pages
3–11, Limerick, Ireland, September 2008.

[13] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[14] S. R. Faulk. Product-line requirements specification
(PRS): an approach and case study. In Int’l Symp on
Reqs Eng, pages 48–55, Toronto, Canada, August
2001.

[15] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, 1996.

[16] R. Godin, R. Missaoui, and H. Alaoui. Incremental
concept formation algorithms based on Galois
(concept) lattices. Computational Intelligence,
11(2):246–267, 1995.

[17] IEEE Standards Board. IEEE recommended practice
for software requirements specifications. 1998.

[18] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, November 1990.

[19] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. FORM: a feature-oriented reuse method with
domain-specific reference architectures. Annals of
Softw Eng, 5:143–168, January 1998.

[20] R. Kazman, G. Abowd, L. Bass, and P. Clements.
Scenario-based analysis of software architecture. IEEE
Software, 13(6):47–55, November 1996.

[21] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. LNCS, 1241:220–242,
1997.

[22] C. W. Krueger. Easing the transition to software mass
customization. In Int’l Wkshp on Product-Family Eng,
pages 282–293, Bilbao, Spain, October 2001.

[23] J. Kuusela and J. Savolainen. Requirements
engineering for product families. In Int’l Conf on
Softw Eng, pages 61–69, Limerick, Ireland, June 2000.

[24] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and
J. Mylopoulos. On goal-based variability acquisition
and analysis. In Int’l Reqs Eng Conf, pages 76–85,
Minneapolis, USA, September 2006.

[25] J. Liu, R. R. Lutz, and H. Rajan. The role of aspects
in modelling product line variabilities. In Wkshp on
Aspect-Oriented Product Line Eng, 2006.

[26] M. Moon, K. Yeom, and H. S. Chae. An approach to
developing domain requirements as a core asset based
on commonality and variability analysis in a product
line. IEEE Transactions on Software Engineering,
31(7):551–569, July 2005.

[27] N. Niu and S. Easterbrook. Analysis of early aspects
in requirements goal models: a concept-driven
approach. Trans. AOSD, III:40–72, 2007.

[28] N. Niu and S. Easterbrook. So, you think you know
others’ goals? A repertory grid study. IEEE Software,
24(2):53–61, March/April 2007.

[29] N. Niu and S. Easterbrook. Extracting and modeling
product line functional requirements. In Int’l Reqs Eng
Conf, pages 155–164, Barcelona, Spain, September
2008.

[30] N. Niu and S. Easterbrook. On-demand cluster
analysis for product line functional requirements. In
Int’l SPL Conf, pages 87–96, Limerick, Ireland,
September 2008.

[31] N. Niu, S. Easterbrook, and Y. Yu. A taxonomy of
asymmetric requirements aspects. LNCS, 4765:1–18,
2007.

[32] N. Niu, Y. Yu, B. González-Baixauli, N. Ernst,
J. Leite, and J. Mylopoulos. Aspects across software
life cycle: a goal-driven approach. Trans. AOSD, (to
appear), 2008.

[33] B. Nuseibeh and S. Easterbrook. Requirements
engineering: a roadmap. In Conf on Future Softw Eng,
pages 35–46, Limerick, Ireland, June 2000.

[34] I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan.
Making practical use of quality attribute information.
IEEE Software, 25(2):25–33, March/April 2008.

[35] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[36] R. Prieto-Dı́az. Domain analysis: an introduction.
Softw Eng Notes, 15(2):47–54, April 1990.

[37] A. Rashid, A. Moreira, and J. Araújo. Modularisation
and composition of aspectual requirements. In Int’l
Conf on AOSD, pages 11–20, Boston, USA, March
2003.

[38] D. Richards. Merging individual conceptual models of
requirements. Reqs Eng Journal, 8(4):195–205, 2003.

[39] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[40] A. Sampaio, A. Rashid, R. Chitchyan, and P. Rayson.
EA-Miner: towards automation in aspect-oriented
requirements engineering. Trans. AOSD, III:4–39,
2007.

[41] G. Snelting. Reengineering of configurations based on
mathematical concept analysis. ACM Trans. Softw
Eng and Methodology, 5(2):146–189, April 1996.

[42] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
degree of separation: multi-dimensional separation of
concerns. In Int’l Conf on Softw Eng, pages 107–119,
Los Angeles, USA, May 1999.

[43] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey
of formal concept analysis support for software
engineering activities. LNCS, 3626:250–271, 2005.

[44] P. Tonella. Using a concept lattice of decomposition
slices for program understanding and impact analysis.
IEEE Trans. Softw Eng, 29(6):495–509, June 2003.

[45] P. Tonella and M. Ceccato. Aspect mining through
the formal concept analysis of execution traces. In
Working Conf on Reverse Eng, pages 112–121, Delft,
The Netherlands, November 2004.

[46] K. van den Berg, J. M. Conejero, and J. Hernández.
Analysis of crosscutting in early software development
phases based on traceability. Trans. AOSD,
III:73–104, 2007.

[47] D. M. Weiss and C. T. R. Lai. Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[48] R. Yin. Case Study Research: Design and Methods.
Sage Publications, 2003.

148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

