

American Institute of Aeronautics and Astronautics

1

A Trajectory Planner for Autonomous Structural Assembly

Catharine L. R. McGhan*
University of Maryland, College Park, Maryland, 20742

Autonomous robotic space construction requires robust scheduling routines to
decompose and order assembly activities and an efficient trajectory planner to study the
activities and determine how they can be physically accomplished. Task schedulers search
through possible combinations of abstract “assemble-part-x” tasks, relying upon the path
planner to compute a valid and efficient trajectory that completes the task and to provide an
estimate of the cost of moving along that trajectory in terms of fuel or power requirements.
This paper presents a path planner for robotic assembly of a truss structure composed of
interchangeable beams and hubs to which beams can be attached. Because initial testing will
be performed in a neutral buoyancy environment, the dynamics are based on underwater
motion. A free-flying robot and the structural elements it carries to assembly sites are
modeled as simple shapes (e.g., spheres, cylinders) with known inertia and drag properties.
Each path is optimized over a cost function that currently includes time and fuel (power)
use, which in turn provides a scheduler with a comparative cost estimate useful for choosing
between multiple task configurations and combinations. Physical parameters are derived
from the University of Maryland’s Supplemental Camera and Maneuvering Platform Space
Simulation Vehicle (SCAMP SSV) robot and six-element EASE truss structure, the latter
previously assembled by astronauts in both space and neutral buoyancy underwater
environments. Tests were conducted over a variety of initial and final structural element
configurations, demonstrating that the proposed computationally-efficient path planning
strategy provides practical and reasonable trajectories and costs.

Nomenclature
a = translational acceleration vector, [ax ay az]
Cdv = coefficient of drag, translational motion
Cdω = coefficient of drag, rotational motion
d = translational distance vector, [dx dy dz]
FMAX = maximum force output of a vehicle thruster
I = moment of inertia
J = cost of efficiently completing a task
LB = beam length
mB = beam mass
mS = SCAMP SSV mass
xpnE = vector p of description n of object E in coordinate frame x, (I = inertial, S = SSV, B = beam, H = hub)
RB = beam radius
RS = SCAMP SSV radius
t = time
Tx^y = transformation matrix from x to y, [T0 T1 T2]
u = fuel vector for each thruster, [u1 u2 u3 u4 u5 u6]
v = translational velocity, vector [vx vy vz]
W = weighting factor
α = rotational acceleration vector, [ax ay az]
θ = rotational angle vector, [θx θy θz]
ω = rotational velocity vector, [ωx ωy ωz]

* Undergraduate Researcher, Department of Aerospace Engineering, Space Systems Lab, Bldg. #382, College Park,
Maryland, 20742, AIAA student member.

American Institute of Aeronautics and Astronautics

2

I. Introduction
 Autonomous space construction is required for large-scale projects, and significant progress must be made in

the field of robotics before it can become a cost-effective reality. Advances in simulation and planning should take
place in conjunction with technological advances and growing commercial interests. A simple first approximation of
object and vehicle movement can be attained in computer simulations, but real-world testing is also important, and
neutral buoyancy testing is a relatively easy way of experimenting with the same three-dimensional, six degree-of-
freedom (DOF) motion available in a space environment. Most discrete path planners and real-time task schedulers
do not take into account the amount of time or fuel that the motion of a vehicle ‘spends’ carrying out its tasks, and
are optimized instead to identify the shortest obstacle-free path. The solutions found by these algorithms are
therefore not truly optimized in a real-world sense, since fuel is in short supply on any spacecraft (once it is used it is
gone; currently there are no viable spacecraft refueling technologies) and is a driving factor in the lifetime of the
vehicle. The time to completion of a task can also be critical in collision avoidance and station upkeep. The
inefficient completion of a large number of tasks would waste valuable time and fuel resources. The cost function
weights used also have a significant impact on the outcome of the optimal solution.

This paper presents a simple model for robotic structural assembly and uses a rule-based trajectory planner to
determine the execution of these tasks underwater. This work provides a foundation for the development of more
complex path planners that guarantee obstacle avoidance while optimizing over time and fuel varying relative
weighting factors. First, a description of the problem and the assumptions made are provided, along with a review of
the equations of motion and dynamics governing the vehicle and objects modeled in this paper. Then, the trajectory
generation algorithm is presented, followed by a case study, final conclusions, and a discussion of future work.

II. Problem Description

A. Overview
Consider a task scheduler that uses Hierarchical Task Network planning and ordered task decomposition, such as

the SHOP-2 planner.1 Such an algorithm can be used to solve generalized scenarios with multiple interchangeable
parts and order assembly tasks. Given interchangeable parts A and B, part A can be connected to the first section
and part B to the second section, or vice-versa, so several combinations may be found as workable solutions.
However, this does open up the problem of deciding which schedule to use over the others. To find an optimal
solution, an analysis of the costs of each assembly task must be made. This typically requires a cost function with
weights associated with the “priority” of particular physical factors in conjunction with a dynamic trajectory planner
that keeps track of the movement of the vehicle and the costs incurred (in terms of fuel, time, etc.), to give a
numerical value J that can be used to determine the relative cost of each assembly task. Generally,

∫∫

∑
⋅⋅+⋅=

⋅=

dtuWdtW

XWJ ii

21

 (1)

where Xi are normalized cost terms. The algorithms used to determine and keep track of the dynamic state should be
simple, however, to keep the runtime of the path planner short: lengthening the runtime of the path planner would
exponentially increase the runtime of the task scheduler that calls it. Figure 1 shows the modules required for a
complete task scheduling / trajectory planning system, illustrating how the trajectory planner fits into the overall
system.

Desired States

Task Scheduler

Trajectory
Planner

Vehicle and
Beam Final
States, Cost J

Commanded Plan
Initial Environment
Desired Environment

Vehicle, Beam,
Hub Initial &

Initial Environment:
beams, hubs,
vehicles , o bstacles
relative place m en t
of objects

Desired
E nvironment:
r elative placement
of obje cts

Figure 1: Autonomous Structural Assembly Planning Architecture.

American Institute of Aeronautics and Astronautics

3

B. Problem Statement
For a given task scheduler that requires a general measure J of the cost of efficiently completing a task, the goal

is to implement a trajectory planner that constructs feasible and efficient continuous-time trajectories and assesses
their cost. For this work, the EASE2 (Experimental Assembly of Structures in EVA) structure is assembled using the
SCAMP SSV3 (Supplemental Camera And Maneuvering Platform Space Simulation Vehicle) free-flying neutral
buoyancy robot. The trajectory planner computes an efficient route based on time and fuel consumption. Each
construction task involves two sub-tasks: an “SSV travel to beam” event, and an “SSV fly beam to hub” event.
Figure 2 shows the vehicle and objects, and Fig. 3 describes the general movement of the objects during the
construction task.

A task space consists of an inertial frame of reference that encompasses one vehicle, one beam, and one hub,

with no other obstacles impinging upon this space. In order to simplify the equations of motion, a constant FMAX,
maximum thruster output, is applied for translational motion, and a corresponding maximum moment limit is
applied for rotational motion. Translational and rotational motion is decoupled to further simplify the equations of
motion (the more complex Magnus-Robins4 effect – the lift created by the rotation of a cylinder or sphere – is not
used to the planner’s advantage). Fuel/power consumption is measured by the integration of all thruster forces over
time. Total time elapsed, ttotal, is:

 SBStotal ttt += (2)

where tS is the time it takes SSV to move to the beam, and tSB is the time it takes SSV to move the beam to the hub.
1. Assumptions
• Object states are precisely known and do not change during the computation).
• Vibrations are negligible.
• The objects and the vehicle are initially at rest.
• The beam, hub, and SCAMP SSV vehicle have uniform mass distributions and are neutrally buoyant in

translation and rotation.
• Laminar flow is assumed (which leads to linear drag equations), and all wake flow is negligible.

Figure 2: Images of SCAMP SSV, The Fully-Constructed EASE Structure, and a Hub

SSV Beam

Hub

SSV
Beam

Hub

SSV
Beam

Hub

Figure 3: Initial State, SSV Beam, SSV-Beam Hub

American Institute of Aeronautics and Astronautics

4

• SCAMP SSV can be modeled as a perfect sphere; beams can be modeled as cylindrical tubes.
• The beam experiences drag along its longitudinal axis, but not over or along the circular cross-section ends.
• The identical propeller-driven thrusters on SCAMP SSV instantaneously deliver commanded thrust loads.
• SCAMP SSV has a single magical contact point that when aligned properly attaches the vehicle rigidly to a

beam; similarly, a beam can be attached to a hub once aligned.
• Docking (SSV to beam or beam to hub) occurs without force application to the target.

III. Trajectory Planner Implementation

A. General Implementation Procedure
A trajectory planner has been implemented for determining EASE beam transport paths with SCAMP SSV. The

procedure to assemble each structural element consists of two main steps: SSV travels to the beam, and the SSV-
beam pair travels to the hub. The trajectory planner (and built-in cost function) is input data detailing the initial state
(translation and rotation) of SSV, the beam (with one end specified as the candidate for mating), and the hub (with
one beam contact point specified as the mating port). It is assumed that the objects and the vehicle are initially at
rest. A discrete set of valid SSV-beam mating points is identified (see Fig. 4), and then the path planner searches
over each of these contact points over the full transport path to find the minimum-cost solution. During a full
transport path, the vehicle flies to the beam and mates to it, then the vehicle-beam pair moves to the hub contact
point. Time and fuel consumption are tallied over all trajectory segments, and the SSV-beam contact point and thrust
scenario with minimum total cost is selected as the solution. The total minimum cost J, along with the final state
data, is then output to the task scheduler.

B. Data Input
The state data given to the cost function includes the

coordinate system at the center of mass of each object –
vehicle, beam, hub – and contact point(s) on each object that
correspond to the location of the physical connection between
the two mated objects. Coordinate systems are defined by a
vector that gives the translational offset of the origin of the
system and a rotation matrix that describes the orientation of
the system relative to an inertial frame. SpcontactS on SCAMP
SSV can rigidly attach to any point on the beam and is defined
as a point a distance RS from the center of the vehicle along the
local vehicle x-axis (see Fig. 5). BpcontactB on the beam
corresponds to one of the two endpoints that attaches to the
hub (see Fig. 4), while one of the three contact points on the
hub HpcontactH is that point (see Fig. 8). The rotation of the beam
about its longitudinal axis does not matter in terms of attaching
the beam to the hub, so the x’-y’ axes of the contact point
system are not statically defined – only the x’-y’ plane is
defined. A similar argument is true for the vehicle about its
contact point when attaching to the beam.

C. Selection of Beam Mating Points
The mating point for the vehicle to attach to the beam can be found analytically for the first half of the SSV-to-

beam trajectory. However, because the drag characteristics can change significantly depending on where the vehicle
attaches itself to the beam, and because the orientation of the vehicle determines the type of movement and thrust
required to move the pair, there is no simple analytical method for determining the best place for the vehicle to
attach itself to the beam for the entire assembly process. The beam is divided into sections, with one ‘ring’ of points
per section. In the initial testing, three rings were searched – one at each end around BpcontactB and one in the middle
around BpCMB, the center of mass point of the beam – to obtain three points SpattachS at which SpcontactS may attach. An
additional point could be added to the end without the contact point, since the object being moved is known to be a
single beam unattached to any other structure, but because the current planner has no object avoidance code this is
not implemented. In order to test both cases (attaching each of the open ends to the hub), the cost function is run

z’’

x

z, z’

x’’

x’

y’’

y’

y

LB

L B /2

RB

Ip CMB

Bp contactB

BpcontactB

Figure 4: Beam coordinate systems and points.

American Institute of Aeronautics and Astronautics

5

twice, once with the first contact point, and again with the second. To find the inertial representation of each SpattachS,
the local points BpcontactB are transformed into inertial space:

 11,]2/00[^, →−=+⋅⋅= ipiLTp CMB
I

BIBicontact
I (3)

Technically, we don’t want to find the closest points on the beam to SSV to which SpcontactS attaches – we want to
find the translational motion, the closest points in SSV space SNS where IpCMS will be located after translating, on a
ring which is RS+RB outward from IpcontactB,i. To find the corresponding SNS points for each IpcontactB,i:

)))(((

][

)(

)(ˆ
]0[

))((

,4^^,

,33,4

,^,

,2,3

,1,1,2

,^,1

CMS
I

CMB
I

i
B

IBSIiS
S

icontactBz
B

y
B

x
B

i
B

CMB
I

icontactB
I

BIicontactB
B

SBi
B

i
B

iy
B

ix
B

i
B

CMB
I

icontactB
I

CMS
I

BIi
B

ppNTTN

pNNN

ppTp

RRNN

NNN

pppTN

−+⋅⋅=

=

−⋅=

+⋅=

=

−−⋅=

 (4)

Once the SNS,i points have been found, the rest of the assembly process is repeated for each attach point case.

D. SCAMP SSV Movement
The vehicle trajectory planner solves decoupled

equations of motion by first translating then rotating
the vehicle. Computation of the optimal coupled 6-
DOF motion is left for future work. Implementing
translation SNS before rotation does not have any
effect on drag, since SSV is being modeled as a
perfect sphere and will have the same drag
regardless of the direction in which it moves.
Translation alters the SSV center-of-mass position
IpCMS by SNS. The vehicle then rotates so that the
SpcontactS point is perpendicular to the surface of the
beam.

To find the axis about which SSV rotates, and
the angle that it rotates through, we follow Eqs. (5):

)ˆˆ(cos

ˆˆ
)(

1

^

eScontactlin
S

Snewcontact
SS

eScontactlin
S

Snewcontact
SS

CMS
I

contactB
I

SIeScontactlin
S

contactS
S

S
S

Snewcontact
S

ppangle

ppaxis

ppTp

pNp

•=

×=

−⋅=

+=

−

 (5)

For SCAMP SSV alone, the vehicle dynamics are
rather simple, and because we assume that the
thrusters will nominally operate at maximum thrust,
the velocity of the vehicle can be characterized by
either: an approximately constant-slope ramp up to
terminal velocity, a drift or maximum deceleration
ramp to stop, and a level terminal velocity joining
segment. While the vehicle ramps up to and maintains

Figure 6: Velocity ramps with thrusters always full on.

u3

u2

u6

u5

u4

u1

x, z’

z

y

R S

x’
y’

SpcontactS

IpCMS

Figure 5: SCAMP SSV thruster force directions,
coordinate systems, and points.

American Institute of Aeronautics and Astronautics

6

terminal velocity, it is assumed that the thrusters are supplying maximum thrust. However, when the vehicle slows
down it can do so in two ways: it can either turn
on the thrusters full reverse or it can let drag do
all the work to slow it to a halt (see Figs. 6, 7).

Once these velocity ramps are determined,
the solution is straightforward. For the
rotational motion case, all one has to do is look
at the angles the vehicle moves through during
each ramp – if the total angle necessary is equal
to or greater than the addition of the ramp up and each ramp down, then the extra angle segment necessary can be
acquired by ‘constant holding’ the vehicle at terminal velocity as long as necessary. If the total angle necessary is
less than the addition of the two ramps, then a ramp-fitting exercise occurs, until a case is found where both the
ramp up finish and ramp down start have matching speeds and the total angle of the combined ramp movements
equals the total angle necessary. The method used to find these ramps comes from forward iterations of the SSV
dynamic equations shown in Eqs. (6). The equations of motion are derived from kinematics and an SSV document.3

2
111

11

2
1

2

5.0

/)*2(

*

tt

t
ICRF

CRFI

iiii

iii

SiSdSMAXi

SdS

∆⋅⋅+∆⋅+=

∆⋅+=
−⋅⋅=→

−⋅=⋅=

−−−

−−

−

∑

αωθθ

αωω
ωα

ωατ

ω

ω

 (6)

For the acceleration ramp, the initial velocities are zero. For the maximum-thrust decelerating ramp, the initial
condition for ω is the final condition from the acceleration ramp, FMAX*2*RS is negative, and the iteration continues
until ωi = 0. For the drag-only deceleration ramp, the initial condition for ω is the final condition from the full-on
ramp up movement (the others are zeroed), FMAX*2*RS is removed, and the while loop is run until ωi = 0.

A similar exercise occurs for the translational motion; all that is required are a few simple substitutions, and one
solves for the translational motions of the vector instead. Eqs. (7) describe the acceleration segment.

2
111

11

2
1

5.0

/)*2(

*

tatvdd

tavv
mvCFa

vCFamF

iiii

iii

SidvSMAXi

dvSS

∆⋅⋅+∆⋅+=

∆⋅+=
−⋅=→

−=⋅=

−−−

−−

−

∑
 (7)

Once this is accomplished, the times are known, the forces exerted during translation are directly known, and the
moments exerted during rotation are known and the forces fall out of those easily as well. From the forces and the
amount of time the thrusters are on, the fuel consumption can be found for each force ui in Newtons exerted for a
known period of time ti in seconds from Eq. (1).

E. Determination of Destination Points on Hub
The hub is modeled as an inertial-frame-fixed object, and

therefore the specifics of its mass, inertia, etc. need not be
defined. Figure 8 shows just such a general structure. There are
three possible mating points on each hub, the choice of which
is specified by the task scheduler as the final beam/hub state.
The coordinate system of the contact point has the z’-axis
running from the center of mass through the contact point, and
the x’-y’ plane is perpendicular to that; the x’-y’ plane does not
need to be strictly defined, because the beam x’-y’ plane of its
contact point also does not need to be strictly defined. The
HpcontactH points are all fixed relative to IpCMH: all z’-axes are

Figure 7: Velocity ramps with thrusters full on until the end.

y

z

x

x’
y’’’

IpCMH

z’’’ y’ z’

x’’’

x’’ y’’

z’’

HpcontactH Hp contactH

HpcontactH

Figure 8: Hub coordinate systems and points.

American Institute of Aeronautics and Astronautics

7

bent down 30° from the z-axis; the projection of the first HpcontactH point falls on the x-axis, and all HpcontactH points are
120° offset from each other in the x-y plane; and the distance from each HpcontactH to IpCMH is 0.381 m (15 in).

F. Combined SCAMP SSV-Beam Movement
Because thrust is not applied symmetrically about the center

of mass of the combined SSV-beam object, the inertia matrix is
not straightforward and the forces are not evenly distributed.
This makes it difficult to decouple translational and rotational
motion, so some broad restrictions are made.

The SSV-beam path planner solves the equations of motion
by first rotating then translating the pair, and it finds the angle
and axis in a similar way as before. It should be noted that,
whereas before the ramps were the same for every run, these
ramps change depending on each new placement of the vehicle
along the beam, and must be resolved again every time. It
should also be noted that this may put the beam in a high drag
configuration and that the coefficients of translational and
rotational drag for the cylinder will change depending on which
IpcontactB,i is being solved.

First, the equations need to be simplified as much as
possible. If the motion is taken about the principal axes of
inertia (the origin is at the center of mass5, and the orientation of the system is determined by solving an eigenvalue
problem6), then the inertia matrix becomes diagonalized again. Setting the applied moments equal to an upper limit
leaves three fewer variables to solve (though it does make the solution less optimized). Using the first equation from
Eqs. (6) and a dynamics text6 gives:

∑
∑
∑

+−=⋅⋅−−⋅=

+−=⋅⋅−−⋅=

+−=⋅⋅−−⋅=

2

2

2

*)()(

*)()(

*)()(

zBdSdMAXyxyxzzz

yBdSdMAXxzxzyyy

xBdSdMAXzyzyxxx

CCMIIIM

CCMIIIM

CCMIIIM

ωωωα

ωωωα

ωωωα

ωω

ωω

ωω

 (9)

To simplify further, the rotational motion can be solved by finding the moment of inertia about an arbitrary axis,
ICMaxis, as before, rather than in x-y-z components:6

 xzzxzyyzyxxyzzzyyyxxxCMaxis uuIuuIuuIuIuIuII ⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅+⋅+⋅= 222222 (10)

with u = [ux uy uz] as the unit vector along the axis of rotation (see Fig. 9); this leaves one equation with one
unknown to be solved iteratively, after the constant value MMAX is applied.
 Combining Eqs. (9) and (10) gives:

2
111

11

2
1

2

5.0

/)*)((

*)(

tt

t
ICCM

CCMIM

iiii

iii

CMaxisiBdSdMAXi

BdSdMAXCMaxis

∆⋅⋅+∆⋅+=

∆⋅+=
+−=→

+−=⋅=

−−−

−−

−

∑

αωθθ

αωω
ωα

ωα

ωω

ωω

 (11)

Once the ramps are computed and MMAX has been converted to the SSV coordinate frame (M = [Mx My Mz] is
given), the moments must be solved to find the forces each thruster exerts for pure rotation only (the simplifications
are due to the thruster force vectors, see Fig. 5):

IpCMpair

A xis of rotation

θ

Figure 9: Axis and angle of rotation

American Institute of Aeronautics and Astronautics

8

00

00

00

44332211

66552211

66554433

665544332211

++⋅−⋅+⋅+⋅−=

⋅−⋅−++⋅−⋅=

⋅−⋅+⋅+⋅−+=

×+×+×+×+×+×=∑

ururururM

ururururM

ururururM
ururururururM

xxyyz

xxzzy

yyzzx
 (12)

where ri = [rxi ryi rzi] is the vector from the center of mass of the object combination to thruster ui. In order to have
pure rotation only, the forces must balance:

0
0
0

65

43

21

=+
=+
=+

uu
uu
uu

 (13)

then the equations can be solved symbolically and entered directly into the main code.
To find the translational motion, Eqs. (12) are simplified by:

MAX

MAX

MAX

zyx

Fuu
Fuu
Fuu

MMM

=
=
=

===

65

43

21

||
||
||

0

 (14)

where the force vector closest to the center of mass of the SSV-beam pair is the one equal to FMAX. From these,
symbolic solutions for the forces can be entered directly into the main code. Once these quantities are known, and
the translational component necessary is found and translated to the SSV frame, the following equations are
iteratively solved:

2
111

11

121

5.0

)/()*)((
*)()(

tatvdd

tavv
mmvCCuua

vCCFammF

iiii

iii

BSidvBdvSi

dvBdvSBS

∆⋅⋅+∆⋅+=

∆⋅+=
++−+=→

+−=⋅+=

−−−

−−

−

∑
 (15)

G. Weighting and Final Result
Each time and fuel consumption pair is utilized by the following cost function derived from Eq. (1). This

function uses simple weighing factors Wi to determine the tradeoff between fuel and time.

 totaltotal uWtWJ ⋅+⋅= 21 (16)

where W1 is the time weighting factor, and W2 is the fuel/power weighting factor.
Whenever a new value of J is lower than the previous stored value, the new data overwrites the old. This

continues until all solved-for time-fuel consumption pairs have been compared. The lowest J value, the time and fuel
consumptions, the final orientation of the vehicle, and numbers detailing which path was executed in the path
planner to give this result are then output to the task scheduler.

IV. Case Study
The above trajectory planning algorithm has been implemented in C++. The specific numerical values used in

the implemented code are listed in Table 1, Table 2, and Table 3.

American Institute of Aeronautics and Astronautics

9

 One case was implemented to test each part of the algorithm for the full-powered ramps, and the waypoints and
results are listed in Tables 4 through 7 below. The current algorithm does not have any object avoidance built into
the functions, so these movements in some cases would have skewered the vehicle on the beam; however, we are
only interested in general movement and implementation at the moment, so this is negligible for now.

 For this test case, SSV starts
at the inertial space origin,
rotated 180° in the x-y plane from
the inertial space coordinate axis.
The length of the beam is laid out
along the x-axis in the inertial
frame; the center of mass is 5
meters away from the origin of
the inertial frame. The hub
alignment axis is parallel to the y-
axis in the inertial frame, and is
pointing towards the end of the
beam without the attach point
(see Fig. 10). For each pcontact
point, the movement was solved
in this way:

• INSSV, the new location of
the center of mass of
SSV, IpCMS, was found.
(In this case, the point
was offset a distance
(RS+RB) from the x-axis
parallel to the y-axis in
the inertial frame.)

• The axis of rotation and
angle about which it
would need to rotate,
were found. (In this case,
the axis of rotation was
the z-axis of SSV, and the
angle rotated through was
90°.)

Table 2: Fixed Local Points on Objects, Local Coordinate Systems
 Ipcontact,1 (m) Ipcontact,2 (m) Ipcontact,3 (m)
SSV [0.3025 , 0 , 0]
Beam [0 , 0 , -1.524] [0 , 0 , 1.524]
Hub [0.1905 , 0 , 0.33] [-0.0953 , 0.165 , 0.33] [-0.0953 , -0.165 , 0.33]

Table 3: Constants Found from Matlab Code for SSV Ramp Movement
 Full-On Ramp Up Full-On Ramp Down Drag-Only Ramp Down
Distance (m) 0.0204 0.0015 0.0047
Time, distance (s) 0.8800 0.1200 0.5700
Angle (rad) 4.3124 0.4169 5.9203
Time, angle (s) 4.0200 0.7400 121.6300

Table 1: Physical Characteristics of Objects
 Mass (kg) Inertia (kg*m2) Radius (m) Length (m) Cdω

(N*m/(rad/s)2)
Cdv (kg/s)

SSV 76.2 2.7 0.3025 n/a 2.2 413.685
Beam 11.3636 0.0124, 0.0083 0.0606 3.048 changes changes
Hub n/a n/a 0.1905 0.3810 n/a n/a

Note: the beam is modeled as a cylinder with thickness 0.0063 m.

Table 4: Test Scenario for Algorithm – Inputs
 Initial translation (m) Initial rotation Ipcontact, in inertial
SSV [0 , 0 , 0] [-1 , 0 , 0]

[0 , -1 , 0]
[0 , 0 , 1]

[-1 , 0 , 0]

Beam [5 , 0 , 0] [0 , 0 , 1]
[0 , 1 , 0]
[-1 , 0 , 0]

[3.476 , 5 , 0]

Hub [6.524 , 5.3810 , 0] [0 , -1 , 0]
(z-axis of pcontact)

[6.524 , 5 , 0]

5 m

5 m

x

y

z

x’ y’
z’

SSV

Beam

Hub

Figure 10: Test Scenario Initial Configuration

American Institute of Aeronautics and Astronautics

10

• The translational then rotational movement of SSV was solved for iteratively.
• The thrust characteristics and time of completion were saved.

• The center of mass, axis of rotation, and moment of inertia of the SSV-beam pair were found. (In this case,
the axis of rotation was parallel to the z-axis of SSV, the y-axis of the beam, and the z-axis in the inertial
frame.)

• The angle that the SSV-beam pair needs to rotate through was found. (In this case, the angle rotated through
was 90°.)

• The new location of the beam attach point, IpcontactB, after such a rotation was found, and the translational
distance through which it would have to move was found. (In this case, translation occurs in the x-y SSV
plane only.)

• The rotational then translational movement of the SSV-beam pair was solved for iteratively.
• The thrust characteristics and time of completion were saved.

• The final numbers were combined and tabulated; see Table 7.

From the data, it looks as though the open point on the beam, farthest from the origin of the inertial frame, is the
optimum point to attach to and move from if fuel use drives the cost function; if time drives the cost function, the
center of the beam looks to be the best choice – it was somewhat of a intuitive toss-up between that point and the
point at the beam’s center of mass, since rotating about the center of mass caused less drag, but the extra distance
and suboptimal drag characteristics of its translational movement more than used up those savings.

Table 6: Test Scenario for Algorithm – SSV-Beam Pair Movement
 IpcontactB,1 IpcontactB,2 IpcontactB,3
IpCMpair [6.3262 , -0.2632 , 0] [5 , -0.2632 , 0] [3.6738 , -0.2632 , 0]
Rotation to Hub, angle, in radians 1.5708 1.5708 1.5708
Axis of rotation to Hub, Iaxis [0 , 0 , 1] [0 , 0 , 1] [0 , 0 , 1]
Translation to Hub, INpair [-0.0654 , 2.4130 , 0] [1.2608 , 3.7400 , 0] [2.5870 , 5.0654 , 0]
Time of rotation, in seconds 6.7600 2.6100 6.7600
Fuel of rotation, in Newtons 12 12 12
Time of translation, x-direction, in seconds 0.0300 36.6300 82.3500
Fuel of translation, x-direction, in Newtons 12 12 12
Time of translation, y-direction, in seconds 85.9600 137.6500 189.2800
Fuel of translation, y-direction, in Newtons 10.62 10.62 10.62

Table 5: Test Scenario for Algorithm – SSV Movement
 IpcontactB,1 IpcontactB,2 IpcontactB,3
Translation to Beam, INS [6.524 , -0.3025 , 0] [5 , -0.3025 , 0] [3.476 , -0.3025 , 0]
Rotation to Beam, angle, in radians 1.5708 1.5708 1.5708
Axis of rotation to Beam, Iaxis [0 , 0 , 1] [0 , 0 , 1] [0 , 0 , 1]
Time of translation, x-direction, in seconds 225.1518 172.6138 120.0758
Fuel of translation, x-direction, in Newtons 12 12 12
Time of translation, y-direction, in seconds 10.6733 10.6733 10.6733
Fuel of translation, y-direction, in Newtons 12 12 12
Time of rotation, in seconds 2.1000 2.1000 2.1000
Fuel of rotation, in Newtons 12 12 12

Table 7: Test Scenario for Algorithm – Total Cost
 IpcontactB,1 IpcontactB,2 IpcontactB,3
Time of translation, SSV, in seconds 225.1518 172.6138 120.0758
Fuel of translation, SSV, in Newton-seconds 2.8299e+003 2.1995e+003 1.5690e+003
Time of rotation, SSV, in seconds 2.1000 2.1000 2.1000
Fuel of rotation, SSV, in Newton-seconds 25.2000 25.2000 25.2000
Time of rotation, pair, in seconds 6.7600 2.6100 6.7600
Fuel of rotation, pair, in Newton-seconds 81.1200 31.3200 81.1200
Time of translation, pair, in seconds 85.9600 137.6500 189.2800
Fuel of translation, pair, in Newton-seconds 913.2552 1.9014e+003 2.9984e+003
Total time, in seconds 319.9718 314.9738 318.2158
Total fuel, in Newton-seconds 3.8495e+003 4.1574e+003 4.6737e+003

American Institute of Aeronautics and Astronautics

11

V. Conclusion
This paper describes an architecture for determining an assembly procedure for autonomous space or underwater

structural assembly, focusing on the problem of solving individual assembly task trajectories and their associated
costs. These assembly task trajectories are split into two main subdivisions of movement: vehicle to object, and
vehicle-object pair to destination. Each of these movements is decoupled so that the translational and rotational
motion occur separately, to avoid complex dynamics. The specific algorithms for each movement are presented;
these are solved iteratively over several waypoints and differing magnitudes of thrust. A cost function is also
presented that uses the thrust characteristics and time to completion to compute a total cost J that is useful to a task
scheduler. This particular trajectory planner and cost function is an implementation to solve a very constrained case.
However, the simpler cases have been tested and do seem to be reasonable, as the case study section shows.

Future additions and refinements to this planner after the basics have finished being implemented and tested
could include other types of combined SSV-beam movement (translation then rotation; rotation to minimum drag
configuration, translation, then final rotation to correct orientation), object avoidance, velocity caps, attention to the
walls of the tank, and coupled motion. Better weighting factors, and their refinement to determine which
combinations give more desirable outcomes, is also another improvement that should occur down the road prior to
implementation, or possibly in conjunction with neutral buoyancy testing. More complex dynamics problems
associated with this type of construction scenario – movement of partially-constructed assemblies to other locations,
navigation of a SSV-beam pair between objects, vibrational and nonrigid body motion – are quickly encountered
when certain assumptions are relaxed. A generalized, further extended planner that can model these sorts of
movements would be a short step away from a final version of a path planner that could be utilized in an actual
complex construction scenario.

Acknowledgments
I would like to thank Dr. Ella Atkins for her support as my mentor and advisor in this work. I would also like to

thank Jenn Volpe for helping along my brainstorming sessions and the Space Systems Lab students for their ideas
and the use of their facilities.

References

1Nau, D. S., Smith, S. J. J., Erol, K., "Control Strategies in HTN Planning: Theory versus Practice," Proceedings of the

Fifteenth National Conference on Artificial Intelligence, Tenth Conference on Innovative Applications of Artificial Intelligence,
AAAI Press, Menlo Park, CA, 1998, pp. 1127-1133.

2Viggh, H., “Artificial Intelligence Applications in Teleoperated Robotic Assembly of the EASE Space Structure,” M.S.
Thesis, Aeronautics and Astronautics Dept. and Electrical Engineering and Computer Science Dept., Massachusetts Institute of
Technology, Cambridge, MA, 1988.

3Hossaini, L. S., “The Design and Analysis of a Second Generation Free Flying Underwater Camera Platform,” M.S. Thesis,
Dept. of Aerospace Engineering, University of Maryland, College Park, MD, 2000.

4Birkhoff, G., Hydrodynamics, A Study in Logic, Fact, and Similitude, Princeton University Press, Princeton, NJ, 1960, pp.
16-17.

5Dally, J., and Bonenberger, R., Jr., Design Analysis of Structural Elements, 2nd ed., College House Enterprises, LLC,
Knoxville, TN, 2000, pp. 376.

6Hibbeler, R. C., Engineering Mechanics Dynamics, 9th ed., Prentice-Hall, Upper Saddle River, NJ, 2001, pp. 546-549, 562.

