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A Trajectory Planner for Autonomous Structural Assembly 
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University of Maryland, College Park, Maryland, 20742 

Autonomous robotic space construction requires robust scheduling routines to 
decompose and order assembly activities and an efficient trajectory planner to study the 
activities and determine how they can be physically accomplished. Task schedulers search 
through possible combinations of abstract “assemble-part-x” tasks, relying upon the path 
planner to compute a valid and efficient trajectory that completes the task and to provide an 
estimate of the cost of moving along that trajectory in terms of fuel or power requirements. 
This paper presents a path planner for robotic assembly of a truss structure composed of 
interchangeable beams and hubs to which beams can be attached. Because initial testing will 
be performed in a neutral buoyancy environment, the dynamics are based on underwater 
motion. A free-flying robot and the structural elements it carries to assembly sites are 
modeled as simple shapes (e.g., spheres, cylinders) with known inertia and drag properties. 
Each path is optimized over a cost function that currently includes time and fuel (power) 
use, which in turn provides a scheduler with a comparative cost estimate useful for choosing 
between multiple task configurations and combinations. Physical parameters are derived 
from the University of Maryland’s Supplemental Camera and Maneuvering Platform Space 
Simulation Vehicle (SCAMP SSV) robot and six-element EASE truss structure, the latter 
previously assembled by astronauts in both space and neutral buoyancy underwater 
environments. Tests were conducted over a variety of initial and final structural element 
configurations, demonstrating that the proposed computationally-efficient path planning 
strategy provides practical and reasonable trajectories and costs. 

Nomenclature 
a = translational acceleration vector, [ax ay az] 
Cdv = coefficient of drag, translational motion 
Cdω = coefficient of drag, rotational motion 
d = translational distance vector, [dx dy dz] 
FMAX = maximum force output of a vehicle thruster 
I = moment of inertia 
J = cost of efficiently completing a task 
LB = beam length 
mB = beam mass 
mS = SCAMP SSV mass 
xpnE = vector p of description n of object E in coordinate frame x, (I = inertial, S = SSV, B = beam, H = hub) 
RB = beam radius 
RS = SCAMP SSV radius 
t = time 
Tx^y = transformation matrix from x to y, [T0 T1 T2] 
u = fuel vector for each thruster, [u1 u2 u3 u4 u5 u6] 
v = translational velocity, vector [vx vy vz] 
W = weighting factor 
α = rotational acceleration vector, [ax ay az] 
θ = rotational angle vector, [θx θy θz] 
ω = rotational velocity vector, [ωx ωy ωz] 
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I. Introduction 
 Autonomous space construction is required for large-scale projects, and significant progress must be made in 

the field of robotics before it can become a cost-effective reality. Advances in simulation and planning should take 
place in conjunction with technological advances and growing commercial interests. A simple first approximation of 
object and vehicle movement can be attained in computer simulations, but real-world testing is also important, and 
neutral buoyancy testing is a relatively easy way of experimenting with the same three-dimensional, six degree-of-
freedom (DOF) motion available in a space environment. Most discrete path planners and real-time task schedulers 
do not take into account the amount of time or fuel that the motion of a vehicle ‘spends’ carrying out its tasks, and 
are optimized instead to identify the shortest obstacle-free path. The solutions found by these algorithms are 
therefore not truly optimized in a real-world sense, since fuel is in short supply on any spacecraft (once it is used it is 
gone; currently there are no viable spacecraft refueling technologies) and is a driving factor in the lifetime of the 
vehicle. The time to completion of a task can also be critical in collision avoidance and station upkeep. The 
inefficient completion of a large number of tasks would waste valuable time and fuel resources. The cost function 
weights used also have a significant impact on the outcome of the optimal solution. 

This paper presents a simple model for robotic structural assembly and uses a rule-based trajectory planner to 
determine the execution of these tasks underwater. This work provides a foundation for the development of more 
complex path planners that guarantee obstacle avoidance while optimizing over time and fuel varying relative 
weighting factors. First, a description of the problem and the assumptions made are provided, along with a review of 
the equations of motion and dynamics governing the vehicle and objects modeled in this paper. Then, the trajectory 
generation algorithm is presented, followed by a case study, final conclusions, and a discussion of future work. 

II. Problem Description 

A. Overview 
Consider a task scheduler that uses Hierarchical Task Network planning and ordered task decomposition, such as 

the SHOP-2 planner.1 Such an algorithm can be used to solve generalized scenarios with multiple interchangeable 
parts and order assembly tasks. Given interchangeable parts A and B, part A can be connected to the first section 
and part B to the second section, or vice-versa, so several combinations may be found as workable solutions. 
However, this does open up the problem of deciding which schedule to use over the others. To find an optimal 
solution, an analysis of the costs of each assembly task must be made. This typically requires a cost function with 
weights associated with the “priority” of particular physical factors in conjunction with a dynamic trajectory planner 
that keeps track of the movement of the vehicle and the costs incurred (in terms of fuel, time, etc.), to give a 
numerical value J that can be used to determine the relative cost of each assembly task. Generally, 
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where Xi are normalized cost terms. The algorithms used to determine and keep track of the dynamic state should be 
simple, however, to keep the runtime of the path planner short: lengthening the runtime of the path planner would 
exponentially increase the runtime of the task scheduler that calls it. Figure 1 shows the modules required for a 
complete task scheduling / trajectory planning system, illustrating how the trajectory planner fits into the overall 
system. 
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Figure 1: Autonomous Structural Assembly Planning Architecture. 
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B. Problem Statement 
For a given task scheduler that requires a general measure J of the cost of efficiently completing a task, the goal 

is to implement a trajectory planner that constructs feasible and efficient continuous-time trajectories and assesses 
their cost. For this work, the EASE2 (Experimental Assembly of Structures in EVA) structure is assembled using the 
SCAMP SSV3 (Supplemental Camera And Maneuvering Platform Space Simulation Vehicle) free-flying neutral 
buoyancy robot. The trajectory planner computes an efficient route based on time and fuel consumption. Each 
construction task involves two sub-tasks: an “SSV travel to beam” event, and an “SSV fly beam to hub” event. 
Figure 2 shows the vehicle and objects, and Fig. 3 describes the general movement of the objects during the 
construction task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A task space consists of an inertial frame of reference that encompasses one vehicle, one beam, and one hub, 

with no other obstacles impinging upon this space. In order to simplify the equations of motion, a constant FMAX, 
maximum thruster output, is applied for translational motion, and a corresponding maximum moment limit is 
applied for rotational motion. Translational and rotational motion is decoupled to further simplify the equations of 
motion (the more complex Magnus-Robins4 effect – the lift created by the rotation of a cylinder or sphere – is not 
used to the planner’s advantage). Fuel/power consumption is measured by the integration of all thruster forces over 
time. Total time elapsed, ttotal, is: 

 SBStotal ttt +=  (2) 

where tS is the time it takes SSV to move to the beam, and tSB is the time it takes SSV to move the beam to the hub. 
1. Assumptions 
• Object states are precisely known and do not change during the computation). 
• Vibrations are negligible. 
• The objects and the vehicle are initially at rest. 
• The beam, hub, and SCAMP SSV vehicle have uniform mass distributions and are neutrally buoyant in 

translation and rotation. 
• Laminar flow is assumed (which leads to linear drag equations), and all wake flow is negligible. 

  

Figure 2: Images of SCAMP SSV, The Fully-Constructed EASE Structure, and a Hub 
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Figure 3: Initial State, SSV Beam, SSV-Beam Hub 
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• SCAMP SSV can be modeled as a perfect sphere; beams can be modeled as cylindrical tubes. 
• The beam experiences drag along its longitudinal axis, but not over or along the circular cross-section ends. 
• The identical propeller-driven thrusters on SCAMP SSV instantaneously deliver commanded thrust loads. 
• SCAMP SSV has a single magical contact point that when aligned properly attaches the vehicle rigidly to a 

beam; similarly, a beam can be attached to a hub once aligned. 
• Docking (SSV to beam or beam to hub) occurs without force application to the target. 

III. Trajectory Planner Implementation  

A. General Implementation Procedure 
A trajectory planner has been implemented for determining EASE beam transport paths with SCAMP SSV. The 

procedure to assemble each structural element consists of two main steps: SSV travels to the beam, and the SSV-
beam pair travels to the hub. The trajectory planner (and built-in cost function) is input data detailing the initial state 
(translation and rotation) of SSV, the beam (with one end specified as the candidate for mating), and the hub (with 
one beam contact point specified as the mating port). It is assumed that the objects and the vehicle are initially at 
rest. A discrete set of valid SSV-beam mating points is identified (see Fig. 4), and then the path planner searches 
over each of these contact points over the full transport path to find the minimum-cost solution. During a full 
transport path, the vehicle flies to the beam and mates to it, then the vehicle-beam pair moves to the hub contact 
point. Time and fuel consumption are tallied over all trajectory segments, and the SSV-beam contact point and thrust 
scenario with minimum total cost is selected as the solution. The total minimum cost J, along with the final state 
data, is then output to the task scheduler. 

B. Data Input 
The state data given to the cost function includes the 

coordinate system at the center of mass of each object – 
vehicle, beam, hub – and contact point(s) on each object that 
correspond to the location of the physical connection between 
the two mated objects. Coordinate systems are defined by a 
vector that gives the translational offset of the origin of the 
system and a rotation matrix that describes the orientation of 
the system relative to an inertial frame. SpcontactS on SCAMP 
SSV can rigidly attach to any point on the beam and is defined 
as a point a distance RS from the center of the vehicle along the 
local vehicle x-axis (see Fig. 5). BpcontactB on the beam 
corresponds to one of the two endpoints that attaches to the 
hub (see Fig. 4), while one of the three contact points on the 
hub HpcontactH is that point (see Fig. 8). The rotation of the beam 
about its longitudinal axis does not matter in terms of attaching 
the beam to the hub, so the x’-y’ axes of the contact point 
system are not statically defined – only the x’-y’ plane is 
defined. A similar argument is true for the vehicle about its 
contact point when attaching to the beam. 

C. Selection of Beam Mating Points 
The mating point for the vehicle to attach to the beam can be found analytically for the first half of the SSV-to-

beam trajectory. However, because the drag characteristics can change significantly depending on where the vehicle 
attaches itself to the beam, and because the orientation of the vehicle determines the type of movement and thrust 
required to move the pair, there is no simple analytical method for determining the best place for the vehicle to 
attach itself to the beam for the entire assembly process. The beam is divided into sections, with one ‘ring’ of points 
per section. In the initial testing, three rings were searched – one at each end around BpcontactB and one in the middle 
around BpCMB, the center of mass point of the beam – to obtain three points SpattachS at which SpcontactS may attach. An 
additional point could be added to the end without the contact point, since the object being moved is known to be a 
single beam unattached to any other structure, but because the current planner has no object avoidance code this is 
not implemented. In order to test both cases (attaching each of the open ends to the hub), the cost function is run 
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Figure 4: Beam coordinate systems and points.
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twice, once with the first contact point, and again with the second. To find the inertial representation of each SpattachS, 
the local points BpcontactB are transformed into inertial space: 

 11,]2/00[^, →−=+⋅⋅= ipiLTp CMB
I

BIBicontact
I  (3) 

Technically, we don’t want to find the closest points on the beam to SSV to which SpcontactS attaches – we want to 
find the translational motion, the closest points in SSV space SNS where IpCMS will be located after translating, on a 
ring which is RS+RB outward from IpcontactB,i. To find the corresponding SNS points for each IpcontactB,i: 
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Once the SNS,i points have been found, the rest of the assembly process is repeated for each attach point case. 

D. SCAMP SSV Movement 
The vehicle trajectory planner solves decoupled 

equations of motion by first translating then rotating 
the vehicle. Computation of the optimal coupled 6-
DOF motion is left for future work. Implementing 
translation SNS before rotation does not have any 
effect on drag, since SSV is being modeled as a 
perfect sphere and will have the same drag 
regardless of the direction in which it moves. 
Translation alters the SSV center-of-mass position 
IpCMS by SNS. The vehicle then rotates so that the 
SpcontactS point is perpendicular to the surface of the 
beam. 

To find the axis about which SSV rotates, and 
the angle that it rotates through, we follow Eqs. (5): 
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For SCAMP SSV alone, the vehicle dynamics are 
rather simple, and because we assume that the 
thrusters will nominally operate at maximum thrust, 
the velocity of the vehicle can be characterized by 
either: an approximately constant-slope ramp up to 
terminal velocity, a drift or maximum deceleration 
ramp to stop, and a level terminal velocity joining 
segment. While the vehicle ramps up to and maintains 

 

Figure 6: Velocity ramps with thrusters always full on.
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Figure 5: SCAMP SSV thruster force directions,
coordinate systems, and points. 
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terminal velocity, it is assumed that the thrusters are supplying maximum thrust. However, when the vehicle slows 
down it can do so in two ways: it can either turn 
on the thrusters full reverse or it can let drag do 
all the work to slow it to a halt (see Figs. 6, 7). 

Once these velocity ramps are determined, 
the solution is straightforward. For the 
rotational motion case, all one has to do is look 
at the angles the vehicle moves through during 
each ramp – if the total angle necessary is equal 
to or greater than the addition of the ramp up and each ramp down, then the extra angle segment necessary can be 
acquired by ‘constant holding’ the vehicle at terminal velocity as long as necessary. If the total angle necessary is 
less than the addition of the two ramps, then a ramp-fitting exercise occurs, until a case is found where both the 
ramp up finish and ramp down start have matching speeds and the total angle of the combined ramp movements 
equals the total angle necessary. The method used to find these ramps comes from forward iterations of the SSV 
dynamic equations shown in Eqs. (6). The equations of motion are derived from kinematics and an SSV document.3 
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For the acceleration ramp, the initial velocities are zero. For the maximum-thrust decelerating ramp, the initial 
condition for ω is the final condition from the acceleration ramp, FMAX*2*RS is negative, and the iteration continues 
until ωi = 0. For the drag-only deceleration ramp, the initial condition for ω is the final condition from the full-on 
ramp up movement (the others are zeroed), FMAX*2*RS is removed, and the while loop is run until ωi = 0. 

A similar exercise occurs for the translational motion; all that is required are a few simple substitutions, and one 
solves for the translational motions of the vector instead. Eqs. (7) describe the acceleration segment. 
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Once this is accomplished, the times are known, the forces exerted during translation are directly known, and the 
moments exerted during rotation are known and the forces fall out of those easily as well. From the forces and the 
amount of time the thrusters are on, the fuel consumption can be found for each force ui in Newtons exerted for a 
known period of time ti in seconds from Eq. (1). 

E. Determination of Destination Points on Hub 
The hub is modeled as an inertial-frame-fixed object, and 

therefore the specifics of its mass, inertia, etc. need not be 
defined. Figure 8 shows just such a general structure. There are 
three possible mating points on each hub, the choice of which 
is specified by the task scheduler as the final beam/hub state. 
The coordinate system of the contact point has the z’-axis 
running from the center of mass through the contact point, and 
the x’-y’ plane is perpendicular to that; the x’-y’ plane does not 
need to be strictly defined, because the beam x’-y’ plane of its 
contact point also does not need to be strictly defined. The 
HpcontactH points are all fixed relative to IpCMH: all z’-axes are 

 

 
Figure 7: Velocity ramps with thrusters full on until the end.
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Figure 8: Hub coordinate systems and points.
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bent down 30° from the z-axis; the projection of the first HpcontactH point falls on the x-axis, and all HpcontactH points are 
120° offset from each other in the x-y plane; and the distance from each HpcontactH to IpCMH is 0.381 m (15 in). 

F. Combined SCAMP SSV-Beam Movement 
Because thrust is not applied symmetrically about the center 

of mass of the combined SSV-beam object, the inertia matrix is 
not straightforward and the forces are not evenly distributed. 
This makes it difficult to decouple translational and rotational 
motion, so some broad restrictions are made. 

The SSV-beam path planner solves the equations of motion 
by first rotating then translating the pair, and it finds the angle 
and axis in a similar way as before. It should be noted that, 
whereas before the ramps were the same for every run, these 
ramps change depending on each new placement of the vehicle 
along the beam, and must be resolved again every time. It 
should also be noted that this may put the beam in a high drag 
configuration and that the coefficients of translational and 
rotational drag for the cylinder will change depending on which 
IpcontactB,i is being solved. 

First, the equations need to be simplified as much as 
possible. If the motion is taken about the principal axes of 
inertia (the origin is at the center of mass5, and the orientation of the system is determined by solving an eigenvalue 
problem6), then the inertia matrix becomes diagonalized again. Setting the applied moments equal to an upper limit 
leaves three fewer variables to solve (though it does make the solution less optimized). Using the first equation from 
Eqs. (6) and a dynamics text6 gives: 
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To simplify further, the rotational motion can be solved by finding the moment of inertia about an arbitrary axis, 
ICMaxis, as before, rather than in x-y-z components:6 

 xzzxzyyzyxxyzzzyyyxxxCMaxis uuIuuIuuIuIuIuII ⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅+⋅+⋅= 222222  (10) 

with u = [ux uy uz] as the unit vector along the axis of rotation (see Fig. 9); this leaves one equation with one 
unknown to be solved iteratively, after the constant value MMAX is applied. 
 Combining Eqs. (9) and (10) gives: 
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Once the ramps are computed and MMAX has been converted to the SSV coordinate frame (M = [Mx My Mz] is 
given), the moments must be solved to find the forces each thruster exerts for pure rotation only (the simplifications 
are due to the thruster force vectors, see Fig. 5): 
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Figure 9: Axis and angle of rotation
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where ri = [rxi ryi rzi] is the vector from the center of mass of the object combination to thruster ui. In order to have 
pure rotation only, the forces must balance: 
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then the equations can be solved symbolically and entered directly into the main code. 
To find the translational motion, Eqs. (12) are simplified by: 
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where the force vector closest to the center of mass of the SSV-beam pair is the one equal to FMAX. From these, 
symbolic solutions for the forces can be entered directly into the main code. Once these quantities are known, and 
the translational component necessary is found and translated to the SSV frame, the following equations are 
iteratively solved: 
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G. Weighting and Final Result 
Each time and fuel consumption pair is utilized by the following cost function derived from Eq. (1). This 

function uses simple weighing factors Wi to determine the tradeoff between fuel and time. 

 totaltotal uWtWJ ⋅+⋅= 21  (16) 

where W1 is the time weighting factor, and W2 is the fuel/power weighting factor. 
Whenever a new value of J is lower than the previous stored value, the new data overwrites the old. This 

continues until all solved-for time-fuel consumption pairs have been compared. The lowest J value, the time and fuel 
consumptions, the final orientation of the vehicle, and numbers detailing which path was executed in the path 
planner to give this result are then output to the task scheduler. 

IV. Case Study 
The above trajectory planning algorithm has been implemented in C++. The specific numerical values used in 

the implemented code are listed in Table 1, Table 2, and Table 3. 
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 One case was implemented to test each part of the algorithm for the full-powered ramps, and the waypoints and 
results are listed in Tables 4 through 7 below. The current algorithm does not have any object avoidance built into 
the functions, so these movements in some cases would have skewered the vehicle on the beam; however, we are 
only interested in general movement and implementation at the moment, so this is negligible for now. 

 For this test case, SSV starts 
at the inertial space origin, 
rotated 180° in the x-y plane from 
the inertial space coordinate axis. 
The length of the beam is laid out 
along the x-axis in the inertial 
frame; the center of mass is 5 
meters away from the origin of 
the inertial frame. The hub 
alignment axis is parallel to the y-
axis in the inertial frame, and is 
pointing towards the end of the 
beam without the attach point 
(see Fig. 10). For each pcontact 
point, the movement was solved 
in this way: 

• INSSV, the new location of 
the center of mass of 
SSV, IpCMS, was found. 
(In this case, the point 
was offset a distance 
(RS+RB) from the x-axis 
parallel to the y-axis in 
the inertial frame.) 

• The axis of rotation and 
angle about which it 
would need to rotate, 
were found. (In this case, 
the axis of rotation was 
the z-axis of SSV, and the 
angle rotated through was 
90°.) 

Table 2: Fixed Local Points on Objects, Local Coordinate Systems 
 Ipcontact,1 (m) Ipcontact,2 (m) Ipcontact,3 (m) 
SSV [ 0.3025 , 0 , 0 ]   
Beam [ 0 , 0 , -1.524 ] [ 0 , 0 , 1.524 ]  
Hub [ 0.1905 , 0 , 0.33 ] [ -0.0953 , 0.165 , 0.33 ] [ -0.0953 , -0.165 , 0.33 ] 

Table 3: Constants Found from Matlab Code for SSV Ramp Movement 
 Full-On Ramp Up Full-On Ramp Down Drag-Only Ramp Down 
Distance (m) 0.0204 0.0015 0.0047 
Time, distance (s) 0.8800 0.1200 0.5700 
Angle (rad) 4.3124 0.4169 5.9203 
Time, angle (s) 4.0200 0.7400 121.6300 

Table 1: Physical Characteristics of Objects 
 Mass (kg) Inertia (kg*m2) Radius (m) Length (m) Cdω 

(N*m/(rad/s)2) 
Cdv (kg/s) 

SSV 76.2 2.7 0.3025 n/a 2.2 413.685 
Beam 11.3636 0.0124, 0.0083 0.0606 3.048 changes changes 
Hub n/a n/a 0.1905 0.3810 n/a n/a 

Note: the beam is modeled as a cylinder with thickness 0.0063 m. 
 

Table 4: Test Scenario for Algorithm – Inputs 
 Initial translation (m) Initial rotation Ipcontact, in inertial 
SSV [0 , 0 , 0] [-1 , 0 , 0] 

[0 , -1 , 0] 
[0 , 0 , 1] 

[-1 , 0 , 0] 

Beam [5 , 0 , 0] [0 , 0 , 1] 
[0 , 1 , 0] 
[-1 , 0 , 0] 

[3.476 , 5 , 0] 

Hub [6.524 , 5.3810 , 0] [0 , -1 , 0] 
(z-axis of pcontact) 

[6.524 , 5 , 0] 

  

5 m 

5 m 

x 

y 

z 

x’ y’ 
z’

SSV

Beam 

Hub

 
Figure 10: Test Scenario Initial Configuration 
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• The translational then rotational movement of SSV was solved for iteratively. 
• The thrust characteristics and time of completion were saved. 

• The center of mass, axis of rotation, and moment of inertia of the SSV-beam pair were found. (In this case, 
the axis of rotation was parallel to the z-axis of SSV, the y-axis of the beam, and the z-axis in the inertial 
frame.) 

• The angle that the SSV-beam pair needs to rotate through was found. (In this case, the angle rotated through 
was 90°.) 

• The new location of the beam attach point, IpcontactB, after such a rotation was found, and the translational 
distance through which it would have to move was found. (In this case, translation occurs in the x-y SSV 
plane only.) 

• The rotational then translational movement of the SSV-beam pair was solved for iteratively. 
• The thrust characteristics and time of completion were saved. 

• The final numbers were combined and tabulated; see Table 7. 

From the data, it looks as though the open point on the beam, farthest from the origin of the inertial frame, is the 
optimum point to attach to and move from if fuel use drives the cost function; if time drives the cost function, the 
center of the beam looks to be the best choice – it was somewhat of a intuitive toss-up between that point and the 
point at the beam’s center of mass, since rotating about the center of mass caused less drag, but the extra distance 
and suboptimal drag characteristics of its translational movement more than used up those savings. 

Table 6: Test Scenario for Algorithm – SSV-Beam Pair Movement 
 IpcontactB,1 IpcontactB,2 IpcontactB,3 
IpCMpair [6.3262 , -0.2632 , 0] [5 , -0.2632 , 0] [3.6738 , -0.2632 , 0] 
Rotation to Hub, angle, in radians 1.5708 1.5708 1.5708 
Axis of rotation to Hub, Iaxis [0 , 0 , 1] [0 , 0 , 1] [0 , 0 , 1] 
Translation to Hub, INpair [-0.0654 , 2.4130 , 0] [1.2608 , 3.7400 , 0] [2.5870 , 5.0654 , 0] 
Time of rotation, in seconds 6.7600 2.6100 6.7600 
Fuel of rotation, in Newtons 12 12 12 
Time of translation, x-direction, in seconds 0.0300 36.6300 82.3500 
Fuel of translation, x-direction, in Newtons 12 12 12 
Time of translation, y-direction, in seconds 85.9600 137.6500 189.2800 
Fuel of translation, y-direction, in Newtons 10.62 10.62 10.62 

Table 5: Test Scenario for Algorithm – SSV Movement 
 IpcontactB,1 IpcontactB,2 IpcontactB,3 
Translation to Beam, INS [6.524 , -0.3025 , 0] [5 , -0.3025 , 0] [3.476 , -0.3025 , 0] 
Rotation to Beam, angle, in radians 1.5708 1.5708 1.5708 
Axis of rotation to Beam, Iaxis [0 , 0 , 1] [0 , 0 , 1] [0 , 0 , 1] 
Time of translation, x-direction, in seconds 225.1518 172.6138 120.0758 
Fuel of translation, x-direction, in Newtons 12 12 12 
Time of translation, y-direction, in seconds 10.6733 10.6733 10.6733 
Fuel of translation, y-direction, in Newtons 12 12 12 
Time of rotation, in seconds 2.1000 2.1000 2.1000 
Fuel of rotation, in Newtons 12 12 12 

Table 7: Test Scenario for Algorithm – Total Cost 
 IpcontactB,1 IpcontactB,2 IpcontactB,3 
Time of translation, SSV, in seconds 225.1518 172.6138 120.0758 
Fuel of translation, SSV, in Newton-seconds 2.8299e+003 2.1995e+003 1.5690e+003 
Time of rotation, SSV, in seconds 2.1000 2.1000 2.1000 
Fuel of rotation, SSV, in Newton-seconds 25.2000 25.2000 25.2000 
Time of rotation, pair, in seconds 6.7600 2.6100 6.7600 
Fuel of rotation, pair, in Newton-seconds 81.1200 31.3200 81.1200 
Time of translation, pair, in seconds 85.9600 137.6500 189.2800 
Fuel of translation, pair, in Newton-seconds 913.2552 1.9014e+003 2.9984e+003 
Total time, in seconds 319.9718 314.9738 318.2158 
Total fuel, in Newton-seconds 3.8495e+003 4.1574e+003 4.6737e+003 
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V. Conclusion 
This paper describes an architecture for determining an assembly procedure for autonomous space or underwater 

structural assembly, focusing on the problem of solving individual assembly task trajectories and their associated 
costs. These assembly task trajectories are split into two main subdivisions of movement: vehicle to object, and 
vehicle-object pair to destination. Each of these movements is decoupled so that the translational and rotational 
motion occur separately, to avoid complex dynamics. The specific algorithms for each movement are presented; 
these are solved iteratively over several waypoints and differing magnitudes of thrust. A cost function is also 
presented that uses the thrust characteristics and time to completion to compute a total cost J that is useful to a task 
scheduler. This particular trajectory planner and cost function is an implementation to solve a very constrained case. 
However, the simpler cases have been tested and do seem to be reasonable, as the case study section shows. 

Future additions and refinements to this planner after the basics have finished being implemented and tested 
could include other types of combined SSV-beam movement (translation then rotation; rotation to minimum drag 
configuration, translation, then final rotation to correct orientation), object avoidance, velocity caps, attention to the 
walls of the tank, and coupled motion. Better weighting factors, and their refinement to determine which 
combinations give more desirable outcomes, is also another improvement that should occur down the road prior to 
implementation, or possibly in conjunction with neutral buoyancy testing. More complex dynamics problems 
associated with this type of construction scenario – movement of partially-constructed assemblies to other locations, 
navigation of a SSV-beam pair between objects, vibrational and nonrigid body motion – are quickly encountered 
when certain assumptions are relaxed. A generalized, further extended planner that can model these sorts of 
movements would be a short step away from a final version of a path planner that could be utilized in an actual 
complex construction scenario. 
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