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Abstract - We investigate  accuracy  of  existing 2D 
pseudospectral and k-space formulations for 
simulating acoustic  propagation in tissue or model 
scattering media. They are intended to provide 
insight into tissue-ultrasound  interaction  and a "test 
bed" for aberration correction schemes in medical 
imaging.  Both  methods  employ FFT's to evaluate 

The primary difference lies in the approach to time 
spatial derivatives to high  accuracy  on coarse grids. 

integration.  Scattering in large-scale, 21). 
inhomogeneous media is included. We compare 
simulations against  analytical solutions to illustrate 
spatial  and  temporal  discretization  required  for 
acceptable solutions. 

INTRODUCTION 

The medium  is  represented  by a uniform  Cartesian 
grid  where  pressure/stiffness  and  velocity/density 
are unknownslparameters  at discrete points. 
Spectral operators in space enable accuracy  and 
computational efficiency in very  large  models. 
However, inhomogeneities  are  often  represented  as 
piecewise constant from node to  node,  rather  than 
smooth. The resulting stairstep can  produce 

reflections and  transmissions  at  interfaces  and  local 
spurious diffractions at edgedcomers, inaccurate 

Gibbs phenomena, by approximating derivatives at 
a material  discontinuity. Thus, the efficiency 

by  the  need  to  resolve  interface  derivatives. 
permitted by coarse spectral  grids is compromised 

For example, scattering  by a soft cylinder requires 

the cylinder for accurate propagation, but 
only two nodes per  wavelength inside and  outside 

significantly  more  nodes  per  wavelength are 
necessary  to  reduce interface artifacts.  Interface 
artifacts are quantified  for a single interface, 1D 

multilayer models, and cylindrical scatterers. 
Abdominal  wall cross sections with coarse and  fine- 
scale inhomogenities are used  to explore fidelity  of 
wave propagation  versus nodes per  wavelength  and 
tissue characteristic lengths. We show that the 
existing tools are useable in 2D. 

SpectralFIex code. Kbench implements the  k-space 
The pseudospectral  method is implemented  in  the 

method. 

PSEUDOSPECTRAL AND K-SPACE METHODS 

The pseudospectral  and k-space methods were 
formulated to provide efficient high-accuracy 
solutions to  long range wave propagation problems. 
In fact, they debuted during the same year [ 1.21. We 
briefly describe the two methods as  implemented in 
[3,4], highlighting the major  similarities  and 
differences. 

Both  use m ' s  to evaluate spatial derivatives to 
high  accuracy on coarse grids. The primary 
difference lies in their respective approaches to time 
integration. Note  that coarse spatial grids provide 
the primary incentive for FFT based (or any  high 
order) method. The computational burden  is  linear 
in the  number of timesteps per cycle, for  both 2D 
and 3D. Including the  timestep.  computational 
burden is pro ortional to the number of Points Per 
Wave (PPW) m 2D or (PPW)' in 3D. 

Bashforth ABS4 time integrator [5]. Among 
SpectralFlex adopts a 4Ih order staggered Adam 

general purpose integrators, this  is close to optimal 
for the current applications - 2-3 digits of  accuracy 
for a wave propagating several hundred wavelengths 
on the coarsest  possible grid. The stability  limit for 
ABS4 in 2D is CFL = 0.3. The  CFL number  is 
defined as: CFL = At/(Ax/c),  where At is  the 
timestep, c is the  wavespeed  and Ax is the cell  size. 

P 

0-7803-5722-1/99/$10.00 0 1999 IEEE l999 IEEE ULTRASONICS SYMPOSIUM - 1551 



say CFL = 0.1. Kbench implements a time 
Acc.uracy  frequently  requires a smaller timestep, 

integrator in k-space  based on the exact solution  for 

It outperforms the general purpose ABS4 t i m e  
waves  propagating in a homogeneous medium [41. 

linear  acoustic  medium. ABS4 becomes  more 
integrator for weak scatterers in a homogeneous 

efficient when  the  scattering  objects  have a larger 
impedance contrast. 

LONG RANGE PROPAGATION 

To illustrate the advantages of the FFT based 
approach  for long range propagation, we propagate 
a 2.5 MHz pulse 200 wavelengths  through  water 

element code that is second order accurate in  both 
using  both SpectrulFlex and PZFlex, a finite 

but  spectral content is observable up to 5 MHz. 
space and  time. The center frequency is 2.5 MHz, 

Thus, 4 PPW at 2.5 MHz is the minimum sampling 
capable of resolving the pulse. 

solutions. SpectrulFlex used 4 PPW at CFL = 0.1, 
Figure 1 compares exact, PZFler and SpectrulFlex 

whereas PZFlex used 20 PPW at CR. = 0.8. These 
discretizations in time and space are typical of those 
that  would  be  used in real  problems. The 
SpecrrulFlex  signal  looks  good  and  can he made 
better  by  reducing the timestep. The PZFlex signal 
is delayed in time  and  badly  dispersed. A much 
finer grid  is  required  to achieve reasonable 
accuracy. Note that  at CFL = l . ,  PZFlex becomes a 
characteristic method, and  produces exact results, 
even  at 2 PPW.  Unfortunately,  this only works for 
ID linear  problems. 

because the  time  integrator  is  based  on  the exact 
Kbench  produces exact results for this example 

solution  for a homogeneous medium. 

DISCONTINUITIES 

Spectral methods compute highly accurate spatial 
derivatives of smooth  fields. Thus, in homogeneous 
regions, 2 cells per  minimum  wavelength  (ie, 
highest  spatial frequency) suffice. However, at 
material  interfaces  both the pressure and  velocity 
fields  should  exhibit slope discontinuities as given 
by ( l ) ,  where n denotes the normal  direction  and the 

ap’ -P+ aP- 
an p - &  (1)  

superscript defines the + or - side of the  interface. 
The velocity field likewise exhibits slope 
discontinuities at  interfaces. 

Spectral methods enforce smoothness, 
approximating the  jumps in normal  derivatives  with 
steep gradients over a few cells. This 
approximation is quite good  at 10-20 cells per 
wavelength, but less accurate at 2 cells per 
wavelength. For a staggered  grid, as in 
SpecrrulFlex, the  material  interfaces coincide with 
velocity nodes, so we average the density  at these 
interface points. On a regular grid, all the nodes lie 
away from interfaces, so no averaging is necessary, 
but the accuracy is even worse than for the 
staggered grid. 
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Figure 1.  Long range pulse propagation  through 
water. 

ID versus exact solutions 
Table 1 summarizes material  properties  used  for the 

transmission of a normally  incident pulse at a 
ID benchmarks. Figure 2 illustrates the reflection/ 

watedfat interface as modeled by SpecrrulFlex. To 
plotting accuracy, the transmitted signals appear 
exact (because it has much  larger amplitude than  the 
reflected wave). However, the error i n  the reflected 
signal  is  readily apparent at 4 PPW,  and  barely 
visible  at 6 PPW. 

In this case, errors are visible in both  the reflected 
Figure 3 shows results for a water hone interface. 

and  transmitted signals at 4 PPW. In both codes, the 
most pathological case is varying densitylconstant 
stiffness. Fortunately, most  tissues  have a higher 

case  is seldom encountered. As shown i n  Fig. 4 
contrast in stiffness than density [6] ,  so this  worst 

wave are visible even at 12 PPW. 
(density=1000, 928 kglm’) errors in the reflected 
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Figure 2. Reflected  pulse  at a watedfat interface. 
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Figure 3. Reflected pulse  at a wateribone  interface. 
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Figure 4. Reflected pulse from worst case interface. 

through a l-D approximation of  an abdominal cross 
The next benchmark examines propagation 

section. Material  parameters are again given in 
Table 1. Slight errors in the transmitted wave are 
apparent  at 4 PPW (Fig. 5 ) ,  but not at 8 PPW. 
Reflected  signals  (not shown) are similar. Figure 6 

illustrates the effect of coarse non-conforming  grids. 
At 4.1 PPW, cell boundaries are misaligned  with 
actual  material interfaces by up to % cell. This is,  of 
course, the case  for any real  model  with 
discontinuous material  properties.  Properties are 
assigned based on the center of the cell.  The errors 
introduced  by  this sampling dwarf all others. More 
will be said about this in a later section. 
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Figure 5. Pulse transmitted through l-D abdominal 
wall model. 
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Figure 6. Pulse transmitted through l-D 
approximation of abdominal wall. Non-conforming 
grid. 

In addition to the numerical errors at interfaces, 
Scattering by cylinders 

approximations are introduced by  the  stair-step 
representation of curved surfaces. To quantify  these 

bone cylinders immersed in water and  insonified  by 
approximations, we consider 3 mm radius fat and 

the usual 2.5 MHz pulse. We  compute the difference 
between exact and  numerical  signals for each 
timestep at 128 locations at 6 mm radius, and equal 
spacing in theta. We use the L2 norm  of  this  matrix 
as an error metric. Figure 7a shows the L2 error vs 
PPW  for kbench and SpectralFLex at CFL = 0.2. 

time [psec] 
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The curves are similar, though kbench is  slightly 
more accurate.  For the larger contrast bone case in 
Figure 7b, similar  trends are evident, but in this case 
SpectralFlex is more accurate. The error  is tending 
to zero as the PPW increases. The rate of 
convergence is not quite quadratic. For context, Fig. 
12 shows waveforms  for L2 error near 0.01. 

1478. 
Bone 3540. 1990. 

Figure 7c illustrates  that  at low CFL, the error due 
to time integration tends to zero. For  this  problem, 
kbench permits reasonable  accuracy at roughly 

cylinder, the  stability  limit of SpectralFlex is 0.15 
double the SpectralFlex timestep.  For  the bone 

(0.3 in the bone) , and kbench can go up to 0.2. 
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Figure 7. Cylinder  benchmarks. Convergence with 
increasing discretization. 

I I 
Figure X. Abdominal  wall  model. 

Tissue examules 
Figure X shows an abdominal wall cross section 

wave pulse.  Figure 9 displays typical  reflected  and 
[7,8]. This model is insonified  by a 4.35 MHz plane 

transmitted signals computed by SpectralFlex at 4, X 
and  12 PPW.  The grids were defined such that 
material boundaries always  lie in exactly the same 
place.  Again. it  is confirmed that even the coarse 4 
PPW model  produces  fairly accurate results. 
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Figure 9. Transmitted pulse  from Abdominal wall 
model. 

INTERFACE TREATMENTS 

Given  that  the  largest  numerical errors in the FFI  
based  methods stem from material interfaces, we 
look at  several interface treatments for reducing 
those errors. 

JumD conditions 
One possible method for improving the accuracy at 
interfaces is to  split  the  solution into smooth and 
non-smooth parts, and  apply the spectral  method 
only to  the  smooth part  The idea is to introduce 
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local  corrections  at  material interfaces that enforce 
the jump conditions exactly. E.g., construct low 
order polynomials  over  the cells adjacent to the 
interface that  have  zero  value  and zero slope 1 cell 
away,  and,  when  added to the continuous part 

Obviously, the correction  is  not  required  to be local, 
satisfy  the jump condition (1) at the interface. 

but if it covers more  than 1 cell, the algorithm  will 
become  much  more complicated for multiple 
interfaces. LaVeque [9] discusses such an  approach 
applied to finite  difference  models. 

Figure 10 compares reflected  and  transmitted 
signals for coarse models  of  an interface with  and 

This example isolates  the effects of density  changes 
without the jump correction for interface velocity. 

in that only the density is discontinuous. The bulk 
modulus is continuous. The correction  term 
improves the computed result,  but  not  to the level  of 
a homogeneous  material. A similar correction  could 
be  applied  to the discontinuity in the  velocity 
gradients. However, it will  have a weaker effect on 
the  staggered  grid since the leading coefficients are 
already continuous. 

v I 
-0.10 I 

5 00 5.40 5.80 

Figure IO.  Jump treatment applied to  interfaces. 

Smoothing (Bandlimitation) 
Another approach to improving accuracy  at 
discontinuities is to smooth or bandlimit  the  model 
before sampling. This removes unresolvable high 
spatial’frequencies from the model  itself. We found 
that  perfect  bandlimitation  reduced computed 
signals too much,  but a “halfband filter improves 
accuracy. The halfband filter is  smooth  with  an 
amplitude of 0.5 at  half the sampling frequency. 
Figure 1 1  shows direct and halfband filtered kbench 
models  of a 3 mm cylinder using the same number 
of PPW. The corresponding pressure fields are 
plotted  using a 60 dB bipolar log scale. 

lime 

a) Unsmwthed 
Figure 1 1 .  Direct sampled & bandlimited cylinders. 
Models and pressure, 60 dB  bipolar log scale. 

The staircase representation of the cylinder 

but  these  have disappeared in l l b .  Figure 12 
generates diffracted signals at  each comer in 1 la. 

shows selected waveforms from the direct  and 
halfband sampled  models. The late time diffractions 
have been removed, and  overall L’ error  was 
reduced from 0.0155 to 0.0105. This exercise 
demonstrates that smoothing can  be useful. 
However, there are some practical complications. 
The current procedure computes the  smoothed 
object as the inverse transform of the object’s 
analytical spectrum multiplied by  the  filter.  and is 
thus defined only for objects  with a known 
analytical spectrum. The extension to more  general 
models defined on a pixel  by  pixel level has  not  yet 
been demonstrated. Also? continuous variations  of 
material properties produce a large  number of 
distinct materials. In the limit,  each  cell  of  the 
model has different properties. For  the  purely 
acoustic case, this presents little difficulty, but  when 
material nonlinearity or viscoacoustic damping is 
added, the complexity intensifies.  E.g.. for each 
wavespeed/damping set, an optimization  problem 
must be solved to compute the appropriate 
relaxation constants, and these constants must be 
stored. 

b) Hallband Filtered 
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Figure 12. Backscattered  signals from direct (top) 
and  bandlimited  (bottom)  models. 

model compared to the unsmoothed case. Because 
Note that  this procedure adds information to the 

smoothing is applied to the  analytical cylinder, the 
continuous variation  of  material  constants provides 
a richer  set of parameters  than is available in the 
unsmoothed  representation. As long as the  model is 
known to higher resolution  than  the grid, 

question whether smoothing would be beneficial on 
information will be  added. It is an interesting 

a grid finer than the pixel  by  pixel  model definition. 
For example, the UOR tissue cross sections [7,8] are 
the  most detailed models  we  know of. These are 
represented as piecewise constant with a pixel size 
0.085 mm (about 7 PPW for a 2.5 MHz pulse).  For 
a 5 MHz pulse,  the coarsest grid  would  have finer 
resolution  than the model. 

been shown effective [IO]. This adds additional 
Volume averaging of material constants has also 

information compared to the unsmoothed case, and 

However, the  practical  difficulties are the same. 
the correction  is more local  than smoothing. 

As a last resort, increased discretization (brute 
force) will always converge to an accurate solution. 
This is a practical  solution in 2D, as the above tissue 
examples indicate. 

CONCLUSIONS 
Model  parameterization  is a critical issue and  puts 
all the above results  in  practical perspective. As 
shown above, differences in material constants or 
interface locations  cause  much larger differences in 
reflectedtransmitted signals than any numerical 
errors in the FFT based methods. For gaining 
insight, or as a test-bed for aberration correction 
schemes, a 4 PPW model is sufficient  at frequencies 
of 2.5 MHz or greater. Fine grids or cell-by-cell 
representation of material  properties are needed only 
for more accurate rendition of model geometry. 
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