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the  scattering  operator is described.  This approach  pmvides P uoi- 
Absrrucl-An inverse scattering  method that uses eigenfunetions of 

lied framework  that  encompasses  eigenfunction  methods of foaming 
and quantitative image reeonstruetion in  arbitrary media. Scattered 
acoustic fields are expressed  using a compact, normal operator.  The 
eigenfunetions of thls operator  correspond to the far-field pa t te rn  
of source distributions  that are dimctly  proportional to the  pasition- 

stituto B basis of an operator that is essentially equivalent to the  time- 
dependent ~ ~ n t m s t o f a ~ c a t t e r i n g  object. Theeigenfunetions  aisocon- 

revelsal operator previously defined by athen. Incident wave pat- 
terns specified by these eigenfunetions are used in B method  that em- 

to represent an unknown  scattering medium. Analytic  reconstruction 
ploys produets d numerically calculated fields of lhe eigennlunetions 

formulas are derived  both  for  the  linearized inverse scattering  pmh. 
lem and for the  nonlinear  problem in which the tolal acoustic  pres- 
sure within the medium c m  be  estimated. A modified eigenfunction 
imaging  method  that allows efficient recoastruelions of large inhomo. 

titative images of various scattering  objects that span regions large 
geneities is also presented. The  methods are applied to obtain quan- 

compared to the wavelength of the  acoustic  illumination.  The eigen- 
function  method is compared to the  method of filtered  baekpmpaga- 
lion implemented by numerical quadrature  and to Fourier inversion 
implemented by fast Fourier  transformation.  The mulls show  the  ca- 

The mull8 show the rigenfunction  method is more efncient than the 
pability of the  eigenfnnetian method to image  ohjeets with large ka. 

backpmpagatian method and can alw be more efficient  than  Fourier 
inversion when thescattering  operator  has few eigenvalues. 

1. INTRODUCTION 

A new inverse scattering  method, which employs the fo- 
cusing  properties  of  certain  acoustic fields obtained by re- 
transmitting eigenfunctions of the  scattering  operator. has 
been developed [l]. The  method  brings  together  concepts 

impedance  tomography [2],[3], acoustic time  reversal [4]- 
including  the “powermethods previously applied in electric 

[7], and the localized  nonlinear  approximation [8]  to pro- 

The  current  paper briefly reviews the  method,  presents a 
vide a general approach  to  quantitative ultrasonic imaging. 

modified eigenfunction  method  appropriate for reconstruc- 
tion of large  inhomogeneities, and shows new results in- 
cluding a comparison of efficiency  between  the eigenfunc- 
tion method, filtered backpropagation,  and  Fourier inver- 
sion. 
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Fig. I Scatteing configuration: an incident ultrasonic wave traveling i n  
the direction g is scattered by an inhomogeneity and the scattered far-lieid 
pressure is measured a! a function of the angle 0~ 

11. THEORY 

geneous  medium is defined by the  scattering  potential 
In the  present inverse scattering  method. an inhomo- 

q ( x )  = - k 2 r x ( x ) ,  where k is the wavenumber2rflcand 
7. is the compressibility variation [9]. 

The scattering  configuration considered is sketched in 
Figure 1 ,  For  a measurement radius r in the far field, a 
measurement  angle B. and an incident  plane wave erkx z, 
the far-field  pattern of the scattered  pressure is 

A ( @ ,  a) = J e- ire’x d X ) P ( X ,  O W .  (1) 

This integral (like  subsequent integrals on 5) is two- 
dimensional  and is taken on the entire plane in %?. 

waves propagating in all directions, weighted by the com- 
When  the incident  pressure is a  superposition of plane 

plex function f ,  the  far-field  pattern of the corresponding 

plied to the function f :  
scattered acoustic  pressure is given by the  operator A ap- 

Af(0) = A(0,  a)f(a)da. ( 2 )  J 
ratio of the  scattered  amplitude  to the  incident amplitude. 

The  focusing  properties of A are seen by considering  the 

Since A is normal, the magnitude  of its largest  eigenvalue 
is  equal  to the  largest possible  value of this ratio  for any 
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nonzero f :  

(31 

where sup[.) denotes the least upper bound  and Ilf(.)lIr~ 
denotes the root-mean-square  magnitude  of a square- 
integrable function.  Thus,  the  eigenfunction associated 
with the largest  eigenvalue of .-l specifies an incident-wave 
distribution  that lnaximizes the energy scattered to the far 
field.  Other  eigenfunctions  also  focus  energy  on  inhomo- 
geneities with an efficiency  that is quantified by the associ- 
ated  eigenvalues.  Notable is that analogous  focusing  prop- 
erties  also exist for the time reversal operator  as defined in 
Ref. 171. 

of  eigenfunctions  are a  useful starting point for inverse scat- 
Because  ofthese  focusingpropenies, retransmitted  fields 

tering  reconstructions.  The  starting  point  for  our  method is 
an expression  of the inverse scattering  problem in terms of 
the  operator ..I of Equation 2 and  the  corresponding retrans- 
mitted  fields ofeigenfunctions 

( A f i ,  f,) = S;,X; = / F , ( x ) E ; ( x ) q ( x ) d J : .  i, j = l , % .  . . 

(4) 

E ( x )  = f[aj.'k"'"dn, 

F ( x )  = f ( n ) p ( x ,  (I)  r l t r .  (51 

The  problem  can  be regularized by seeking the  solution 
that minimizes a  weighted L' norm [ I ] .  The  minimiza- 
tion problem is then solved using the method of Lagrange 
multipliers,  analogous  to  the  approach used in Ref. [IO] for 
a linearized electric  impedance  tomography problem. The 
result follows that if the potential q n r  ( x )  solves  the regular- 

the form 
ized inverse scattering  problem defined  here, q~ must be  of 

J 
J 

where i i . ( x )  is an appropriate  weighting  function, &(x)  

sponding  to an incoming  condition at infinity, and  the coef- 
is the  complex  conjugate  of the  retransmitted field corre- 

ficients QI," are the Lagrange multipliers. 

problem is reduced  to  the problem of  finding the  coeffi- 
By substituting Equation 6 into  Equation 4, the inverse 

cients from  the  nonlinear  system 

* I , V [ x ) - ' r l ~ ] Q l , , ~ ~  i , j  = 1 , 2 ;  

where the dependence of the fields F and F' on  the  scat- 
tering potential q is implicit. 

total pressure field p ( x :  o j ,  are unknown in  inverse  scatter- 
Ingeneral. the  scattering potential q ( x j ,  and therefore the 

ing  problems.  The  function p ( x ,  rrj  that implicitly  appears 
in Equation 7 may therefore he replaced by the  hest  avail- 
able estimate  for  the total pressure. Equation 7 can  then 
be solved  for  the  coefficients Q[,,, by  standard  numerical 
techniques for  solution of linear systems. 

The  above  method  simplifies further in the case of a 
weakly-scattering medium, for  which  the  total pressure 11 
can be approximated by the incident pressurc. In  this case, 
the  solution is given by the  coefficients 

It has been shown in Ref. [ l ]  that this  solution is andlyt- 

tion algorithm for  diffraction tomography  under  the Born 
ically  equivalent to the well-known filtered backpropaga- 

approximation. 

homogeneities can be  improved by use of the eigenfunc- 
The efficiency of the eigenfunction  method  for large  in- 

tions  and eigenvalues  of the operator 

.i(~,n) = lsin(B - C Y ) I ~ ~ ( O , ~ ) .  (81 

duces  to the single  summation 
For  weak scattering, the reconstruction  formula then  re- 

where i, and E ,  respectively are  eigenvalues  and  retrans- 
mitted fields  associated with eigenfunctions  of .i. 

versions that do not employ the  Born approximation but 
The  eigenfunction  method  can  also  by  employed  for in- 

maintain computational efficiency superior to alternative 
methods.  One  such  application is demonstrated  by  consid- 
ering  the  case where the  inhomogeneous-medium  retrans- 
mitted fields F can he  estimated  from a  first approxima- 
tion to  the scattering  potential q .  We invoke the localized 
nonlinear approximation introduced in Ref. [ X ]  for electro- 
magnetic  scattering. Under  this approximation,  the total 
acoustic  pressure is approximated  by thc formula [ 11.[81 

imated by the  nonlinear formula 
The result follows that the scattering potential is approx- 

This nonlinear equation for  the  potential q u  can be approx- 
imately  solved by using  a form  of the  retransmitted field 
F l ( x )  corresponding  to  the lowpass-filtered  potential or 
to  another  estimate  of  the  scattering  potential. A similar 
derivation can be carried  out  using  eigenfunctions  of  the 
operator .i. 

I , I ,  
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Fig 2. Left Panel: single-frequency reconsmctian of two point scatterers 

reconstruction of  a uniform triangle. 
from scanenng data with SNR of 3 dB. Rlght  Panel: single-frequency 

111. NUMERICAL RESULTS 

Figures 2-5 show  example  two-dimensional  reconstruc- 
tions obtained with the  eigenfunction  methods  described 
above.  The  images  shown  were obtained using  scattering 
operators computed by a finite-elementh'ystrom  method 

penetrable  cylinders 19). These  operators were sampled  at 
11 I ]  as well as exact numerical  solutions  for scattering from 

and  eigenvalues of these  operators  could  he obtained by nu- 
128 or  256  equally-spaced  angles, so that eigenfunctions 

merical  diagonalization  of a 128x 128 01256x256 matrix. 

tures,  obtained with computational  speed not possible  from 
Figure 2 shows high-resolution images of small struc- 

conventional inverse scattering  techniques.  The two  wires 
shown in  the  first panel  were  obtained  using  only two 
eigenfunctions of the  scattering  operator,  but  show sub- 
wavelength resolution  and insensitivity to  noise  (the  signal- 
to-noise ratio  for this image was 3 dB).  The  triangle shown 

functions. This  reconstruction  required 69.1 S of CPU time 
in the second  panel was reconstructed  using fifteen eigen- 

on a Sun  SparcStation 10, while an analogous  reconstruc- 
tion employing filtered backpropagation  required  3014.3 S .  

Example  reconstructions of a large  inhomogeneous ob- 
ject, chosen to  mimic  properties of tissue  in  medical  ul- 

panel of Figure 3 shows a quantitative image of a simu- 
trasonic imaging,  are  shown in Figures 3 and 4. The first 

point-like scatterer, a cystic  region, and  a tumor-mimicking 
lated phantom that includes a fat-mimicking  background, a 

region. The  image was  obtained using  the  eigenfunction 
method  for five scattering  frequency  components  such that 
20 < ka < 30, where a is the cylinder. The  second  panel 
of Figure 3 shows a reconstruction of the same test object 

square  amplitude one-half  that of the scattering data. A 
for scattering  data corrupted by noise  having  a root-mean- 

nonlinear reconstruction of this  object,  obtained using an 
estimate for the total pressure in the  background  cylinder, is 
presented  in Figure  4.  This  reconstruction  shows improved 
point resolution,  seen by the  increased  height of the peak 

reduction in the  imaginary  part. 
in the  real part,  and  improved  accuracy, seen by the overall 

Fig. 3 Real pan of imaging phantom reconrmctions obtained from com- 
puted  five-frequency scattering data.  LeR  Panel:  ideal  data.  Right  Panel: 
data with 6 dB SNR. 
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Fig. 4 Linear and nonlinear reconstructions ofthe inhomogeneity fmm 
Figure 3. Upperpanel:  realparts.  Lowerpanel: imaginary pans. 

the ultrasonic wavelength are  presented in Figure 5.  These 
Images  of objects that span larger  regions compared to 

images were  obtained  using the modified  eigenfunction re- 
construction  formula of Equation 9, using a 128 x 128 scat- 
tering matrix, I O  eigenfunctions  for  the five-wire  object, 

Five  frequencies  were  employed in each  case, so that ka for 
and 64  eigenfunctions for the  cylinder with internal  wires. 

the cylinder ranged  between 28 and  42. 

was compared with two  established  methods  for inversion 
The  efficiency of the  modified eigenfunction algorithm 

under weak scattering conditions.  The first benchmark 
method investigated  was  filtered backpropagation, which 
employs the  reconstsuction formula [121-[141 

The  second is direct  Fourier inversion, in which  the  waves- 
~~~, 
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Fig. 5. Real pan of reconstructions  obtained  from  computed five- 
frequency  scattering  data. Left Panel: five widely-spaced Wires. Right 
Panel: homogeneous  cylmder with five internal wires. 
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Fig. 6. Comparisons of computation  time on a SparcSystem 10 far three 
inversion methods. Left Panel: 64 x 64 scattering matrix. Center  Panel: 
128 x 128 scattering  mauix. Right Panel: 256 x 256 scattering matex. 

pace  representation of  the  inhomogeneous  medium [9] 

qs[Ic(cosB~coscr):k(sinB-sina)j = -A(B ,a )  (13) 

dimensional interpolation to  uniform grid points i n  waves- 
is inverted by discrete  Fourier  transformation  after two- 

pace. 

6. The object employed  for  these  comparisons was the five- 
Results of the efficiency  comparison  are  shown in Figure 

wire object  shown in Figure 5 .  Reconstructions were  per- 
formed using a frequency  of 2.5 MHz. Ten eigenfunctions 
of A were employed in the  benchmark  eigenfunction re- 
constructions.  The results indicate that the modified  eigen- 
function  method,  like the original  eigenfunction  method,  is 
much  more efficient than filtered backpropagation. Also, 
the  modified eigenfunction  method is seen to be compara- 
bly efficient to, and  in some  cases  more efficient than, in- 
version by fast Fourier  transformation. 

1 
211 

IV. CONCLUSION 

acoustic  fields has been presented.  The method outlined 
A method for focusing  and  imaging using scattered 

here makes use of the  physical  properties of scattering op- 
erators by using their eigenfunctions  as incident-wave  pat- 
terns. 

It has been shown that the  eigenfunction  method is ap- 
propriate for  quantitative  ultrasonic  imaging of large  in- 
homogeneities. In particular, a modified eigenfunction 

method  allows  reconstructions to be performed using  a  sin- 
gle  summation of retransmitted  fields.  Numerical examples 
have  illustrated this capability. 

Comparison of the efficiency of the  eigenfunction 
method to filtered backpropagation  and  Fourier inversion 

erably  more efficient than filtered backpropagation and is 
has been performed.  The  eigenfunction  method is consid- 

comparable in efficiency to  Fourier inversion.  When  the 
scattering operator  has  few  eigenvalues,  the  eigenfunction 
method  can  be  more efficient  than  inversion by fast Fourier 
transformation. 

The  eigenfunction  method has also been employed to de- 
rive  a nonlinear inverse scattering  formula that yields  a so- 
lution  for  the scattering  potential q in terms of retransmitted 
fields of eigenfunctions in the  scattering  medium and in  the 

to yield improvement in accuracy  and  resolution over Born 
background  medium.  This  formula has been demonstrated 

inversion. The  method shows  potential  for  future work in 
iterative  nonlinear  inverse scattering. 
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