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Quantitative Flaw Reconstruction from
Ultrasonic Surface Wavefields Measured by
Electronic Speckle Pattern Interferometry

T. Douglas Mast, Member, IEEE, and Grant A. Gordon

Abstract—A new method for imaging flaws in plate and
shell structures is presented. The method employs two-
dimensional ultrasonic surface wave data obtained by op-
tical electronic speckle pattern interferometry (ESPI) tech-
niques. In the imaging method, the measured out-of-plane
displacement field associated with an externally excited ul-
trasonic Lamb wave is processed to obtain the spatial fre-
quency domain spectrum of the wavefield. A free space
Green’s function is then deconvolved from the wavefield to
obtain quantitative images of effective scattering sources.
Because the strength of these effective sources is directly
dependent on local variations in sample thickness and ma-
terial properties, these images provide a direct map of in-
ternal inhomogeneities. Simulation results show that the
method accurately images flaws for a wide range of sizes
and material contrast ratios. These results also demon-
strate that flaw features much smaller than an acoustic
wavelength can be imaged, consistent with the theoreti-
cal capability of the imaging method to employ scattered
evanescent waves. Reconstructions are also obtained from
ultrasonic Lamb wave displacement fields recorded by ESPI
in a flawed aluminum plate. These reconstructions indicate
that the present method has potential for imaging flaws in
complex structures for which ESPI wavefield measurements
cannot be straightforwardly interpreted.

I. Introduction

A major problem in nondestructive evaluation is the
early detection of structural damage in vehicles and

other critical machinery. For example, concern about me-
chanical safety in aircraft structures is growing as the me-
dian age of active commercial and military aircraft in-
creases. Despite recent research and development activi-
ties, many in the commercial aviation community believe
that few, if any, of the existing inspection requirements can
be addressed by current and emerging wide area inspection
systems. A major concern is early detection of widespread

Manuscript received August 13, 1999; accepted September 5, 2000.
This research was partially supported by the Institute for Man-
ufacturing and Sustainment Technologies at the Applied Research
Laboratory of The Pennsylvania State University. The Institute is a
non-profit organization sponsored by the United States Navy Manu-
facturing Technology (MANTECH) Program of the Office of Naval
Research (contract number N00039-97-0042). Any opinions, findings,
conclusions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the U.S.
Navy.

T. D. Mast is with the Applied Research Laboratory, The Penn-
sylvania State University, University Park, PA 16802.

G. A. Gordon is with McDermott Technology Inc., Lynchburg Re-
search Center, Lynchburg, VA 24506.

fatigue damage. An ideal imaging inspection system for
aircraft and similar machinery would operate in real time,
provide quantitative characterization of flaws in plate-like
structures, allow detection of small cracks even in multi-
layer structures, and establish a precise and reproducible
correspondence between indications and actual flaws [1].

One approach to improve flaw detection in plate-like
structures is to detect defects using the scattered, re-
flected, and transmitted response of transient high fre-
quency Lamb waves within the structures of interest. Such
methods are based on detectable wave effects such as re-
flection, scattering, and mode conversion that occur when
elastic waves interact with areas of inhomogeneity, such as
disbonds, cracks, and delaminations. Recent experimental
studies have investigated the use of Lamb wave amplitude
and time-of-flight measurements as indicators of defects in
lap splice joints [2]–[5]. It has also been shown that the gen-
eration and reception of ultrasonic Lamb waves on painted
aluminum structures are not significantly influenced by the
presence of paint in thicknesses common to the aircraft in-
dustry [6]. In addition, others have investigated the use of
Rayleigh-Lamb waves for industrial material characteriza-
tion [7]–[10]. The use of ultrasonic Lamb waves appears to
be a viable inspection approach for lap-splice inspection
and industrial material characterization.

A more general approach to nondestructive testing
using Lamb waves is Lamb wave tomography [11]–[14]
in which two-dimensional Lamb wave speed attenuation
maps are quantitatively reconstructed from multiple pitch-
catch measurements. This technique has been used to suc-
cessfully image flaws but possesses weaknesses character-
istic of its algorithm. For example, multiple measurements
are required to construct a data set for the inversion pro-
cess, and the image resolution depends on the number of
independent measurements and their orientation. Further-
more, the commonly used filtered backprojection recon-
struction algorithms are limited because they neglect scat-
tering effects and assume straight, unperturbed propaga-
tion paths for the Lamb waves. More sophisticated recon-
struction algorithms (e.g., [15], [16]) can provide improved
image quality at the cost of increased computational com-
plexity; such algorithms still require many independent
measurements.

For practical in situ nondestructive testing, rapid de-
tection of ultrasonic waves by noncontacting methods is
of particular interest. As discussed in various texts and
review articles (e.g., [17], [18]), there exists a number of
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optical techniques for sensing small local displacements on
plates and shells. Many of these techniques, when used on
rough samples, focus the detection beam onto the surface
because the system sensitivity is maximized when only a
single speckle spot is detected [17]. (In principle, many
of these techniques, including confocal Fabry-Perot and
two-wave mixing photorefractive interferometry, can be
extended to wide area sensing applications; however, the
ESPI methods discussed subsequently have received more
attention for a number of practical reasons, including sim-
plicity of design, ease of use, and reduced recording media
resolution requirements.) Recently, a number of investiga-
tors have employed scanned lasers to generate and detect
ultrasound in thin structures, and have shown the feasibil-
ity of measuring thickness and elastic properties [10] and
of constructing tomographic attenuation maps [12] as well
as B-scan and C-scan images [19]–[21] from laser-detected
ultrasound. A disadvantage common to these methods is
that practical large area imaging is achieved using me-
chanical scanning, so that high resolution inspection of
real structures can be time-consuming and mechanically
complex.

In addition to optical approaches, ultrasonic Lamb
waves can also be generated and detected by other non-
contact techniques, such as air-coupled transducers and
electromagnetic acoustic transducers (EMAT) [13], [22],
[23] and combinations of these techniques with laser-based
detection [24], [25]. These approaches, like point-wise opti-
cal measurements of ultrasound, require either mechanical
scanning or multiple-element arrays to measure full surface
wavefields.

Full-field optical detection of ultrasound is a potentially
powerful method for rapid, wide area inspection of struc-
tures. Because no mechanical scanning is required, data
for nondestructive evaluation can be acquired faster than
by single-point interferometric methods. Techniques em-
ployed for full-field detection of acoustic waves in struc-
tures have included a heterodyned holographic system
for visualizing traveling surface acoustic wavefronts [26],
a pulsed holographic system for imaging laser-generated
Rayleigh waves [27], and double-pulsed holographic inter-
ferometry for visualization of ultrasonic waves on surfaces
eroded by particle impact [28].

An ESPI technique known as digital phase stepping
shearography has also been introduced for imaging ul-
trasonic surface waves [29]–[31]. Shearography is distinct
from holography because the object and reference beams
share a common optical path. Because of this common
path design, shearography has a number of advantages
over holographic techniques, including tolerance to rigid
body motion, reduced laser coherence requirements, com-
pact design, and convenient sensitivity control. Recently,
this technique has been used to image modes of bar vi-
bration [29]–[31], ultrasonic waves in plates [29]–[32], and
ultrasonic Lamb waves scattered by defects in aluminum
plates [31] and C/epoxy plates [32].

Although full-field ESPI measurements of ultrasonic
Lamb waves provide a fast, noncontact method to image

traveling ultrasonic elastic waves, these methods are not
directly applicable to many in situ nondestructive test-
ing problems. In real-world structures, Lamb waves inter-
act not only with flaws, but also with harmless inhomo-
geneities such as rivets, ribs, and other structural features.
When inspecting a full-field ESPI image of ultrasonic wave
propagation in such a structure, scattering and other wave
effects caused by normal structure can be difficult to dis-
tinguish from effects caused by defects.

The present paper offers a new nondestructive testing
method that can provide real-time quantitative images of
plate structures without the requirement of mechanical
scanning, the limiting approximations of Lamb wave to-
mography, or the indirectness of ultrasonic wavefield visu-
alization. In the present study, surface wavefields measured
by a common ESPI technique, TV holography, provide the
input data for an inverse scattering problem whose solu-
tion is a quantitative map of the plate structure. These
two-dimensional wavefields are inverted by deconvolving
an appropriate Green’s function from the total field, yield-
ing high resolution, quantitative flaw images. Because of
the broadband spatial frequency information contained in
the full two-dimensional surface wavefield, this technique
allows quantitative reconstruction of flaws from a single
optically measured image of the elastic wavefield. The non-
contact nature of the data collection means that images
can be obtained and combined without concern for the dis-
torting effects of coupling inconsistencies common among
point scanning techniques. Furthermore, the new imaging
method makes full use of all available wavefield data, in-
cluding evanescent waves, strong scattering, and multiple
scattering.

This new nondestructive testing method is derived
subsequently. Reconstructions performed using simulated
data demonstrate the potential of the method for flaw
imaging with extremely high resolution. Preliminary ex-
perimental results show that the method provides accurate
images of flaws in real plate structures.

II. Theory

The current imaging method provides a quantitative
way to image subsurface flaws in plate-like structures using
full-field surface measurements of ultrasonic Lamb wave
propagation. The starting point for this method is the
wavefield induced by a narrowband ultrasonic source ap-
plied to an inhomogeneous medium. For simplicity, the
structure will be assumed to be sufficiently thin that a
two-dimensional propagation model is appropriate.

When the structure is driven below the cutoff frequency
of higher order modes, the resulting wavefield can be effec-
tively limited to a single Lamb wave mode. In this case, the
inhomogeneous plate can be characterized by a single spa-
tially dependent wavespeed c(r). Previous imaging studies
employing time-of-flight ultrasonic tomography [11], [13],
[14] confirm that the single wavespeed model can be ap-
propriate for propagation of Lamb waves in flawed plates.
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This wavespeed is directly related to parameters such as
the local density, thickness, and elastic constants of the
plate [33].

The Lamb wavefield is assumed to be generated by
an applied ultrasonic source such as a contacting or non-
contacting transducer; for such a source operating in con-
tinuous wave mode, the spatially and temporally depen-
dent source strength can be written in the form Q(r)e−iωt.
The surface displacement u(r) then obeys the inhomoge-
neous Helmholtz equation

∇2u(r) +
ω2

c(r)2
u(r) = Q(r) (1)

where ω = 2πf is the radial frequency of the driving signal.
Eq. (1) can also be written in a form such that the

displacement u(r) depends both on the real source Q(r)
and an effective scattering source,

∇2u(r) + k2
0 u(r) = Q(r) + q(r) u(r), (2)

where the scattering potential q(r) is given by

q(r) = −k2
0

(
c2
0

c(r)
− 1

)
= −k2

0 γ(r). (3)

c0 is the nominal average wavespeed of the generated Lamb
wave mode in the medium, and k0 is the wavenumber ω/c0.
The contrast function γ(r) is analogous to the compress-
ibility contrast γκ [34] for a fluid medium of constant den-
sity. The effective source term q(r)u(r) in (2) can be re-
garded as the source of scattered waves; the real source
term Q(r) can be regarded as the source of the incident
wave.

Transformation of (2) using Green’s theorem [35] yields
the integral equation

u(r) = −
∫ ∫ (

Q(r) + q(r)u(r)
)

G0(|r − r0|) d2r0,
(4)

so that the complex displacement u(r) is given as an in-
tegral of the two-dimensional free-space Green’s function
G0(r) = i/4H(1)

0 (k0r) weighted by the real and effective
source terms from (2).

In most inverse scattering problems, (4) cannot be
solved directly to find the scattering potential q(r) because
the wavefield u(r) is only measured at a limited number
of locations (typically at the elements of a receiving trans-
ducer). However, other measurement techniques, such as
electronic speckle pattern interferometry, allow measure-
ment of the wavefield over a large surface area. When
the measurement area includes the support of the contrast
function γ(r), (4) can be directly inverted by the methods
outlined subsequently.

Eq. (4) expresses the total displacement as a convolu-
tion of the free space Green’s function with a source term
that includes both the real source Q(r) and an effective

source term q(r) u(r). In real space and wave space, re-
spectively, this convolution can be written

u(r) = −[Q(r) + q(r) u(r)] ⊗ G0(r)
û(k) = −F[Q(r) + q(r) u(r)]Ĝ0(k) (5)

where F and the hat accent represent the two-dimensional
spatial Fourier transform given by

ψ̂(k) = F[ψ(r)] =
1
2π

∫ ∫
ψ(x, y) ei(kxx+kyy) dx dy.

(6)

The source terms can be extracted from the total wavefield
by the deconvolution operation [36]

Q(r) + q(r) u(r) = −F−1

[
û(k)
Ĝ0(k)

]
(7)

where F−1 represents the inverse two-dimensional spatial
Fourier transform

ψ(r) = F−1[ψ̂(k)] =
1
2π

∫ ∫
ψ̂(kx, ky) e−i(kxx+kyy) dx dy.

(8)

Eq. (7) can be implemented using discrete Fourier trans-
formation. If the wavefield is sampled over a region of in-
terest where no real sources exist [i.e., outside the support
of Q(r)], a discrete implementation of (7) yields a quan-
titative reconstruction of the effective scattering sources
within the region of interest. With incorporation of a low-
pass spatial frequency filter to ensure stability of inversion,
the discrete implementation of (7) can be rewritten to yield
an estimate for the wavespeed contrast function γ(r),

γ̃(r) = FFT−1

[
û(k) φ(k)

Ĝ0(k) + ε ‖Ĝ0‖

]/[
k2
0 u(r)

]
,

(9)

where γ̃(r) represents an estimation of the actual contrast
function γ(r), FFT represents a fast Fourier transform im-
plementation of the discrete Fourier transform, φ(k) is a
lowpass filter that removes spatial frequencies for which
the denominator of (7) is small, and a small parameter
ε is multiplied by the L2 norm of Ĝ0(k) in the denom-
inator. The parameter ε is analogous to a regularization
parameter but is needed here only because Ĝ0(k) can be-
come vanishingly small (to within numerical precision) for
|k| % k0. Very small values of ε (e.g., near the precision
limit of the numerical computation) provide sufficient cor-
rection for this numerical problem.

In practical measurements, uncertainties in the esti-
mated total field u(r) can cause problems with numeri-
cal implementation of (9). At locations where the complex
wavefield u(r) is near zero, this uncertainty can result in
large errors in the estimated contrast function γ̃(r). This
difficulty can be overcome by employing an approximate
form of (9), in which the total wavefield is replaced by a
function with unchanged phase but with unit magnitude.
(Because the total measured wavefield can be normalized
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to have a mean amplitude of unity, this approximation
does not significantly compromise the quantitative accu-
racy of the present reconstruction method.) Under this
approximation, (9) takes the form

γ̃(r) ≈ FFT−1

[
û(k) φ(k)

Ĝ0(k) + ε ‖Ĝ0‖

] ∣∣∣u(r)
∣∣∣
/[

k2
0 u(r)

]
.

(10)

Several details of implementation need to be consid-
ered when applying (10) to the problem of reconstructing
flaws from ESPI wavefield measurements. First, a single
optical wavefield measurement provides a snapshot of the
wavefield at one temporal epoch. Such a measurement is
equivalent to measurement of the real part of u(r) for sin-
gle frequency data. An estimated complex wavefield, re-
quired for inversion according to (10), is obtained by ap-
plying Hilbert transformation along the principal direction
of propagation. For example, if the propagation direction
of the incident wave is ξ and the measured real field is
ur(r), the total field can be approximated as

u(r) = ur(r) + iHξ[ur(r)] (11)

where Hξ represents the one-dimensional Hilbert trans-
form applied along the ξ-direction. Eq. (11) is exact for
plane waves propagating only in the ξ direction but is only
approximately correct in the presence of scattering.

Another detail of implementation involves the choice
of appropriate representations for the free space Green’s
function G0(r) and its spatial Fourier transform Ĝ0(k).
Although Ĝ0(k) can be evaluated analytically, use of this
analytic transform can lead to incorrect approximation
of discrete convolutions similar to (5) [37], [38] as well
as corresponding errors in the deconvolution represented
by (10). That is, the exact form of Ĝ0(k) corresponds to
a Green’s function of infinite extent in real space, and dis-
crete Fourier representation implicitly assumes spatial pe-
riodicity of the effective sources from (5). Thus, implemen-
tation of (10) using discrete Fourier transformation and an
exact expression for Ĝ0(k) would result in deconvolution of
the Green’s function from a wavefield containing fictitious
image sources as well as the true effective sources. This
“wraparound” problem is avoided here, in a manner simi-
lar to that described in [39], by use of a Green’s function
windowed to have the same spatial extent as the wavefield
sampled for inversions. Further discussion of these errors,
in the context of acoustic field computations using the an-
gular spectrum method, is given in [37] and [40].

In the reconstructions reported here, spatial domain
sampling and shading of the Green’s function was per-
formed on a uniform grid symmetrically oriented about
the origin such that the origin (|k| = 0) occurred midway
between grid points in both the kx and the ky directions.
Thus, the smallest spatial frequency magnitudes sampled
were |k| = (

√
2/2)∆k, where ∆k is the spatial frequency

step size. Symmetric sampling of the Green’s function can
result in greater numerical accuracy [40], and numerical
difficulty associated with the singularity of G0(r) at the
origin is avoided by the grid scheme chosen.

III. Simulations

The method described previously has been tested using
simulated displacement wavefield data for inhomogeneous
two-dimensional media. One simulation employed an ex-
act solution for scattering from a circular flaw of constant
wavespeed [34]; this flaw could correspond, for instance,
to a localized thickness variation in a thin plate of homo-
geneous material properties. The incident wavefield was
defined as the unit amplitude plane wave eik0x. Wavefields
computed for circles of given radii and wavespeeds were
employed in (10) to image the flaw contrast. In the cir-
cle simulations, the real parts of computed wavefields were
computed on a square 256×256 grid with width dimensions
equal to 4a, where a is the radius of the circle. The com-
plex wavefield was determined by Hilbert transformation
along the direction of propagation for the incident wave.
Free space Green’s functions were computed on the same
grid using the wavenumber of the incident field. Before
Fourier transformation was applied, both the wavefield and
the Green’s function were windowed by a two-dimensional
cosine-taper function defined by the Blackman window

W (r) =

{
0.42 + 0.5 cos πr

4a + 0.08 cos πr
2a , r < 4a

0, r > 4a, (12)

where the window argument is the radius r = |r| =√
x2 + y2. In implementation of (10) for image reconstruc-

tion, a spatial frequency Blackman window,

φ(k) =

{
0.42 + 0.5 cos πk

kmax
+ 0.08 cos πk

kmax
, k < kmax,

0, k > kmax, (13)

was employed.
For the reconstructions of circular flaws, the spatial fre-

quency cutoff employed was k = π/∆x, where ∆x was
the spatial step. The parameter ε was set to 10−8. Fig. 1
shows the computed (real) displacement fields used for re-
construction. The examples cover a multiplicative range
of eight in both the contrast γ = c2

0/c
2 − 1 and the nor-

malized wavenumber k0a. For the smallest wavenumber
employed, the circular flaw spans less than a wavelength
in diameter; for the largest wavenumber, the flaw spans
about six wavelengths. The range of contrast investigated
is 0.1 < γ < 0.8. For the range of these two parameters
employed, the scattered field exhibits phenomena ranging
from weak scattering to strong focusing effects.

Reconstructed contrast functions γ̃(r), obtained by ap-
plying (10) to the computed fields of Fig. 1, are shown
in Fig. 2 for the simulation employing a circular flaw. To
show detail, the reconstructions are presented for square
regions with dimensions one-half of those of Fig. 2. The cir-
cle is observed to be well resolved throughout the paramet-
ric range employed. For the lowest wavenumber employed
(k0a = 2.5), the circle’s edges are clearly resolved on scales
much less than the wavelength. This result shows the capa-
bility of the reconstruction method to achieve resolution
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Fig. 1. Computed real wave fields for a circular flaw with contrast varying between 0.1 and 0.8 for wavenumbers such that 2 .5 < k0a < 20.
Each plot shows a square region of dimensions 8a on each side. Wavefields are shown on a bipolar linear grayscale; white indicates maximum
positive amplitude, and black represents maximum negative amplitude.

beyond the usual diffraction limit. For linearized inverse
scattering methods employing far-field scattering data, the
maximum reconstructed spatial frequency is k0/π, which
corresponds to a spatial feature size of one-half wave-
length [41]. Thus, to reconstruct features on scales smaller
than one-half wavelength, the present method exploits
non-propagating (i.e., evanescent) components of the dis-
placement wavefield. The reconstruction method is also ob-
served to be valid for large (compared with the ultrasonic
wavelength) flaws and strong scattering, because the circle
is well reconstructed even for the smallest wavelengths and
largest contrasts employed.

For comparison, reconstructions of the same circu-
lar flaws were performed using a diffraction tomography
method, based on retransmitted eigenfunctions of the far
field scattering operator, presented in [16]. These recon-
structions employed the weak scattering form of the eigen-
function method, which is equivalent to standard filtered
backpropagation [42] but can provide more efficient recon-
structions [43]. The synthetic data set for each reconstruc-
tion was the complex scattered displacement on a mea-
surement circle of radius 200 mm for 128 incident wave

directions and 128 measurement directions. Fig. 3 shows
the real part of each reconstruction in a format analogous
to that of Fig. 2. In almost all cases, the diffraction to-
mography reconstructions are inferior to those obtained
by the present inverse scattering method. Diffraction to-
mography reconstructions for low wavenumbers show poor
resolution because these reconstructions do not employ
evanescent wave scattering information. Reconstructions
for large wavenumbers and contrasts are dominated by ar-
tifacts, indicating that the weak scattering approximation
is not valid for these cases. This comparison confirms that
the present inverse scattering method, although employ-
ing only one optical measurement of the two-dimensional
wavefield, provides flaw reconstructions superior to diffrac-
tion tomography reconstructions over a wide range of flaw
contrasts and sizes.

To characterize the achievable resolution of the current
reconstruction method, a second simulation was performed
using a finite difference, time domain (FDTD) method that
computes the total displacement wavefield for arbitrarily
shaped flaws. The FDTD algorithm employed has been
described elsewhere [44], [45]. In the FDTD simulation,
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Fig. 2. Contrast functions Re[γ̃(r)] reconstructed from the simulated ESPI data of Fig. 1 for a circular flaw with contrast varying between
0.1 and 0.8 for wavenumbers such that 2.5 < k0a < 20. Each plot shows a square region of dimensions 4a on each side. Reconstructions are
shown on a bipolar linear grayscale; white indicates maximum amplitude.

a wavefield was generated by a point source realized by
applying a sinusoidal variation at one grid point:

u(xs, ys, t) = A sin(ωt). (14)

The total wavefield was then computed on a rectangu-
lar domain with a wavespeed c(i, j) defined at each grid
point. Radiation boundary conditions optimally matched
to a point source in a homogeneous medium were applied
at each boundary. Using an approach similar to that de-
scribed in [46], it can be shown that appropriate boundary
conditions for absorption of a point source at the origin are

∂u

∂r
=

(
cos θ +

sin2 θ

cos θ

)
∂u

∂x
, right and left boundaries,

∂u

∂r
=

(
sin θ +

cos2 θ
sin θ

)
∂u

∂y
, top and bottom boundaries,

(15)

where θ is the direction angle of a vector pointing from the
origin to the local boundary point.

Finite differencing was carried out for a time period
sufficient for the wavefield to approach a steady state.
A displacement wavefield snapshot u(x, y) was then out-
put for a single time step. The wavefield was cropped to
a square region chosen not to include the original point
source. The total complex wavefield was estimated using
Hilbert transformation along the principal propagation di-
rection, as performed previously for the circle simulation.
A square region of the wavefield including the flaw was
then extracted from the total wavefield and was inverted
by the methods described previously for the circle simula-
tion.

The flaw employed for the finite difference simulations,
a discretized Sierpinski triangle fractal sampled at thirty
points per wavelength, is shown in Fig. 4 together with
example wavefields and contrast reconstructions for the fi-
nite difference simulation. Each edge of the triangle spans
about five wavelengths. Reconstructions are shown for
maximum triangle contrasts γ of 0.2, 0.4, and 0.8. In most
cases, the triangles of the second smallest scale (height less
than one-sixth wavelength) appear to be clearly resolved,
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Fig. 3. Contrasts Re[γ̃(r)] reconstructed by diffraction tomography for a circular flaw with contrast varying between 0.1 and 0.8. The figure
format is identical to that of Fig. 2.

suggesting (as do the circular flaw reconstructions de-
scribed previously) that the image resolution is enhanced
by the presence of evanescent waves.

IV. Experiments

Flaw reconstructions have been obtained from surface
wavefields measured by a digital phase stepping hologra-
phy technique. The modified ESPI system used to collect
the digital phase-stepping holography data, described in
detail in [47], is shown in Fig. 5(a). Two coherent optical
wavefronts, one of which has reflected off the plate surface
of interest, combine to form an interference pattern at the
image plane of a Pulnix 960×680 pixel CCD camera. Inter-
ference patterns corresponding to two plate displacement
states are recorded using a series of four different opti-
cal phase shifts for each displacement state. Optical path
length differences corresponding to optical phase shifts of
of 0, π/2, π, and 3π/2 are produced by driving a PZT-
stack-mounted mirror to predetermined positions. From
the resulting data, the optical phase at all points in the
field can be calculated for the images of both displace-

ment states. After this processing, the composite image
can achieve a displacement resolution up to 1/1000 of an
optical wavelength; standard fringe pattern resolution is
only one-half an optical wavelength. The signal-to-noise
ratio realized by the visual contrast of the resulting phase
map pattern is also increased substantially over fringe pat-
tern techniques.

To capture traveling ultrasonic Lamb waves, the digital
phase-stepping ESPI system has been combined with laser
modulation. By driving an acousto-optic modulator with
a pulse sequence synchronized to the ultrasonic source, the
transmitted laser light stroboscopically freezes the motion
of the sample at a specified ultrasonic phase. The SNR
of the final difference interferogram can be optimized by
ensuring that the two plate displacement states are large
and opposite in direction. For traveling single frequency
ultrasonic wavefields, this criterion is met when the two
displacement conditions employed are separated in phase
by π.

Phase stepping, real time data display, and stroboscopic
illumination were coordinated by synchronizing the drive
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Fig. 4. Computed real wave fields and reconstructions for a fractal-shaped test object with contrasts of 0.2, 0.4, and 0.8 [left to right in
panels (b) and (c)] and a wavenumber of 10 rad/mm. a) Sierpinski triangle fractal-shaped flaw. The square region shown is 5.76 mm on each
side. b) Wavefield snapshots computed by the finite-difference algorithm. Each panel shows a square region of dimensions of 11.52 mm on
each side. Wavefields are shown on a bipolar linear grayscale; white indicates maximum positive amplitude, and black represents maximum
negative amplitude. c) Reconstructions computed using the simulated wavefield snapshots. Each panel shows a square region of dimensions
5.76 mm on each side. The real part of each flaw reconstruction is shown on a bipolar linear grayscale; white indicates maximum positive
amplitude.

signal and acousto-optic modulator through a switching
box controlled according to the data acquisition rates es-
tablished by the computer. Fig. 5(b) shows the timing re-
lationship among the various operations. For clarity, the
drive signal and the laser modulation signal are shown at
a frequency significantly lower that those used for data
collection.

Large amplitude Lamb waves were generated using the
comb structure method [48]. In this method, a periodic
array of line contacts is coupled to an ultrasonic trans-
ducer. The effect is to create a spatially periodic set of
line sources on the plate surface, which results in an effi-
cient source for generating Rayleigh or Lamb waves with a
wavelength corresponding to the spatial periodicity of the
contacts. For simplicity, the comb structure employed here
was chosen to optimize the generation of a single Lamb
wave mode, the fundamental antisymmetric mode A0. To

avoid excitation of higher order modes, the transducer was
driven below the cutoff frequency of the next higher order
(A1) mode. This cutoff frequency can be determined from
the relation fc = ct/(2d), where d is the plate thickness
and ct is the bulk shear wave velocity for the plate mate-
rial. Substituting values for an 1/8” (3.2 mm) aluminum
plate with ct ≈ 3.0 mm/µs, fc is estimated as 470 kHz.
Here, the comb structure was driven by sinusoidal tone
bursts of frequency 253 kHz, amplitude 0.7 V, and dura-
tion 133 ms. These input signals were amplified by an RF
amplifier (ENI Model A150, nominal gain 55 dB) capable
of delivering 150 W of continuous power into a 50-Ω load.

Influence of the lowest order symmetric mode, S0 on
the measurements was not significant for several reasons.
First, the ESPI measurements are sensitive to out-of-plane
displacements, which are primarily due to antisymmetric
Lamb wave motion. Second, for the given plate thickness
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Fig. 5. Method for digital phase-stepping holography measurements.
a) Sketch of the measurement apparatus; b) timing diagram illus-
trating control of the signal source, pulse generator, PZT stack, and
acousto-optic modulator during data collection.

and operating frequency, the generation efficiency for the
A0 mode is approximately 35 dB larger than for the S0
mode [49], assuming a point contact Hertzian load. In ad-
dition to this difference in generation efficiency for a point
contact, the wavelength of the S0 mode is greater than
that of the A0 mode by about a factor of three. Thus,
the wavelength of the S0 mode is significantly mismatched
with the spatial periodicity of the comb structure, so that
the generation efficiency of the S0 mode is further inhib-
ited relative to the A0 mode.

Lamb waves were measured by the ESPI technique de-
scribed previously for the 1/8” aluminum plate supported
at two ends. Modeling clay was applied to all of the edges
of the plate to absorb waves incident on the edges. Two
flaws, a cross pattern of depth 2 mm and a circular hole
of diameter 4.8 mm and depth 2 mm, were cut into the
underside of the plate. These flaws are sketched in Fig.
6(a). A 1-3 composite source transducer was applied to

the comb structure and driven at 253 kHz. The result-
ing surface wavefield is shown in Fig. 6(b). Although the
defects can be observed to perturb the wavefield, their pre-
cise location, size, and shape are not easily determined by
visual inspection of the ESPI data.

Quantitative reconstruction of the flaws was performed
using the wavefield data of Fig. 6(b). The predominant
background wavenumber k0 was estimated using visual
inspection of the spatial Fourier transform of the wave-
field. The lowpass filter employed in the reconstruction
formula of (10) was a Hanning window with radius 3 k0,
which was found to have less sensitivity to high frequency
noise than the Blackman window employed in the simula-
tions described previously. Otherwise, the reconstruction
method was identical to that for the simulations. The re-
sulting reconstruction, shown in Fig. 6(c), shows both the
cross-shaped flaw and the small circular flaw much more
clearly than the original ESPI data. An average of five in-
dependent reconstructions, each obtained from a separate
253-kHz wavefield measurement using the same transducer
and ESPI configuration, is shown in Fig. 6(d). The aver-
aging results in a substantial reduction of the optical noise
and consequently shows the flaws more distinctly.

V. Discussion

The ESPI and image reconstruction methods described
here could form part of a real-time structural inspection
system. Because the present flaw imaging method can be
directly implemented using FFT, quantitative flaw recon-
struction could be added to present real-time ESPI sys-
tems (e.g., the shearography system described in [50])
without a significant increase in computational require-
ments. Flaw reconstructions could also be overlaid in real
time onto optical images of the structure surface; this ap-
proach would allow inspectors to identify and characterize
flaws while maintaining direct reference to the physical
structure.

Reconstructions based on shearography wavefield mea-
surements would differ from the present simulated and
experimental results (based on TV holography measure-
ments) in several minor ways. Electronic shearography is a
common path interferometer that measures the differential
displacements of the surface being monitored; TV hologra-
phy directly measures the displacement of the surface. This
distinction means that shearography does not require the
levels of vibration isolation required for holography [29]–
[32]. However, because shearography measures differential
displacements between points separated by the “shearing
distance”, the optical amplitude is no longer directly pro-
portional to the out-of-plane surface displacement. If the
shearing distance is small compared with the Lamb wave-
length, then the optical amplitude is proportional to the
derivative of the surface displacement, and an appropriate
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Fig. 6. Reconstruction of two flaws in an aluminum plate. Each panel shows an area of 13.6×13.6 cm2. a) Sketch of the actual flaw positions,
b) wavefield (253 kHZ) measured by digital phase stepping holography with waves incident from the top of the panel, c) flaw reconstruction
from the measured wavefield shown in panel b, and d) average of flaw reconstructions from five independent optical wavefield measurements
in the configuration of panel b.

inhomogeneous wave equation is obtained by taking the
derivative of (2) along the shearing direction ξ,

∇2 ∂u(x, y)
∂ξ

+ k2
0
∂u(x, y)

∂ξ
=

∂Q(x, y)
∂ξ

+

q(x, y)
∂u(x, y)

∂ξ
+ u(x, y)

∂q(x, y)
∂ξ

. (16)

Eq. (16) can be solved by the deconvolution methods de-
scribed previously to determine the effective source terms
that appear on the right-hand side. These effective source
terms are directly related to the inhomogeneity function
q(x, y) of the structure examined, so that images con-
structed from shearography data using (16) would provide
flaw maps similar to those shown here in Fig. 3, 4, and 6.
However, the relationship between the effective sources
of (16) and physical flaws is more complex than that of (2)
and would be more difficult to interpret in terms of struc-
tural properties such as thickness and material composi-
tion.

ESPI measurements require a high optical signal-to-
noise ratio, so that the present methods are most appro-
priate for high reflectivity surfaces. For structures with

paint or coatings of low reflectivity, this problem can be
overcome using thin layers of a temporary surface coat-
ing with high reflectivity, such as magnesium oxide pow-
der [51]. In addition, the developer solution used in dye
penetrant testing has been found to provide an effective
temporary surface coating with high reflectivity.

Although the current imaging method is theoretically
exact [for wavefields satisfying (2)], a number of factors
place practical limits on the achievable image quality. Be-
cause the wavefield can, in practice, only be measured
over a finite spatial region, the deconvolution method ex-
pressed by (10) is inherently approximate in practice. Still,
the excellent delineation of the circular flaw boundary in
all panels of Fig. 2 indicates that useful reconstructions
can be obtained despite the approximations inherent to
the method. The diffraction tomography reconstructions
shown in Fig. 3 are of much lower quality, indicating that
the approximations made by conventional inverse scatter-
ing methods are more severe than those of the present
method.

The scattering formalism presented here, which employs
a single free space Green’s function, does not provide a
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complete description of Lamb wave propagation and scat-
tering in actual structures. Scattering and propagation
of Lamb waves in inhomogeneous structures can involve
mode conversion of elastic wave energy, including conver-
sion into longitudinal waves. However, the present method
could be adapted to employ multiple Green’s functions
associated with predominant modes of propagation, with
wavenumbers either known a priori or determined from
Fourier analysis of the ultrasonic wavefield. Because lon-
gitudinal bulk waves have significantly longer wavelengths
than the low frequency A0 modes, any mode-converted
scattering should not contribute significantly to displace-
ment images obtained using a wavenumber established a
priori for the Lamb wave field. If no wavenumber is known
a priori, the influence of mode-converted scattered waves
could be minimized by measuring the effective wavenum-
ber in wavefield regions where the incident Lamb wave
mode contains most of the energy (e.g., in regions not in-
cluding any strong scatterers).

Another possible concern is that the present method
assumes strictly two-dimensional propagation; that is,
the local particle displacement is assumed to be uniform
throughout the plate thickness. This assumption is strictly
valid only for plates that are very thin compared with the
central acoustic wavelength λ0. However, the experimental
results shown previously suggest that the present imag-
ing method is also applicable to thicker plates. That is,
adequate flaw images were obtained even though the alu-
minum plate thickness was about 0.4λ0 for the ultrasonic
frequency employed here.

The imaging method presented here has similar goals to
those for the method presented in [52], in which inhomo-
geneities are reconstructed from multidimensional wave-
fields measured by a magnetic resonance imaging tech-
nique. The reconstruction algorithm used in [52] is an iter-
ative, computationally intensive inverse scattering method
based on a conjugate gradient descent procedure [15]. This
iterative procedure results in accurate images of scatter-
ers. However, because the reconstruction method employed
in [52] can require many iterations for good reconstruc-
tions, that method is less well suited to real-time nonde-
structive testing than the direct deconvolution approach
presented here.

Another related inverse scattering method is the non-
linear inverse scattering method of [16] and [43] in which
sound-speed inhomogeneities are constructed using combi-
nations of particular acoustic fields in the inhomogeneous
medium. However, in that method, the acoustic fields are
computed from estimates of the unknown medium; in the
present method, the total wavefield is measured directly.
The current method implicitly incorporates all effects asso-
ciated with high contrast inhomogeneities, such as strong
scattering and multiple scattering. This provides much
more direct and accurate reconstructions than are possible
from far-field scattering data.

The algorithm employed here for flaw reconstruction is
formally more similar to methods of generalized hologra-
phy, in which acoustic sources are imaged by measurement

of the complex pressure along a surface in the acoustic near
field. As in some implementations of generalized acoustic
holography [39], [40], source distributions are determined
here by deconvolution of a Green’s function from a full
wavefield. Both methods are theoretically exact and in-
corporate information from evanescent waves. One signifi-
cant difference between the present reconstruction method
and acoustic holography is that the present method images
effective (scattering) sources rather than real sources. In
addition, the current method employs wavefield measure-
ments on the plane on which the real and effective sources
exist, so that the step of numerical backpropagation, which
is typically performed by the angular spectrum method in
acoustic holography [39], [40] is not needed.

Because the current method employs deconvolution
of image features from a multidimensional kernel, this
method can also be compared with previous image en-
hancement methods employing deconvolution of image
data (e.g., [53] and [54]). Such methods deconvolve a
measurement-specific kernel, such as the point spread
function of the transducer employed, to compensate for
blurring caused by finite beam widths. Although the nu-
merical methods employed here are similar, the basis for
the present method is very different. Deconvolution is em-
ployed here as a fundamental image reconstruction method
rather than an enhancement technique. Here, flaw images
are created directly by deconvolving effective sources from
the measured wavefield; in existing deconvolution meth-
ods [53], [54], images are first constructed by conventional
(B-scan or C-scan) techniques and then enhanced by the
deconvolution operation.

VI. Conclusions

A new method for nondestructive testing using ultra-
sonic wavefields measured by electronic speckle pattern in-
terferometry has been presented. The method provides an
efficient, direct means to obtain images of effective sources
associated with scattering effects in plates and shells. A so-
lution of the nonlinear inverse scattering problem via dis-
crete Fourier transformation provides an imaging method
suitable for real-time flaw imaging.

Results based on full wave simulated data show that
high quality flaw reconstructions can be obtained from
ideal data for a wide range of flaw contrast and size param-
eters. Successful imaging of flaw structures much smaller
than the central wavelength indicates that evanescent wave
information contributes to the reconstructions. Effective
flaw reconstruction is also shown to occur even in the
presence of large, high contrast, strongly scattering flaws.
Comparison with diffraction tomography reconstructions
indicates that the new ESPI-based imaging method pro-
vides accurate flaw images over a parameter range much
wider than the usable range for conventional tomographic
techniques.

Experimental results confirm that the present quanti-
tative imaging method can effectively reconstruct flaws in
plates. Flaw images obtained by this method give precise
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indications of flaw locations, shapes, and sizes that are not
possible to obtain from unprocessed ESPI wavefield mea-
surements. These results suggest that the imaging method
proposed here may be a useful tool for real-time nonde-
structive testing of plate and shell structures.
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