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Abstract—Large-scale simulation of ultrasonic pulse
propagation in inhomogeneous tissue is important for the
study of ultrasound-tissue interaction as well as for de-
velopment of new imaging methods. Typical scales of in-
terest span hundreds of wavelengths; most current two-
dimensional methods, such as finite-difference and finite-
element methods, are unable to compute propagation on
this scale with the efficiency needed for imaging studies.
Furthermore, for most available methods of simulating ul-
trasonic propagation, large-scale, three-dimensional compu-
tations of ultrasonic scattering are infeasible. Some of these
difficulties have been overcome by previous pseudospec-
tral and -space methods, which allow substantial portions
of the necessary computations to be executed using fast
Fourier transforms. This paper presents a simplified deriva-
tion of the -space method for a medium of variable sound
speed and density; the derivation clearly shows the relation-
ship of this -space method to both past -space methods
and pseudospectral methods. In the present method, the
spatial differential equations are solved by a simple Fourier
transform method, and temporal iteration is performed us-
ing a - space propagator. The temporal iteration proce-
dure is shown to be exact for homogeneous media, uncon-
ditionally stable for “slow” ( (x) 0) media, and highly
accurate for general weakly scattering media. The applica-
bility of the -space method to large-scale soft tissue mod-
eling is shown by simulating two-dimensional propagation
of an incident plane wave through several tissue-mimicking
cylinders as well as a model chest wall cross section. A three-
dimensional implementation of the -space method is also
employed for the example problem of propagation through
a tissue-mimicking sphere. Numerical results indicate that
the -space method is accurate for large-scale soft tissue
computations with much greater efficiency than that of an
analogous leapfrog pseudospectral method or a 2-4 finite
difference time-domain method. However, numerical results
also indicate that the -space method is less accurate than
the finite-difference method for a high contrast scatterer
with bone-like properties, although qualitative results can
still be obtained by the -space method with high efficiency.
Possible extensions to the method, including representa-
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tion of absorption effects, absorbing boundary conditions,
elastic-wave propagation, and acoustic nonlinearity, are dis-
cussed.

I. Introduction

Computation of a scattered acoustic field, given an in-
cident wavefield and complete specification of an in-

homogeneous medium, is known as the forward scatter-
ing problem. Numerical solution of the forward scattering
problem is central to many aspects of ultrasonic imaging,
including inverse scattering methods, numerical studies of
wavefront distortion, and development of new methods for
adaptive focusing. Most methods for numerical solution of
the forward scattering problem fall into one of three cat-
egories: finite difference methods, finite element methods,
and spectral methods.

Finite difference and finite element methods are known
as local because the wave propagation equations of inter-
est are solved at each point based only on conditions at
nearby points. In contrast, spectral methods, such as the
k-space method [1]–[7] and the pseudospectral approach
[8]–[14], are called global because information from the
entire wavefield is employed to solve the wave propagation
equations at each point. In part because of their global
nature, spectral methods can be more accurate than local
methods—for instance, pseudospectral methods applied to
periodic problems have been shown to be equivalent to fi-
nite difference methods of infinite order [12].

Spectral methods also have considerable advantages for
large-scale forward solvers because the required storage
and the number of operations per iteration can be dra-
matically reduced compared with local methods. This ad-
vantage occurs principally because spectral methods can
allow computations to be performed on coarser grids while
maintaining accuracy. For example, finite element methods
and high-order finite difference methods typically require
grid spacings on the order of 10 points per minimum wave-
length; second-order finite difference methods can require
20 points per wavelength [10]. Spectral methods, in theory,
require only two points per wavelength (spatial Nyquist
sampling), although for computations of propagation in
inhomogeneous media, greater accuracy is achieved with
grid spacings on the order of four points per wavelength
[10], [11], [14].

This report addresses the problem of large-scale ultra-
sonic wave propagation in biological media, such as human
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tissue. For problems of interest in medical ultrasound, do-
main sizes can often exceed the capabilities of conventional
forward solvers. For example, one computation of realis-
tic scale would be the simulated propagation of a pulse
with an upper bandwidth limit of 5 MHz in a volume
of dimensions 30 mm on each side and a nominal sound
speed of 1.5 mm/µs, so that the minimum wavelength is
0.3 mm. For this computation, a second-order finite differ-
ence method (using 20 points per wavelength) would re-
quire a three-dimensional grid containing 8 × 109 nodes; a
finite element or fourth-order finite difference method (us-
ing 10 points per wavelength) would require 1×109 nodes;
and a spectral method (using four points per wavelength)
would require 6.4 × 107 nodes. Because a grid of 6.4 × 107

single precision complex numbers requires storage of 512
megabytes, only spectral methods are feasible for realistic
three-dimensional computations on present-day comput-
ers that typically have a maximum random-access memory
storage of several gigabytes. The efficiency provided by fast
Fourier transform implementations of spectral algorithms
is a further reason why spectral methods are a practical ap-
proach to large-scale and three-dimensional computations
of ultrasonic wave propagation.

Previous spectral approaches have included pseudospec-
tral methods, in which spatial derivatives are evaluated
globally by Fourier transformation and wavefields are ad-
vanced in time using various numerical integration tech-
niques [8]–[14]. This method has provided high accuracy
in many cases; however, temporal iteration techniques that
provide good accuracy for large-scale models typically re-
quire small time steps, significant additional computations,
or storage of wavefields from additional time steps [13],
so that the efficiency advantages of the pseudospectral
approach are less than might first be expected. The k-
space family of methods [1]–[7] can overcome this problem
by providing explicit temporal propagators related to the
Green’s function for wave propagation in k-t (spatial fre-
quency and time) space.

The present paper presents a simplified derivation of the
k-space method using a differential representation of the
wave propagation equations. The spatial part of the wave
propagation equations is solved by Fourier transforma-
tion in a manner analogous to past pseudospectral meth-
ods; this derivation is shown to be theoretically equivalent
to previous integral formulations of the k-space method.
Temporal iteration is performed using a k-t space prop-
agator [2], which is shown to be exact for homogeneous
media and, in general, provides much greater accuracy
and stability than leapfrog iteration (in which temporal
derivatives are evaluated using second-order accurate finite
differences) without significant additional computation or
storage requirements. Thus, the k-space method provides
spatial and temporal accuracy ideal for large-scale models
of acoustic propagation in weak scattering media.

Subsequently, a derivation of the k-space method is
presented for propagation in fluid media with spatially
dependent sound speed and density. For several canoni-
cal forward problems relevant to ultrasonic imaging, the

accuracy and efficiency of the k-space method is com-
pared with a pseudospectral method employing leapfrog
iteration and also with a 2-4 finite difference time-domain
method. The k-space and finite difference methods are also
used in an example computation for a large-scale, two-
dimensional tissue model. Another example computation
illustrates the efficiency of the k-space method for three-
dimensional scattering computations. Possible extensions
of the present k-space method, including multiple relax-
ation effects for absorption, absorbing boundary condi-
tions, inclusion of elastic and nonlinear acoustic effects,
and parallelization, are discussed.

II. Theory

A. Derivation of the k-Space Method

The k-space method for solving the acoustic scattering
problem is briefly derived subsequently. The derivation is
simpler than those previously published and also provides
some new insight regarding the remarkable accuracy and
stability characteristics of the k-space method.

The method is applicable to large-scale modeling of lin-
ear ultrasonic propagation in soft tissues, which are mod-
eled here as fluid media with spatially dependent sound
speed and density. Although the k-space method described
subsequently can be extended to include absorption effects,
acoustic nonlinearity, and shear-wave propagation, these
effects are neglected in this derivation for simplicity.

For a fluid medium with spatially dependent sound
speed and density, the linear acoustic wave equation is [15]

∇ ·
(

1
ρ(x)

∇p(x, t)
)

− 1
ρ(x) c(x)2

∂2p(x, t)
∂t2

= 0
(1)

where p(x, t) is the acoustic perturbation in pressure, ρ(x)
is the spatially dependent density, and c(x) is the spatially
dependent sound speed.

By defining the normalized wavefield f(x, t) ≡
p(x, t)/

√
ρ(x), as performed in a number of previous stud-

ies (e.g., [16], [17]), the first-order derivative term can be
eliminated from (1). Details of this step are given in [6].
When the wavefield is also split into incident and scat-
tered parts, such that f(x, t) = fi(x, t) + fs(x, t), a wave
equation for the scattered field can be written

∇2fs(x, t) − 1
c2
0

∂2fs(x, t)
∂t2

=
1
c2
0

(
q(x, t) +

∂2v(x, t)
∂t2

)
.
(2)

The terms on the right-hand side are effective sources as-
sociated with density and sound speed variations, which
are defined as

q(x, t) = c2
0

√
ρ(x)∇2

(
1/

√
ρ(x)

)
f(x, t) (3)
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and

v(x, t) =
(

c2
0

c(x)2
− 1

)
f(x, t). (4)

The incident wavefield fi(x, t) is required to satisfy the
usual wave equation without any source terms [i.e., the
D’Alembertian operator from the left-hand side of (2), ap-
plied to fi(x, t), is equal to zero]. Thus, the total wavefield
f(x, t) also satisfies (2) identically, so that the numerical
algorithm developed for the scattered field is equally ap-
plicable to the total field.

With the additional definition of an auxiliary field
w(x, t) = fs(x, t) + v(x, t), (2) can be rewritten in k-space
as the coupled set of equations

∂2W (k, t)
∂t2

= (c0k)2 [V (k, t) − W (k, t)] − Q(k, t),
(5)

V (k, t) = F

[(
1 − c(x)2

c2
0

)
[fi(x, t) + w(x, t)]

]
,

(6)

Q(k, t) = c2
0 F

[
√
ρ(x)∇2

(√
1

ρ(x)

)
[fi(x, t)

+ w(x, t) − v(x, t)]

]
(7)

where F denotes spatial Fourier transformation, and cap-
ital letters indicate spatially Fourier transformed quanti-
ties.

For each point in k-space, (5) represents an indepen-
dent ordinary differential equation equivalent to the stan-
dard simple harmonic oscillator equation with the source
terms (c0k)2 V and −Q. This ordinary differential equa-
tion can be discretized in several ways. For instance, a
second-order accurate finite difference representation of
the second-order time derivative allows (5) to be written
as

W (k, t +∆t) − 2W (k, t) + W (k, t −∆t) ≈

(c0k∆t)2
[
V (k, t) − W (k, t) − Q(k, t)

(c0k)2

]
(8)

where ∆t is the time step. This is known as leapfrog it-
eration; use of (8) in the current method is analogous to
commonly used pseudospectral approaches [13], [14]. (Al-
though increased accuracy can be achieved by higher order
methods such as fourth-order Adams-Bashforth or Adams-
Moulton iteration, these methods have the disadvantage of
requiring storage of the entire computational grid for ad-
ditional time steps [12], [13]).

A more accurate form of the temporal iterator is ob-
tained using a nonstandard finite difference approach. For
the homogeneous simple harmonic oscillator equation, an
exact discretization is known [18]. (That is, for any tempo-
ral and spatial step sizes, the discrete difference equations
yield exactly the same solutions as the continuous differen-
tial equations. A similar exact discretization for the linear

part of the Korteweg-de Vries equation was presented in
[19].) Use of this nonstandard discretization leads to the
following discrete form of (5):

W (k, t +∆t) − 2W (k, t) + W (k, t −∆t) =

4 sin2
(

c0k∆t

2

)[
V (k, t) − W (k, t) − Q(k, t)

(c0k)2

]
. (9)

Because the discretization employed is exact for the sim-
ple harmonic oscillator equation, (9) is exactly equivalent
to the differential equation, (5), for the case of a homo-
geneous medium [i.e., V (k, t) = Q(k, t) = 0]. Numerical
results shown subsequently indicate that high accuracy
is also achieved for weak scattering media, in which case
V (k, t) & W (k, t) and Q(k, t) & W (k, t). The present
discretization method is equivalent to that employed by
Bojarski (the form given in [2] follows after some trigono-
metric manipulation); however, previous derivations of this
method have been based on approximations to an integral
representation of (5) [2], [6]. It may also be noted that (8)
and (9) are equivalent in the limit of small ∆t. However,
results shown subsequently indicate that, for weak scat-
tering media, use of the k-t propagator (9) provides much
greater accuracy for larger time steps.

In numerical implementation of the k-space algorithm,
(5) is used to advance the auxiliary field W (k, t) in time.
Eq. (6) and (7) represent updates of the effective scattering
sources v and q and their spatial Fourier transformation
to yield the k-space effective sources V and Q. Notable is
that the effective source v is directly proportional to the
square of the sound speed variation of the medium, and the
effective source q is directly proportional to the Laplacian
of 1/

√
ρ(x). Thus, for a piecewise constant inhomogeneous

medium, v may be non-zero everywhere, but q is nonzero
(and singular) only on borders between regions.

The present k-space algorithm can now be summarized
as follows:

Step 1: set any initial conditions for w(x, t) and spa-
tially Fourier transform [by fast Fourier transform
(FFT)] to obtain initial conditions for W (k, t)
Step 2: define the incident wave fi(x, t) on the entire
grid (fi(x, t) can be identically zero)
Step 3: compute v(x, t) and transform to obtain
V (k, t) (6)
Step 4: compute q(x, t) and transform to obtain
Q(k, t) (7)
Step 5: evaluate W (k, t +∆t) (9) and inverse trans-
form to obtain w(x, t +∆t)
Step 6: set t → t +∆t and go to step 2

This method requires three fast Fourier transform opera-
tions per time step (one each for steps 3, 4, and 5 of the
algorithm enumerated above).

Also notable is that the algorithm is directly appli-
cable to one-dimensional, two-dimensional, and three-
dimensional propagation. This is possible because the k-t
space Green’s function has an identical form for any num-
ber of spatial dimensions [2]. For example, to implement
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the present methods for two-dimensional computations,
the algorithm just outlined is simply employed using two-
dimensional Fourier transforms. The three-dimensional
version of the algorithm is formally identical but with
three-dimensional Fourier transforms.

To distinguish between the standard leapfrog iteration
method and the improved method used here, the following
nomenclature is used in the present paper. The algorithm
employing (9) is referred to as a k-space method, and the
corresponding algorithm employing (8) for temporal iter-
ation is referred to as a leapfrog pseudospectral method.
This nomenclature is used because the algorithm employ-
ing (9) is mathematically equivalent to an extended form of
Bojarski’s k-space method [2] cast in terms of differential
equations rather than integral equations. The algorithm
employing (8) is referred to as pseudospectral because it
is mathematically equivalent to a conventional “method
of lines” pseudospectral algorithm with leapfrog iteration
[12]. [A conventional pseudospectral algorithm of this form
would employ the spatial inverse Fourier transform of (8)
for temporal iteration.]

B. Temporal and Spatial Sampling Criteria

To determine the usable range of spatial and temporal
sampling rates for the present k-space method, limits on
the stability and accuracy of the method can be evaluated
analytically.

The stability of the k-space and leapfrog pseudospec-
tral methods derived previously can be evaluated using
standard, linear von Neumann stability analysis [20]. Us-
ing this technique, the difference equations that comprise
(8) and (9) are applied to a test function

Wtest(k, n∆t) = ϑ(k)n ψ(k) (10)

where ψ(k) is a spatial-frequency domain eigenmode and
ϑ(k) is a temporal amplification factor. If a difference
equation admits solutions with |ϑ(k)| > 1 for any vec-
tor wavenumber k, errors may grow exponentially with
time, and the solution is thus unstable. If |ϑ(k)| ≤ 1 for
all wavenumbers, then the solution is numerically stable.
For simplicity, the present stability computation is per-
formed in the absence of density variations; the incident
wave fi(x, t) is assumed (without loss of generality) to be
zero. To obtain limiting stability criteria, the worst case
sound speed inhomogeneity c(x) = cmax is also assumed.

Application of this technique to (8), which represents a
leapfrog pseudospectral approach, yields a quadratic equa-
tion for ϑ(k). The resulting stability condition is

cmaxkmax∆t ≤ 2 (11)

where cmax is the maximum sound speed in the region of
computation; kmax = π/∆x is the maximum wavenum-
ber in the discrete Fourier transforms used to compute
W (k, t); and ∆t and ∆x, respectively, are the temporal
and spatial steps employed. Using the standard definition

for a Courant-Friedrichs-Lewy (CFL) number [21], the sta-
bility condition

CFL ≡ c0∆t

∆x
≤ 2
π

c0

cmax
(12)

is obtained for the leapfrog pseudospectral method repre-
sented by (8).

Application of the same analysis to the k-space iterator
of (9) yields the stability condition

sin
πCFL

2
≤ c0

cmax
. (13)

This condition has the remarkable result that, for media
with c(x) ≤ c0 everywhere, the linear numerical stability
of the k-space method is unconditional. However, for any
medium, an upper limit on the time step still arises from
the requirement of sampling at the Nyquist rate: that is,
the time step should be sufficiently small to allow two sam-
ples per period for the highest frequency component of the
computed field. Thus, the temporal sampling criterion can
be written

∆t ≤ 1
2fmax

=
π

cmaxkmax
=

∆x

cmax
(14)

or simply CFL ≤ c0/cmax. The stability criterion (13) is
met whenever the Nyquist sampling criterion (14) is met;
thus, the Nyquist sampling criterion is more restrictive.

For the spatial discretization, a Nyquist criterion based
on the maximum spatial frequency kmax = π/∆x is met
for any step size∆x. However, the inhomogeneous medium
will be inaccurately represented (aliased) if its Fourier
transform has significant spatial-frequency components
beyond kmax. Aliasing is a particular problem when the
medium contains discontinuities, which correspond to infi-
nite spatial frequency content; removal of errors associated
with discontinuities is discussed in the following section.

C. Effects of Discontinuities

The Fourier transforms performed in the present k-
space algorithm can lead to numerical artifacts (related to
the Gibbs phenomenon) when the inhomogeneous medium
contains discontinuities in sound speed or density. To avoid
such artifacts, the scattering object can be spatially fil-
tered to smooth any discontinuities. That is, the spatially
dependent sound speed c(x) and density ρ(x) can be re-
placed by filtered functions of the form

ufiltered(x) = F−1[U(k)φ(k)] (15)

in which the Fourier transform U(k) of the function u(x)
is multiplied by a low-pass spatial frequency filter φ(k).
The function U(k) should be represented as accurately as
possible; for example, exact Fourier transforms of simply
shaped inhomogeneities can be used when available. Subse-
quently, the exact Fourier transform of a two-dimensional
disk is employed for filtered representations of an infinite
cylinder.
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In the present study, the filter employed is the half-band
filter [22]

φH(k) =

{
1, k/kmax < 1/2
f(k/kmax −1/2), 1/2 ≤ k/kmax ≤ 3/2(16)

where

f(θ) =
1
2

+
9
16

cos(πθ) − 1
16

cos(3πθ) (17)

and k is the magnitude of the spatial frequency vector k.
This filter defines a smoothly tapered window that

causes no attenuation of spatial frequencies below kmax/2
and drops to one-half amplitude (−6 dB) at the spatial
frequency kmax. Zero amplitude is reached at the spatial
frequency 3/2 kmax, which exceeds the spatial frequency
range of the discrete Fourier transforms employed in the
k-space algorithm, so that aliasing error is not eliminated
by the half-band filter. However, a strict bandlimiting filter
was found to cause excessive loss of high spatial frequency
components in the medium, so that scattering amplitude
near the backscatter direction was greatly reduced. The
half-band filter of (16) was found to greatly reduce Gibbs
phenomenon artifacts and maintain enough high spatial
frequency components of inhomogeneities to provide accu-
rate backscatter results.

For inhomogeneous media, exact Fourier transforms are
not generally available. However, artifacts associated with
discontinuities can still be removed by the methods given
previously. For example, a finely sampled representation
of the medium could be filtered using (15) and then deci-
mated to the desired spatial step size.

III. Numerical Methods

Numerical implementation of the k-space algorithm was
accomplished using the algorithm described previously.
The normalized incident wave fi(x, t) was defined as a
plane wave with Gaussian temporal shape:

fi(x, t) = ρ(x)− 1
2 sin(ω0τ) e−τ2/(2σ2) (18)

where τ is the retarded time τ = t − (x − x0)/c0 and x0
is the initial central position of the wavefield. This inci-
dent wave was implicitly specified using initial conditions
(as for the incident plane wave in [23]) rather than explic-
itly updated at each time step. Boundary conditions were
implicitly periodic at each edge of the computational do-
main because of the inherent periodicity of the fast Fourier
transforms employed.

Wavefields were computed on two-dimensional grids
that were large enough to avoid influence of “wraparound”
error within the temporal window of interest. All k-space
computations were performed on square grids of size N
by N . Prior to execution of the main computation loop,
the Laplacian occurring in (7) was evaluated using second-
order accurate, centered finite difference representations of

the second derivative in each direction. Within the main
computational loop, all spatial derivatives were evaluated
by Fourier transformation, implemented using an FFT al-
gorithm [24]. For maximum FFT efficiency, grid sizes N
were chosen to be integers with prime factors no greater
than three.

To reduce any spatial anistropy associated with the
rectangular grid shape, the spatial frequency time-domain
wavefield W (k, t + ∆t) was windowed using the radially
symmetric window

φ(k) = H(kmax − k) (19)

before inversion to yield w(x, t + ∆t) (i.e., within step 5
in the algorithm enumerated previously). In (19), H is,
as before, the Heaviside step function, kmax is the maxi-
mum wavenumber magnitude (equal to π/∆x because the
spatial frequency range sampled extends from −π/∆x to
π/∆x in each direction), and k is the magnitude of the vec-
tor wavenumber k. In some cases, the medium properties
c(x) and ρ(x) were also smoothed by windowing in the
spatial-frequency domain using (16) with a wavenumber
cutoff of kmax = π/∆x.

For comparison, wavefields were also computed using
a second-order in time, fourth-order in space finite dif-
ference method, described in [21], [23], [25]–[27]. As for
the k-space computations, the incident wave was specified
by a single initial condition rather than updated at each
time step. Periodic boundary conditions were applied on
all sides of the grid. Time steps were determined using a
CFL number of 0.25, which is a natural choice for this finite
difference method [26]. As in [23] and [28], computations
were performed at each time step only on portions of the
grid where the wavefields were nonzero; this reduces the
required computation time for the finite difference method
by about one-half.

To test the k-space and finite difference methods quan-
titatively, benchmark computations were performed us-
ing an exact series solution for the scattering of a plane
wave by a fluid cylinder [29]. The sampling rate and wave-
form shape were chosen to match the time-domain simu-
lation data for the case of interest. The pressure field was
then computed for each frequency component with relative
magnitude within 60 dB of the peak magnitude. Each sin-
gle frequency computation truncated the series at the term
with a relative contribution less than 10−12 times the sum
of all terms. The frequency-domain scattered fields were
then inverted by FFT to obtain numerically exact solu-
tions for the time-domain pressure fields at the simulated
measurement points. An exact time-domain solution for
scattering from a fluid sphere was also obtained using an
analogous approach.

Benchmark studies of accuracy were performed using
a cylinder with radius 2.0 mm and acoustic properties of
human fat and a background medium with acoustic prop-
erties of water at body temperature. Rationale for use of
these values is discussed in [23]. The cylinder had a sound
speed of 1.478 mm/µs and a density of 0.950 g/cm3; the
background medium had a sound speed of 1.524 mm/µs
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pinterp(x, y) =
∑

xi

∑

yi

sin(π(x − xi)/∆x)
π(x − xi)/∆x

I0[β(1 − [(x − xi)/(m∆x)]2)1/2]
I0[β]

×sin(π(y − yi)/∆x)
π(y − yi)/∆x

I0[β(1 − [(y − yi)/(m∆x)]2)1/2]
I0[β]

× p(xi, yi),

x − m∆x ≤ xi < x + m∆x,

y − m∆x ≤ yi < y + m∆x (20)

Fig. 1. Time history of total acoustic pressure computed by the k-space method for a cylinder with a 2.0-mm radius and fat-mimicking
acoustic properties. The cylinder is sketched as a light gray region. The first panel shows the wavefield impinging on the cylinder at time
t = 0.98 µs, and subsequent panels (progressing from left to right and top to bottom) show the total wavefield at intervals of 0.98 µs. The
acoustic pressure is plotted in all panels using a bipolar logarithmic scale with a 60 dB dynamic range.

and a density of 0.993 g/cm3. The scattering geometry is
as shown in Fig. 1. The incident pulse was a plane wave
with Gaussian temporal characteristics, a temporal Gaus-
sian parameter σ = 0.25 µs, and a central starting position
of x = −4.5 mm at time zero. For this pulse, a nominal
maximum frequency is 4.43 MHz, corresponding to the
spectral point 40 dB down from the center frequency (for
the benchmark problem, this frequency corresponds to a

minimum wavelength of 0.33 mm). The k-space, leapfrog
pseudospectral, finite difference, and exact methods de-
scribed previously were used to compute time histories of
the total pressure field at 128 equally spaced “measure-
ment” points spanning a circle of radius 2.5 mm concen-
tric to the cylinder. The pressure was interpolated using a
two-dimensional low-pass interpolation filter implemented
by the formula [30] [(20), see above], where I0 is the zero-
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order modified Bessel function of the first kind, and β is
the Kaiser window coefficient, taken here to be 7.0. This
choice of β provides a filter with flat response up to about
0.6 kmax and sidelobes at the −70 dB level.

The domain size for each k-space, pseudospectral, and
finite difference computation employing this cylinder was
18 × 18 mm2.

Further studies of accuracy were performed using a
cylinder of radius 10 mm. Other parameters were as de-
scribed previously for the small problem, except that the
radius of the measurement circle was 12.5 mm and the
starting position of the wavefront was x = −14.5 mm. The
k-space method was employed to compute two cases corre-
sponding to unsmoothed and smoothed contrast functions,
using a spatial step of four points per minimum wavelength
and a CFL number of 0.5. In each k-space computation for
this cylinder, the domain size employed was 72× 72 mm2.
The finite difference method was employed to compute a
single case using a spatial step of 14 points per minimum
wavelength, a CFL number of 0.25, and a domain size of
72 × 60 mm.

To evaluate the relative accuracy and efficiency of the
k-space and finite difference methods for a high contrast
scatterer, computations were also performed using a cylin-
der of radius 2.0 mm with the sound speed and density of
human bone. The values employed were a sound speed of
3.54 mm/µs and a density of 1.99 g/cm3 as in [28]. The
incident pulse, receiver, and computational domain char-
acteristics were identical to those for the 2.0 mm “fat”
cylinder case described previously.

In all of the previously mentioned accuracy tests, a
quantitative measure of the accuracy was obtained using
the time-domain L2 error of each numerically computed
pressure field pnum(x, t) versus the corresponding exact se-
ries solution pexact(x, t). This quantity has the definition

ε =
‖pnum(xr, t) − pexact(xr, t)‖

‖pexact(xr, t)‖
(21)

where ‖p(xr, t)‖ is the L2 norm [31] of a matrix composed
of the time-domain signal p(x, t) for all receiver points xr

and all time samples computed. Eq. (21) represents an ac-
curacy criterion that is much stricter than more general
criteria, such as comparison of the rms waveform ampli-
tude or the amplitude and phase at the center frequency.
To achieve a low L2 error by the definition of (21), both the
waveform amplitude and phase must be accurately com-
puted for all significant frequency components of the field.

The use of the present k-space method in a more real-
istic two-dimensional simulation of ultrasonic propagation
was also tested. For this purpose, a cross-sectional tissue
map of the human chest wall [28] was used as the simu-
lated medium. A pulse center frequency of 3.0 MHz was
employed together with a temporal Gaussian parameter of
0.3127 µs; these parameters correspond to the highest cen-
ter frequency employed in the simulation study reported in
[28]. The corresponding nominal minimum wavelength is
0.34 mm. The k-space computation employed four points

per minimum wavelength, a CFL number of 0.5, and a grid
size of 54.9 × 54.9 mm2. The finite difference computation
employed 14 points per minimum wavelength, a CFL num-
ber of 0.25, and a grid size of 38.5 × 29.7 mm2. As in [23]
and [28], periodic boundary conditions were applied on the
sides perpendicular to the wavefront; first-order radiation
boundary conditions [23] were applied on the sides parallel
to the wavefront.

Finally, to illustrate the efficiency and accuracy of the
present k-space method for three-dimensional computa-
tions, scattering from a penetrable sphere with acoustic
properties of human muscle (speed, 1.547 mm/µs; density,
1.090 g/cm3 [23]) was computed. The sphere radius was
1.5 mm; time-domain pressure waveforms were recorded
at 128 equally spaced measurement points on the sphere
surface (in the φ = 0 plane). The computation employed
an incident pulse identical to that for the cylinder simu-
lations described previously, a spatial step of four points
per minimum wavelength and a CFL number of 0.5. The
total pressure wavefield was computed for a time dura-
tion of 7.3 µs on a three-dimensional grid of dimensions
10.66×10.66×10.66 mm3. The accuracy of this computa-
tion was assessed by evaluating the L2 error between the
k-space and exact solutions using (21).

IV. Numerical Results

An example k-space computation, performed using the
2.0-mm cylinder with acoustic properties of human fat,
is illustrated in Fig. 1. The cylinder is also sketched in
each panel. For the computation shown, smoothed sound
speed and density functions were obtained by filtering the
analytic spatial Fourier transform of the cylinder using
(16). The time history of the total wavefield is shown as
computed by the k-space method for a spatial step size of
four points per minimum wavelength and a CFL number of
0.5. Details visible include a scattered wave from the edge
nearest the initial wavefront (c), weak focusing near the
trailing edge of the cylinder (e), scattering from the trailing
edge [(f)–(i)], and low level multiple scattering [(g)–(h)].

Results of accuracy benchmarks for the k-space and
leapfrog pseudospectral methods described previously are
shown in Fig. 2. Each of these computations was made
using the 2.0-mm cylinder described previously and a spa-
tial step size of four points per maximum wavelength. The
results show that the k-space method employing the k-
t space propagator of (9) provides much higher accuracy
than the pseudospectral method employing the leapfrog
propagator of (8). The two methods provide equivalent re-
sults for very small time steps (CFL numbers less than
about 0.1), but the k-space method maintains its highest
accuracy up to a CFL number of about 0.4. In contrast,
the pseudospectral method rapidly increases in error for
CFL numbers above 0.1.

Error results for the pseudospectral computations
shown in Fig. 2 are not given for CFL numbers above
0.6 because the computation was unstable for higher CFL
numbers i.e., computed fields incurred spurious exponen-
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Fig. 2. Time-domain comparison of accuracy for the k-space and
leapfrog pseudospectral methods as a function of Courant-Friedrichs-
Lewy (CFL) number. Each test used the “fat” cylinder (2.0-mm ra-
dius) and a spatial step size of four points per minimum wavelength.

tial growth, resulting in numerical overflow. This obser-
vation of instability is consistent with the linear stability
limit of 0.6366 given by (12) for this case. The k-space
method did not incur any numerical instability for the
range of CFL numbers investigated, so that the method
is observed to be unconditionally stable as predicted for
c(x) ≤ c0. However, the error of this method grows as
the CFL number approaches and exceeds unity, consistent
with the Nyquist sampling criterion given by (14).

Pseudospectral methods employing higher order time
integration achieve higher accuracy than the leapfrog it-
eration used as a comparison here. However, tests of the
present k-space method and a pseudospectral method em-
ploying fourth-order Adams-Bashforth time integration
have shown trends similar to that seen in Fig. 2 [32].
Specifically, for weak scattering media, the k-space method
yields similar accuracy for time steps two to three times
larger than those required by the higher order pseudospec-
tral method described in [13].

The relative accuracy of the k-space method and the
2-4 finite difference method are compared in Fig. 3 as a
function of the spatial step size. For these computations,
the CFL number of the k-space computations was held
constant at 0.5, consistent with the CFL-accuracy rela-
tionship shown in Fig. 2; the CFL number of the finite
difference computations was held at 0.25 [26]. Both meth-
ods achieve high accuracy for finer grid spacings; however,
the k-space method achieves higher accuracy for much
larger spatial step sizes. The L2 error drops below 0.05
for k-space computations, employing only three points per
minimum wavelength; achievement of the same accuracy
criterion requires 14 points per minimum wavelength for
the finite difference computations. This difference suggests
that storage requirements for k-space computations can be
much smaller than those for finite difference computations
of comparable accuracy, on the order of 12 times smaller

Fig. 3. Time-domain comparison of accuracy for the k-space and 2-4
finite difference time-domain methods as a function of the spatial
step size in points per minimum wavelength (PPW). Each test used
the “fat” cylinder (2.0-mm radius). Courant-Friedrichs-Lewy (CFL)
numbers were 0.5 for the k-space method and 0.25 for the finite
difference time-domain method.

for two-dimensional computations and 43 times smaller for
three-dimensional computations.

Visual comparison of simulated waveforms for the 2.0-
mm cylinder is shown in Fig. 4. Waveforms in this fig-
ure are those computed using the k-space (four points per
minimum wavelength; CFL number, 0.5; both unsmoothed
and smoothed contrast functions), finite difference time-
domain (14 points per minimum wavelength; CFL num-
ber, 0.25), and exact methods. The k-space solution for
the unsmoothed cylinder shows a small time-domain L2

error (0.0243) but also exhibits spurious waves (nearly
60 dB down from the peak pressure amplitude) between
the two main arrivals. These spurious waves are removed
by use of the k-space method with smoothed medium pa-
rameters [i.e., ρ(x) and c(x) smoothed using (16) with
kmax = π/∆x]; the L2 error is decreased to 0.0214 by this
smoothing. The finite difference result bears a strong qual-
itative resemblance to the exact solution, but the larger
L2 error (0.0454) indicates that phase errors have been
introduced by the dispersion inherent to the finite differ-
ence method. Computation times [33] were 2.31 min for
the k-space method and 1.55 h for the finite difference
method, so that the k-space method yields greater accu-
racy at much less computational cost.

Waveforms for the 10-mm cylinder are shown in Fig. 5
in a format analogous to that of Fig. 4. These results indi-
cate that, as for the smaller cylinder, smoothing of the con-
trast functions produces a reduction in spurious low ampli-
tude waves. For this problem, unlike the 2.0-mm cylinder
discussed previously, this smoothing slightly decreases the
overall accuracy. (The time-domain L2 error is 0.1292 for
the smoothed case vs. 0.1288 for the unsmoothed case.)
The finite difference solution, using 14 points per wave-
length and a CFL number of 0.25, requires much greater
storage and computational time and produces waveforms
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Fig. 4. Computed waveforms for the “fat” cylinder at a radius of 2.5 mm for a cylinder of radius 2.0 mm and a pulse center frequency of
2.5 MHz. The acoustic pressure is shown on a bipolar logarithmic scale with 60 dB dynamic range. The horizontal range of each plot is 360
degrees, covering the entire measurement circle starting with angle 0 (forward propagation). The vertical range of each panel corresponds
to a temporal duration of 9 µs, with t = 0 at the top of each plot. a) Unsmoothed object: k-space solution with four points per minimum
wavelength, L2 error = 0.0243; b) smoothed object: k-space solution with four points per minimum wavelength, L2 error = 0.0214; c) finite-
difference solution with 14 points per minimum wavelength, L2 error = 0.0454; and d) exact solution.

with poorer accuracy (an L2 error of 0.1794) than the k-
space method.

Results for the 2-mm “bone” cylinder are shown in
Fig. 6. In this case, the k-space method using a CFL num-
ber of 0.5 exhibited numerical instability. This instability
is expected because this CFL number exceeds the limit
of 0.2833 set by (13). To obtain an appropriate temporal
sampling rate, the time step was reduced in proportion to
the increase in cmax, resulting in a CFL number of 0.2153.
Required computation time for the k-space method was
5.34 min1; the time-domain L2 error was 0.3061 for the
unsmoothed case and 0.2687 for the smoothed case.

The finite difference method, employing 14 points per
wavelength and a CFL number of 0.1076 (also changed in
proportion to cmax), achieved an L2 error of 0.0350 in a
computation time of 3.99 h1. This result indicates that fi-
nite difference methods can be much more accurate than k-
space methods for scattering problems involving very high
contrast inhomogeneities such as bone within soft tissue.
However, the k-space solution, as seen in Fig. 6, still shows
good qualitative agreement with the exact solution.

The relative inaccuracy of the k-space method for high

1All CPU timings reported in this paper were obtained using
a Linux workstation with a 200-MHz AMD K6 processor and
128 MB RAM.

contrast scatterers may be associated with aliasing effects,
as suggested in [5]. That is, large jumps in spatial contrast
functions are associated with significant high frequency
components of the corresponding k-space spectra. If the
spatial frequency range employed in the k-space algorithm
is not sufficiently large, aliasing errors result. Low-pass
filtering of the contrast functions would remove this alias-
ing, but this also introduces additional errors because high
spatial frequency components of the scattering medium
are lost. The half-band filtering employed here is a com-
promise that greatly reduces aliasing errors but maintains
some contributions from high spatial frequencies (up to
the spatial Nyquist rate).

Computational results for a large scale, two-dimensional
tissue model are shown in Fig. 7. Waveforms computed
by the k-space (four points per minimum wavelength;
CFL number, 0.5; no smoothing) and the finite difference
models (10 points per minimum wavelength; CFL num-
ber, 0.25) were recorded at 130-element apertures com-
posed of simulated point receivers separated by a pitch
of 0.21 mm. The results produced by the finite difference
method and the k-space method are visually indistinguish-
able. However, despite the reduced grid size and limited
computations employed for the finite difference method,
the k-space method was more efficient by about a factor
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Fig. 5. Computed waveforms at a radius of 12.5 mm for a “fat” cylinder of radius 10.0 mm and a pulse center frequency of 2.5 MHz. The
acoustic pressure is shown in each panel using a bipolar logarithmic scale with a 60 dB dynamic range. The horizontal range of each panel
is 360 degrees, and the vertical range is 33 µs. a) Unsmoothed object: k-space solution, L2 error = 0.1288; b) smoothed object: k-space
solution, L2 error = 0.1292; c) finite-difference solution, L2 error = 0.1794; and d) exact solution.

Fig. 6. Computed pressure waveforms at a receiver radius of 2.5 mm for a “bone” cylinder of radius 2.0 mm and a pulse center frequency
of 2.5 MHz. The format is the same as in Fig. 4. a) Unsmoothed object: k-space solution, L2 error = 0.3061; b) smoothed object: k-space
solution, L2 error = 0.2687; c) finite-difference solution, L2 error = 0.0380; and d) exact solution.
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Fig. 7. Comparison of k-space and finite difference methods for a
tissue cross-sectional model. a) Chest wall cross section (taken from
[24]), with black indicating connective tissue, dark gray indicating
muscle, and light gray indicating fat. The region is 33.5 mm wide and
17.2 mm high. b) Transmitted waveforms computed by the k-space
method using four points per minimum wavelength and a Courant-
Friedrichs-Lewy (CFL) number of 0.5, shown on a bipolar linear gray
scale with white indicating maximum positive pressure and black
indicating maximum negative pressure. The horizontal range shown
is 27.3 mm at the same scale as a. The vertical range is 3.29 µs.
c) Transmitted waveforms computed by the finite difference time-
domain method using 10 points per minimum wavelength and a CFL
number of 0.25, shown using the same format as b.

of four; the required CPU time for the k-space method
was 0.90 CPU h; the corresponding time for the finite dif-
ference time-domain method was 4.58 CPU h1. This dis-
crepancy in efficiency is even more impressive when note
is made that the k-space method using four points per
minimum wavelength provides significantly higher accu-
racy than the finite difference method using 14 points per
minimum wavelength (as illustrated in Fig. 3). Thus, the
present k-space method is suggested to be an appropriate
replacement for finite difference methods previously em-
ployed to compute propagation through large scale, soft
tissue models [23]–[28].

Results of the example three-dimensional computation
are shown in Fig. 8. Three-dimensional isosurface render-
ings of the total pressure wavefield are shown at three
instants separated by 0.79 µs. For the three-dimensional
computation, the total computation time required was
1.51 h1. The L2 error of the computed waveforms, rela-
tive to the exact time-domain solution for scattering from
a sphere [29], was 0.0186.

V. Extensions to the k-Space Method

The present method can be extended in a number of
ways to increase its range of applicability in computations
of ultrasound tissue interactions.

Absorption effects could be added to the present algo-
rithm in several ways. The most straightforward method
for including absorption is to include an ad hoc damping
term proportional to ∂fs/∂t in (2) [3]–[5]. This approach
yields absorption coefficients roughly independent of fre-
quency. Similarly, inclusion of a damping term propor-
tional to ∂3fs/∂t3 (a thermoviscous approximation) would
lead to absorption roughly proportional to the frequency
squared [33]. However, neither of these approaches has a
rigorous justification for use in models of ultrasound prop-
agation in biological tissue.

A physically justifiable approach for inclusion of ab-
sorption in the present algorithm is to consider absorption
associated with multiple relaxation processes. The theoret-
ical basis for this approach is presented in [34]; one imple-
mentation of this method in a finite difference time-domain
algorithm is given in [35]. Because multiple relaxation pro-
cesses can lead to a variety of frequency-dependent absorp-
tion characteristics, this approach provides a possibility of
modeling realistic frequency-dependent attenuation in tis-
sue without introduction of nonphysical dispersion or vio-
lation of causality. Following the methods presented in [35],
absorption caused by multiple relaxation processes can be
implemented in a computationally efficient form. Possible
alternatives include the time-causal power law absorption
formulation of [36].

Another possible extension to the present method is to
incorporate the full elastic wave propagation equations.
This extension would account for shear wave propaga-
tion, which may substantially affect results for propaga-
tion models, including bone and other calcified tissue. By
applying methods similar to those outlined in [7] to the al-
gorithm described previously, a full elastic k-space method
incorporating Fourier space evaluation of spatial deriva-
tives and a k-t space propagator could be derived. Such a
method would, as in [7], include separate k-t space propa-
gators for compressional and shear waves.

Boundary conditions of k-space and pseudospectral
methods are inherently periodic, so that simple radiation
boundary conditions cannot be straightforwardly imple-
mented. One option for absorbing boundary conditions is
to include tapered (artificial) absorption functions at each
boundary [37]. The technique of perfectly matched layers
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Fig. 8. Isosurface renderings of the total (logarithmically scaled) pressure wavefield associated with scattering from a “muscle” sphere of
radius 1.5 mm. Incident pulse parameters were the same as in Fig. 4–6. Panels a–d show the wavefield at four instants separated by 0.79 µs.
The view shown is such that the incident wave is traveling into the page, so that the visible wavefield includes the backscattered component.
The lowest amplitude isosurface shown is 67.5 dB down from the incident wave amplitude. Each panel shows a rendering of the entire
computational domain (10.66 mm on each side). In panel a, the incident wavefront is just impinging on the sphere; in panel d, the scattered
wavefront has just passed the computational boundary.

(PML) [38] can provide true radiation boundary condi-
tions; however, present PML implementations are not ap-
plicable to the second-order wave equation employed here.
Combination of a k-space method with PML boundary
conditions may require derivation of a new k-t space time
integrator for the first-order wave propagation equations.

The present derivation was based on the linear (small
amplitude) acoustic propagation equations. The k-space
method could be easily extended to incorporate finite am-
plitude acoustic effects. For example, the nonlinear terms
of the Westervelt propagation equation (used in [33] for
modeling of ultrasonic propagation in tissue) could be in-
cluded as effective source terms additional to the effective
sources v and q defined previously. The numerical results
obtained suggest that the k-space method is most accu-
rate when the effective source terms are fairly small; thus,
a nonlinear extension to the k-space method should be
highly accurate for weak nonlinear effects.

Computation times for the k-space method can be re-
duced easily by parallelization. The primary computa-

tional burden of the method is incurred in the multidi-
mensional FFT taken at each time step. Because FFTs
can be efficiently executed on parallel processors [24], [39],
the present k-space method should scale efficiently to large
problems that require parallel processing.

VI. Conclusions

A simplified derivation of the k-space method for com-
putation of ultrasonic wave propagation has been pre-
sented. The method efficiently accounts for sound speed
and density variations and can be extended to include re-
alistic absorption effects and absorbing boundary condi-
tions. Three-dimensional computations can also be per-
formed without change to the algorithm as derived here.

Analytic and numerical results have shown that the
present k-space method provides superior stability and ac-
curacy over both a similar leapfrog pseudospectral method
and a fourth-order space, second-order time, finite differ-
ence method. This improved accuracy allows larger spatial
and time steps to be employed, so that large-scale multidi-
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mensional computations are more feasible. Computations
using a realistic two-dimensional tissue model support the
conclusion that the k-space method provides high accuracy
and low computational cost for large-scale computations.

The results also indicate that care should be taken when
choosing and implementing a forward solver for a particu-
lar scattering problem. For instance, in the present k-space
method, one can suppress spurious waves by smoothing
sound speed and density variations; however, this smooth-
ing does not decrease the time-domain L2 error in some
cases. Similarly, the finite difference time-domain method
employed here is less accurate than the k-space method in
most cases examined here, but the method achieved higher
accuracy for a test case with a bone-like scatterer. In gen-
eral, the k-space method proposed here should be most
applicable to large-scale scattering problems involving low
contrast inhomogeneities, such as soft tissue structures.
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