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A quantitative ultrasonic imaging method employing time-domain scattering data is presented. This
method provides tomographic images of medium properties such as the sound speed contrast; these
images are equivalent to multiple-frequency filtered-backpropagation reconstructions using all
frequencies within the bandwidth of the incident pulse employed. However, image synthesis is
performed directly in the time domain using coherent combination of far-field scattered pressure
waveforms, delayed and summed to numerically focus on the unknown medium. The time-domain
method is more efficient than multiple-frequency diffraction tomography methods, and can, in some
cases, be more efficient than single-frequency diffraction tomography. Example reconstructions,
obtained using synthetic data for two- and three-dimensional scattering of wideband pulses, show
that the time-domain reconstruction method provides image quality superior to single-frequency
reconstructions for objects of size and contrast relevant to medical imaging problems such as
ultrasonic mammography. The present method is closely related to existing synthetic-aperture
imaging methods such as those employed in clinical ultrasound scanners. Thus, the new method can
be extended to incorporate available image-enhancement techniques such as time-gain
compensation to correct for medium absorption and aberration correction methods to reduce error
associated with weak scattering approximations. ©1999 Acoustical Society of America.
@S0001-4966~99!04612-3#
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INTRODUCTION

Quantitative imaging of tissue properties is a potentia
useful technique for diagnosis of cancer and other pathol
cal conditions. Inverse scattering methods such as diffrac
tomography can provide quantitative reconstruction of tis
properties including sound speed, density, and absorp
However, although previous inverse scattering methods h
achieved high resolution and quantitative accuracy, s
methods have not yet been incorporated into commerci
successful medical ultrasound imaging systems.

Current inverse scattering methods are lacking in sev
respects with respect to conventional B-scan and synth
aperture imaging techniques. Previous methods of diffrac
tomography, including methods based on the Born and
tov approximations,1,2 and higher-order nonlinea
approaches,3,4 have usually been based on single-frequen
scattering, while current diagnostic ultrasound scanners
ploy wideband time-domain signals. The use of wideba
information in image reconstruction is known to provide i
creased point and contrast resolution,5,6 both of which are
important for medical diagnosis.5,7,8

Several approaches have been used to incorporate w
band scattering information into quantitative ultrasonic i
aging. One group of methods employs time-domain tom
raphy based on Radon-transform relationships that h
~under the assumption of weak scattering! between scattered
acoustic fields and the reflectivity or scattering strength
the medium. Pioneering work in this area9,10 employed mea-
surements of reflectivity in pulse-echo mode, while la
studies have incorporated aberration correction11,12 and
multiple-angle scattering measurements.13,14 A limitation of
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these methods, however, is that the Radon transform r
tionship strictly holds only when the medium is insonified
an impulsive~infinite bandwidth! wave. When pulses of fi-
nite bandwidth are employed, image quality can degra
significantly.15

A number of linear and nonlinear diffraction tomogr
phy methods have been implemented using scattering
for a number of discrete frequencies~e.g., Refs. 16–19!. Al-
though use of multiple-frequency data provides improv
ments in image quality, computational requirements
multiple-frequency imaging are typically large because
computational cost is proportional to the number of frequ
cies employed. To achieve image quality competitive w
present diagnostic scanners, together with quantitative im
ing of tissue properties, present frequency-domain meth
may require solution of the inverse scattering problem
many frequencies within the bandwidth of the transdu
employed. This approach thus demands a high computati
cost, so that high-quality real-time imaging may not be pr
ently feasible using current frequency-domain inverse s
tering methods.

Very few previous workers have investigated direct u
of time-domain waveform data for inverse scattering me
ods analogous to frequency-domain diffraction tomograp
Several methods20,21 have used frequency decomposition
scattered pulses to construct a wideband estimate of the
tial Fourier transform of an unknown medium; after appr
priate averaging and interpolation, this transform can be
verted to obtain a wideband Born reconstruction of t
medium. A study reported in Ref. 22 has showed that bro
band synthetic aperture imaging using linear arrays is clos
30616(6)/3061/11/$15.00 © 1999 Acoustical Society of America
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related to inverse scattering using filtered backpropagat
A related method, suggested in Ref. 23, provides a tim
domain reconstruction algorithm that employs filtered ba
propagation of scattered waveforms measured on a circ
boundary. However, the time domain reconstruction form
of Ref. 23 yields reconstructions that are less general t
multiple-frequency reconstructions obtained using the sa
signal bandwidth.

Another approach, related both to multiple-frequen
methods and direct time-domain methods, has recently b
presented.24 This work extends the eigenfunction method
Ref. 19 to use the full bandwidth of the incident pulse wav
form. In the extended method, eigenfunctions and eigen
ues of a scattering operator are computed to obtai
frequency-dependent representation of the scattering
dium. Fourier synthesis is then applied to obtain a tim
dependent estimate of the medium. A cross-correlation
eration removes the time dependence of the estimate as
as its dependence on the waveform employed.

The present paper offers a new approach to wideb
quantitative imaging: a time-domain inverse scatter
method that overcomes some of the limitations of previo
frequency-domain and time-domain quantitative imag
methods. The new method provides tomographic reconst
tions of unknown scattering media using the entire availa
bandwidth of the signals employed. Reconstructions are
formed using scattering data measured on a surface
rounding the region of interest, so that the method is w
suited to ultrasonic mammography. The reconstruction a
rithm is derived as a simple delay-and-sum formula sim
to synthetic-aperture algorithms employed in conventio
clinical scanners. However, unlike current clinical scanne
the present method can provide quantitative images of tis
properties such as the spatially dependent sound speed
constructions obtained in this manner are equivalent to
constructions obtained by combining convention
frequency-domain diffraction tomography reconstructio
for all frequencies within the signal bandwidth of intere
The current method, however, can be even more effic
than single-frequency diffraction tomography. The method
applicable both to two-dimensional and three-dimensio
image reconstruction. The direct time-domain nature of
reconstruction algorithm allows straightforward incorpo
tion of depth- and frequency-dependent amplitude correc
to compensate for medium absorption as well as aberra
correction methods to overcome limitations of the Born a
proximation.

I. THEORY

A. The time-domain reconstruction algorithm

An inverse scattering algorithm, applicable to quanti
tive imaging of tissue and other inhomogeneous media
derived below. For simplicity of derivation, the medium
modeled as a fluid medium defined by the sound speed
trast function

g~r !5
c0

2

c~r !2
21, ~1!
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wherec0 is a background sound speed andc(r ) is the spa-
tially dependent sound speed defined at all pointsr . For the
scope of the initial derivation, the medium is assumed
have constant density, no absorption, and weak scatte
characteristics; extensions to the reconstruction algori
that overcome these limiting assumptions are discusse
the following section.

For the model of the scattering medium represented
Eq. ~1!, the time-domain scattered acoustic pressureps(r ,t)
obeys the wave equation25

¹2ps~r ,t !2
1

c0
2

]2ps~r ,t !

]t2
5

g~r !

c0
2

]2p~r ,t !

]t2
, ~2!

wherep(r ,t) is the total acoustic pressure in the medium
The scattering configuration considered here is sketc

in Fig. 1. The medium is subjected to a pulsatile plane wa
propagating in the direction of the unit vectora,

pinc~r ,a,t !5 f ~ t2r–a/c0!, ~3!

where f is the time-domain waveform andc0 is the back-
ground sound speed. The scattered wavefieldps(u,a,t) is
measured at a fixed radiusR in the far field, whereu corre-
sponds to the direction unit vector of a receiving transdu
element.~Alternatively, if scattering measurements are ma
in the near field, the far-field acoustic pressure can be c
puted using exact transforms that represent propaga
through a homogeneous medium.16!

A general time-domain solution for the wave equati
~2!, valid for two-dimensional~2D! or three-dimensiona
~3D! scattering, is then

ps~u,a,t !5E
2`

`

p̂s~u,a,v!e2 ivtdv, ~4!

where p̂s(u,a,v) is a single frequency component of th
scattered wavefield,

p̂s~u,a,v![
1

2p E
2`

`

ps~u,a,t !eivtdt, ~5!

given exactly by25

p̂s~u,a,v!5k2 f̂ ~v!E G0~Ru2r0 ,v!

3g~r0! p̂~r ,a,v!dV0 . ~6!

In Eq. ~6!, k is the wave numberv/c0 and p̂(r0 ,a,v) is the
total acoustic pressure associated with the unit-amplitude
cident plane waveeika–r0. The integral in Eq.~6! is taken
over the entire support ofg in R2 for 2D scattering or inR3

FIG. 1. Scattering configuration. An incident pressure pulsef (t2a•r /c) is
scattered by an inhomogeneous medium and the time-domain scattered
sureps(u,a,t) is measured at a radiusR in the far field.
3062T. Douglas Mast: Time-domain diffraction tomography
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for 3D scattering. The free-space Green’s function, rep
sented by G0 in Eq. ~6!, is26

G0~r ,v!5
i

4
H0

(1)~kr ! for 2D scattering

and ~7!

G0~r ,v!5
eikr

4pr
for 3D scattering,

where H0
(1) is the zeroth-order Hankel function of the fir

kind andr is the magnitude of the vectorr .
The far-field scattered pressure, when specified for

incident-wave directionsa, measurement directionsu, and
times t, comprises the data set to be used for reconstruc
of the unknown medium. The inverse scattering proble
specified by Eq.~6! for a single frequency component, is
reconstruct the unknown medium contrastg(r ) using the
measured datap̂s(u,a,v).

The starting point for the present time-domain inve
scattering method is conventional single-frequency diffr
tion tomography. Under the assumption of weak scatter
one can make the Born approximation, in which the to
pressurep̂(a,v) in Eq. ~6! is replaced by the plane wav
eikr–a. For scattering measurements made at a radiusR in the
far field, the linearized inverse problem of Eq.~6! can be
then solved for any frequency component using filte
backpropagation,2,16,27 i.e.,

gB~r ,v!5
m̂~v!e2 ikR

f̂ ~v!
E E F~u,a!

3 p̂s~u,a,v!eik(u2a)•rdSadSu , ~8!

where

m̂~v!52A kR

8ip3
,

F~u,a!5usin~u2a!u in 2D,

and ~9!

m̂~v!5
kR

4p3
, F~u,a!5uu2a u in 3D.

Each surface integral in Eq.~8! is performed over the entire
measurement circle for the 2D case and over the entire m
surement sphere for the 3D case. Equation~8! provides an
exact solution to the linearized inverse scattering problem
a single frequency component of the scattered wavefi
ps(u,a,t). The resulting reconstruction,gB(r ,v), has spatial
frequency content limited by the ‘‘Ewald sphere’’ of radiu
2k in wavespace.1

To improve upon the single-frequency formulas spe
fied by Eq.~8!, one can extend the spatial-frequency cont
of reconstructions by exploiting wideband scattering inf
mation. The method outlined here synthesizes a ‘‘multip
frequency’’ reconstructiongM(r ) by formally integrating
single-frequency reconstructionsgB(r ,v) over a range of
frequenciesv. A generalized formula for this approach ca
be written
3063 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
-

ll

n
,

e
-

g,
l

d

a-

r
ld

-
t

-
-

gM~r !5
*0

`ĝ~v!gB~r ,v!dv

*0
`ĝ~v!dv

, ~10!

where ĝ(v) is an appropriate frequency-dependent weig
ing function. In practice, the weighting functionĝ(v) is cho-
sen to be bandlimited because~for a given set of physica
scattering measurements! the frequency-dependent contra
gB(r ,v) can only be reliably reconstructed for a finite ran
of frequenciesv associated with the spectra of the incide
waves employed. Thus, the integrands in Eq.~10! are non-
zero only over the support ofĝ(v) and the corresponding
integrals are finite.

Using Eq.~8!, and making the definition

N[2E
0

`

ĝ~v!dv, ~11!

Eq. ~10! can be written in the form

gM~r !5
2

N
E

0

`

ĝ~v!
m̂~v!e2 ikR

f̂ ~v!
E E F~u,a!

3 p̂s~u,a,v!eik(u2a)•rdSadSudv. ~12!

If the frequency weightĝ(v) is now specified to incor-
porate the incident-pulse spectrumf̂ (v) and to compensate
for the frequency- and dimension-dependent coeffici
m̂(v),

ĝ~v!5
f̂ ~v!

m̂~v!
, ~13!

Eq. ~12! reduces to the form

gM~r !5
2

N E E F~u,a!E
0

`

p̂s~u,a,v!

3e2 ik[R1(a2u)•r ]dvdSadSu . ~14!

The choice of frequency weight from Eq.~13! allows the
multiple-frequency reconstruction formula of Eq.~12! to be
greatly simplified. Specifically, the inner integral of Eq.~14!
resembles a weighted inverse Fourier transform of
frequency-domain scattered fieldp̂(u,a,v). To obtain an
explicit time-domain expression forgM(r ), Eq. ~14! can be
rewritten using the definition ofp̂s(u,a,v) from Eq. ~5! to
yield

gM~r !5
1

N E E F~u,a!

3L FpsS u,a,R/c01
~a2u!•r

c0
D GdSadSu , ~15!

whereL denotes the linear operator

L @c~ t !#52E
0

`

ĉ~v!e2 ivtdv ~16!

and ĉ(v) is the Fourier transform ofc(t) using the defini-
tion from Eq.~5!.

Using the conjugate symmetry ofĉ(v) @i.e.,
ĉ(u,a,v)5ĉ* (u,a,2v) for any realc(t)], the real part of
3063T. Douglas Mast: Time-domain diffraction tomography
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L @c(t)# is shown to be simplyc(t). Similarly, using the
convolution theorem as well as the conjugate symmetry
c(t), the imaginary part ofL @c(t)# is seen to be an invers
Hilbert transform28 of c(t),

Im@L @c~ t !##52
1

p E
2`

` c~t!

t2t
dt5H21@c~ t !#. ~17!

This transform, also known as a quadrature filter, applie
phase shift ofp/2 to each frequency component of the inp
signal.

Thus, the time-domain reconstruction formula can
nally be written

gM~r !5
1

N E E F~u,a!S ps~u,a,t!

1 iH21@ps~u,a,t!# DdSadSu , ~18!

where

t5R/c01
~a2u!•r

c0
. ~19!

The direction-dependent weightF(u,a), which is the same
as the ‘‘filter’’ employed in single-frequency filtered bac
propagation, is given for the 2D and 3D cases by Eq.~9!.

Equation~18! is notable in several respects. First, it pr
vides a linearized reconstruction that employs scattering
formation from the entire signal bandwidth without any fr
quency decomposition of the scattered wavefield. Seco
the delay termt corresponds exactly to the delay required
construct a focus at the pointr by delaying and summing th
scattered wavefieldps(u,a,t) for all measurement direction
u and incident-wave directionsa. Thus, the time-domain
reconstruction formula given by Eq.~18! can be regarded a
a quantitative generalization of confocal time-domain s
thetic aperture imaging, in which signals are synthetica
delayed and summed for each transmit/receive pair to fo
at the image point of interest.22,29,30

A reconstruction formula similar to, although less ge
eral than, Eq.~18! was independently derived in Ref. 23 fo
the two-dimensional inverse scattering problem. In view
the present derivation, the method of ‘‘probing by pla
pulses’’ in Ref. 23 can be regarded to yield a multip
frequency reconstruction of Re@gM(r )#, while the present
method yields the complex functiongM(r ). In Ref. 23, this
method was proposed as a more convenient way to im
ment narrow-band diffraction tomography. However, the n
merical results given below show that the reconstruction
mula of Eq. ~18!, when directly implemented usin
wideband signals, provides considerable improvement in
age quality over narrow-band reconstructions.

Reconstructions using Eq.~18! can be performed using
any pulse waveform. However, the frequency compound
defined by Eq.~10! is most straightforwardly interpreted
the frequency weightĝ(v) has a phase that is independent
frequency. This criterion can be met, for instance, if the
cident pulse waveformf (t) is even in time,

f ~ t !5 f ~2t !, ~20!
3064 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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so that f̂ (v) is purely real.@Similarly, if the incident pulse
waveform is odd in time,f̂ (v) is purely imaginary and Eq
~18! can still be employed.#

However, supposition of a frequency-independent ph
for f̂ (v) does not result in any loss of generality. For a
linear-phase signal, such that the Fourier transform has
form

f̂ ~v!5u f̂ ~v!ueivz, v.0, ~21!

an additional delay term of magnitudez can be applied to all
scattered signals to obtain the signals associated with
purely-real spectrumu f̂ (v)u. In general, the scattered fiel
associated with a desired waveformf (t) can be determined
for an arbitrary waveformu(t) from the deconvolution op-
eration

@ps~u,a,t !# f (t)5F21F f̂ ~v!

û~v!
@ps~u,a,t !#u(t) G . ~22!

For stable deconvolution using Eq.~22!, the desiredf̂ (v)
should not have significant frequency components outs
the bandwidth ofû(v).

B. Extensions to the reconstruction algorithm

For large tissue structures at high ultrasonic frequenc
weak scattering approximations such as the Born approxi
tion are of limited validity. Thus, for problems of interest
medical ultrasonic imaging, reconstructed image quality c
be improved by aberration correction methods that incor
rate higher-order scattering and propagation effects.
present time-domain reconstruction formula~18! provides a
natural framework for quantitative imaging with aberratio
correction. In general, if the background medium is kno
or can be estimated, the received scattered signals ca
processed to provide an estimate of the scattered field
would be measured for the same scatterer within a homo
neous background medium. This approach essentially
moves higher-order scattering effects from the measured
field scattering, so that a Born inversion can be performed
the modified data; similar processes occur implicitly in ma
nonlinear inverse scattering methods.31

For example, a simple implementation of aberration c
rection can be derived if one makes the assumption
background inhomogeneities result only in cumulative d
lays ~or advances! of the incident and scattered wavefront
This crude model does not include many propagation
scattering effects important to ultrasonic aberration, but
been shown to provide a reasonable first approximation
local delays in wavefronts propagating through large-sc
tissue models.32,33 Given this approximation, the total dela
for an anglef and a point positionr is given by

dt~f,r !5E
j
c~j!21dj2

R

c0
, ~23!

where the integral is performed along the line that joins
spatial pointsr and Rf, Aberration-corrected reconstruc
tions can then be performed using Eq.~18! with t replaced
by the corrected delay term
3064T. Douglas Mast: Time-domain diffraction tomography
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t→R/c01
~a2u!•r

c0
1dt~a,r !1dt~u,r !. ~24!

Improved approximations could be obtained by applicat
of the delay functiondt(f,r ) after numerical backpropaga
tion of the far-field scattered wavefronts through a homo
neous medium34,35 or by compensation for both delay an
amplitude variations.36,37More general, although much mor
computationally expensive, aberration correction could a
be performed by synthetic focusing using full-wave nume
cal computation of acoustic fields within an estimated re
ization of the unknown medium. A method of this kind h
been implemented, within the context of a frequency-dom
diffraction tomography method, in Ref. 19.

The present imaging method has been derived us
simplifying assumptions including zero absorption and c
stant density for the scattering medium. However, these
sumptions do not substantially restrict the validity of t
method. For example, the effect of absorption can be redu
using time-gain compensation, with or without frequenc
dependent corrections,38 of received scattered signals fo
each transmit/receive pair. Such time-gain compensa
could be performed either using an estimated bulk atten
tion for the medium~as with current clinical ultrasound scan
ners!, or by implementation of an adaptive attenuation mo
in a manner similar to the time-shift compensation sche
discussed above.

Inclusion of density variations as well as sound spe
variations adds additional complication to the time-dom
diffraction tomography algorithm derived here. For sing
frequency diffraction tomography in the presence of sou
speed and density variations, the quantitygB(r ,v) recon-
structed by Eq.~8! can be shown39 to provide an estimate o
a physical quantity that depends both on sound speed v
tions and density variations. In the notation used here,
quantity can be written

g8~r !5g~r !2g~r !gr~r !1
1

2k2
¹2gr~r !, ~25!

where the density variation is definedgr512r0 /r(r ).
Thus, for time-domain reconstructions of media with dens
variations, the reconstruction formula of Eq.~18! will pro-
vide the estimate

gM~r !'g~r !2g~r !gr~r !1
1

2k0
2

¹2gr~r !, ~26!

where k0 is the wave number corresponding to the cen
frequency of the pulse employed. For media such as hu
tissue, where density variations are fairly small and abr
density transitions are rare, the last two terms of Eq.~26! are
small compared tog(r ), so that the reconstruction algorithm
derived above can still be regarded to provide an image
the sound-speed variation functiong(r ). However, if de-
sired, a reconstruction employing pulses with two distin
center frequencies could allow separation of sound speed
density variations by techniques similar to those describe
Ref. 16 or 39.
3065 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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II. COMPUTATIONAL METHODS

The time-domain inverse scattering method describ
above has been tested with 2D and 3D synthetic data
pared using three numerical methods: a Born approxima
method for point scatterers and 3D slabs, an exact se
solution for cylindrical inhomogeneities, and ak-space
method for arbitrary 2D inhomogeneous media.

The time-domain waveform employed for all the com
putations reported here was

f ~ t !5cos~v0t !e2t2/(2s2), ~27!

wherev052p f 0 for a center frequency off 0 and s is the
temporal Gaussian parameter. This waveform has the
even Fourier transform

f̂ ~v!5As2

8p
~e2s2(v2v0)2/21e2s2(v1v0)2/2!. ~28!

Values used for the computations reported here weref 0

52.5 MHz ands50.25 ms, so that the26 dB bandwidth
of the signal was 1.5 MHz. These parameters corresp
closely to those of an existing 2048-element ri
transducer.40

For the case of point scatterers, the contrast functiog
was assumed to take the form

g~r !5(
1

M

m jd~r2r j !. ~29!

Using the far-field form of the 2D Green’s function and n
glecting multiple scattering, Eq.~6! for the scattered far field
can be rewritten as

p̂s~u,a,v!52k2A i

8pkR
f̂ ~v!(

j
m je

ik(a2u)•r j ~30!

for each frequency component of interest. Time-dom
waveforms were synthesized by using Eq.~30! for each fre-
quency with f̂ (v).1023 and inverting the frequency
domain scattered wavefield by a fast Fourier transform~FFT!
implementation of Eq.~4!. The temporal sampling rate em
ployed was 10 MHz. An analogous formula, with a differe
multiplicative constant, was also employed for the 3D ca

The Born approximation was also used to comp
three-dimensional scattering for slab-shaped objects defi
by the equation

g~r !5g0H~ax2uxu!H~ay2uyu!H~az2uzu!. ~31!

For this object, the linearized forward problem can be solv
analytically. Under the Born approximation, the frequenc
domain scattered far field has the form

p̂s~u,a,v!52 f̂ ~v!g0axayaze
ikR/~pR!

3
sin@kLx~a2u!•ex#

kLx~a2u!•ex

sin@kLy~a2u!•ey#

kLy~a2u!•ey

3
sin@kLz~a2u!•ez#

kLz~a2u!•ez
, ~32!

whereex , ey , andez represent unit vectors in thex, y, andz
directions. The time domain scattered pressureps(u,a,t) is
3065T. Douglas Mast: Time-domain diffraction tomography
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obtained, as for the point scatterer case described abov
inverse transformation of the frequency-domain wavefi
for all frequencies within the bandwidth of interest.

For 2D cylindrical inhomogeneities, an analogous p
cedure was followed, except that the frequency-domain s
tered wavefieldp̂s(u,a,v) was computed using an exact s
ries solution25 for each frequency component of interest.
implementation of the series solution, summations were tr
cated when the magnitude of a single coefficient drop
below 10212 times the sum of all coefficients.

Solutions were also obtained for arbitrary 2D inhomog
neous media using a time-domaink-space method.41 Grid
sizes of 2563256 points, a spatial step of 0.0833 mm, and
time step of 0.02734ms were employed. Scattered acous
pressure signals on a circle of virtual receivers were recor
at a sampling rate of 9.144 MHz. The receiver circle, wh
had a radius of 3.0 mm in these computations, comple
contained the inhomogeneities used. Far-field wavefo
were computed by Fourier transforming the time-dom
waveforms on the near-field measurement circle, transfo
ing these to far-field waveforms for each frequency usin
numerically exact transformation method,16 and performing
inverse Fourier transformation to yield time-domain far-fie
waveforms. All forward and inverse temporal Fourier tran
forms, as well as angular transforms occurring in the ne
field-far-field transformation,16 were performed by FFT.

The time-domain imaging method was directly impl
mented using Eq.~18!, evaluated using straightforward nu
merical integration over all incident-wave and measurem
directions employed. The reconstruction formula employ
can be explicitly written as

gM~r !5
1

N2D
E

0

2pE
0

2p

usin~a2u!uS ps~u,a,t!

1 iH21@ps~u,a,t!# D dadu,

~33!

t5R/c01
~cosa2cosu!•x1~sina2sinu!•y

c0

for the 2D case, wherea andu are the angles correspondin
to the direction vectorsa andu, and as

gM~r !5
1

N3D
E

0

2pE
0

pE
0

2pE
0

p

ua2uuS ps~u,a,t!

1 iH21@ps~u,a,t!# D sin~Fa!sin~Fu!dFa

3dQadFudQu ,

t5R/c01
~a2u!•r

c0
, ~34!

a2u5~cosQa sinFa2cosQu sinFu!•ex

1~sinQa sinFa2sinQu sinFu!•ey

1~cosFa2cosFu!•ez

for the 3D case, whereQa andFa are direction angles fo
the incident-wave directiona and Qu and Fu are direction
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angles for the measurement directionu. For each case, the
normalization factorN was determined from Eq.~11! with
ĝ(v)5 f̂ (v)/m̂(v) and m(v) given by Eq. ~9!. Before
evaluation of the argumentt for each signal, the time-
domain waveforms were resampled at a sampling rate o
times the original rate. This resampling was performed us
FFT-based Fourier interpolation. The inverse Hilbert tra
form was performed for each signal using an FFT implem
tation of Eq.~16!. Values of the pressure signals at the tim
t were then determined using linear interpolation betwe
samples of the resampled waveforms. The integrals of E
~33! and ~34! were implemented using discrete summati
over all transmission and measurement directions emplo

Computations were also performed using the tim
domain diffraction tomography algorithm for limited
aperture data. For these reconstructions, the integrals of
~33! were evaluated only for angles corresponding to tra
mitters and receivers within a specified aperture of angu
width fap, i.e.,

uau<fap/2, uu2pu<fap/2. ~35!

Use of a small value forfap corresponds to use of a sma
aperture in pulse-echo mode.

FIG. 2. Point-spread functions for time-domain and single-frequency
fraction tomography methods. In each panel, the vertical scale corresp
to the relative amplitude of the reconstructed contrastg(r ), while the hori-
zontal scale corresponds to number of wavelengths at the center frequ
~a! Two-dimensional case.~b! Three-dimensional case.
3066T. Douglas Mast: Time-domain diffraction tomography
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III. NUMERICAL RESULTS

Two-dimensional and three-dimensional point-spre
functions ~PSF! for the present time-domain diffraction to
mography method are illustrated in Fig. 2. The time-dom
reconstructions shown here, like the other time-domain
constructions shown in this paper, were obtained usin
incident pulse of center frequency 2.5 MHz and a Gauss
envelope corresponding to a26 dB bandwidth of 1.5 MHz.
Point-spread functions were determined by reconstructin
point scatterer located at the origin. For the 2D case
which the point scatterer can be regarded as a thin w
synthetic scattering data was obtained using the Born
proximation method outlined above for 16 incident-wave
rections and 64 measurement directions. The 3D tim
domain reconstruction was obtained using Born data for
incident-wave directions and 288 measurement directio
each evenly spaced on a rectangular grid defined by
anglesQ and F. For comparison, analogous point-spre
functions are also shown for standard frequency-domain
fraction tomography reconstructions using single-freque
~2.5 MHz! data.

For the 2D case illustrated in Fig. 2, the time-doma
PSF has a slightly narrower peak, indicating that point re
lution has been slightly improved by the increased ba
width employed in the time domain method. More signi
cantly, sidelobes of the time-domain PSF are significan
smaller than those for the single-frequency PSF~the first
sidelobe is reduced by 7 dB, while the second is reduced
19 dB!, so that contrast resolution for time-domain diffra
tion tomography is seen to be much higher than for sing
frequency diffraction tomography. For the 3D case, the tim
domain reconstruction shows a much more dram
improvement over the single-frequency reconstruction.
this case, the time-domain solution shows significant
creases in both the point resolution~PSF width at half-
maximum reduced by 27%! and contrast resolution~first
sidelobe reduced by 13 dB and second sidelobe reduce
18 dB!. Furthermore, a comparison of the PSFs for 2D a
3D time-domain reconstruction indicates that much hig
image quality is achievable for 3D time-domain imagi
than for the 2D case. This increase in image quality sugg
that the time-domain diffraction tomography method p
posed here may benefit from the overdetermined natur
the general wideband 3D inverse scattering problem.42,43

The effect of transmit and receive aperture characte
tics on image quality is illustrated in Fig. 3. Panels~a! and
~b! of Fig. 3 show the point-spread function for a number
aperture configurations, each employing 64 measuremen
rections. Figure 3~a! shows the point-spread function for re
constructions obtained using 1, 4, 8, and 16 incident-w
directions. The point scatterer is clearly imaged even for
reconstruction using one incident-wave direction. Optim
image quality~indistinguishable from reconstructions wit
64 incident-wave directions! is obtained for 16 incident-
wave directions, so that scattering data obtained using
incident-wave direction for each group of four measurem
directions appears to be sufficient for the present reconst
tion method.

The effect of limited view range on the point spre
3067 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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function is also illustrated in Fig. 3. Panel~b! shows the
point-spread function for four differently limited aperture
while panel~c! shows reconstructions of a homogeneous c
inder (a51.0 mm,g50.02) for the same apertures. In ea
case, limitation of the transmit and receive apertures
angles near the backscatter direction~aperture sizep/2) re-
sults in images that resemble a conventional B-scans. Us
apertures corresponding to pulse-echo mode in the la
aperture limit~aperture sizep) yield higher resolution in all
directions. Using three-fourths of a circular aperture~size
3p/2) yields image quality close to that for the full apertu
(2p) case. The characteristics of all these images result f
the set of spatial-frequency vectors interrogated by e
group of scattering measurements.1 Apertures with only a
limited range of transmit and receive directions@e.g., the
‘‘b-scan’’ apertures shown in the first column of panels~b!
and ~c!# provide only information corresponding to larg
spatial frequency vectors oriented nearly on-axis, so t
such images mainly show those edges that are nearly per
dicular to the axis of the aperture.

Reconstructions performed using exact solutions
scattering from cylindrical inhomogeneities provide
straightforward means to assess the accuracy of the t
domain scattering method for a range of object sizes
contrasts. A number of example reconstructions are show
Figs. 4 and 5. The number of measurement directions for
cylinder reconstructions was chosen based on an empi
test of the number required for a satisfactory image o
homogeneous cylinder; for a cylinder of radius 1 mm, t
required number of measurement directions was determ
to be approximately 96. Based on spatial-frequency samp
considerations, the number of measurement directions
increased in proportion to the size of the inhomogene

FIG. 3. Effect of aperture characteristics on image quality. Each pa
shows the real part of a time-domain reconstruction, Re@gM#, on a linear
grayscale with white representing the maximum amplitude ofugM(r )u and
black represents21 times the maximum amplitude.~a! Point-spread func-
tions for the same waveform parameters as Fig. 2. Each panel shows an
of 0.630.6 mm2, corresponding to one square wavelength at the ce
frequency. Left to right: 1, 4, 8, and 16 incident-wave directions.~b! Point-
spread functions for aperture sizes ofp/2, p, 3p/2, and 2p radians, format
as in previous panel.~c! Real parts of reconstructions for a homogeneo
cylinder (a51.0 mm,g50.02). The area shown in each panel is 2.032.0
mm2.Left to right: aperture sizes ofp/2, p, 3p/2, and 2p radians.
3067T. Douglas Mast: Time-domain diffraction tomography



FIG. 4. Cross sections of reconstructed contrast functionsg(r ) for a cylinder of radius 1 mm, using time-domain~TD! and single-frequency~SF! diffraction
tomography. Waveform parameters are as in Fig. 1.~a! g50.02. ~b! g50.04. ~c! g50.06. ~d! g50.08.
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region to be reconstructed. Since the results shown in Fi
indicate that considerably fewer incident-wave directio
than measurement directions are needed, the number of
dent directions was chosen to be one-quarter the numbe
measurement directions in each case.

Cross sections of time-domain and single-frequency
constructions, plotted in Fig. 4, show the relative accuracy
each reconstruction method for a cylinder of 1-mm rad
and purely real contrast ranging fromg50.02 to g50.08.
For the synthetic scattering data in each case, 96 meas
ment directions and 24 incident-wave directions were e
ployed. The time-domain reconstructions show improvem
over the single-frequency reconstructions both in improv
contrast resolution~smaller sidelobes outside the support
the cylinder! and in decreased ringing~Gibbs phenomenon!
artifacts within the support of the cylinder. However, f
increasing contrast values, both methods show similar
creases in phase error, as indicated by increased imag
parts of the reconstructed contrast. This error results from
Born approximation, which is based on the assumption
the incident wave propagates through the inhomogene
medium without distortion. Perturbations in the local arriv
time of the incident wavefront, which are more severe
higher contrasts and larger inhomogeneities, can result
scattered field that is phase shifted relative to the ideal c
assumed in the Born approximation; linear inversion of t
phase-distorted data naturally results in a phase-distorte
construction of the scattering medium.~A complementary
3068 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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explanation of this phase error, based on the unitarity of
scattering operator, is given in Ref. 19.!

A test of image fidelity for the time-domain reconstru
tion method is shown in Fig. 5. The real parts of tim
domain reconstructions are shown as grayscale images
homogeneous cylinders with radii between 1 and 4 mm
contrasts betweeng50.02 andg50.08. The number of
measurement directions employed for the synthetic sca
ing data was 96 for the 1-mm radius cylinders, 192 for t
2-mm cylinders, 288 for the 3-mm cylinders, and 384 for t
4-mm cylinders. In each case, four incident-wave directio
per measurement direction were used. The first row of
figure corresponds to the time-domain reconstructions sh
in Fig. 4.

The images shown in Fig. 5 provide a basis for evalu
ing the ability of the present time-domain diffraction tomo
raphy method to image homogeneous objects of vari
sizes and contrasts. In this figure, images of Re@gM# show
uniform quality for small cylinder sizes and contrasts, b
poorer image quality for larger sizes and contrasts. For
largest size and contrast employed (a54.0 mm,g50.08),
the reconstruction primarily shows the edges of the cylin
and fails to image the interior. Particularly notable is that t
‘‘matrix’’ of images in Fig. 5 is nearly diagonal; that is,
linear increase in object contrast causes image degrada
comparable to a corresponding linear increase in object s
Thus, a nondimensional parameter directly relevant to im
quality for homogeneous objects iska g, wherek is a domi-
3068T. Douglas Mast: Time-domain diffraction tomography
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nant wave number,a is the object radius, andg is the object
contrast. Using the wave numberk0510.472 rad/mm corre-
sponding to the center frequency of 2.5 MHz and a sou
speed of 1.5 mm/ms, the reconstructions shown in Fig.
indicate that the interior of the cylinder is imaged satisfac
rily for the approximate rangeka g,2.5. This result is con-
sistent with a previous study of single-frequency diffracti
tomography, in which adequate Born reconstructions of c
inders were obtained for the parameter rangeka g<2.2.44

Reconstructions for several scattering objects with
special symmetry are shown in Fig. 6. All of these reco
structions were performed using synthetic data produced
thek-space method described in Ref. 41. Synthetic scatte
data were computed for 64 incident-wave directions and
measurement directions in each case. The first panel sho
reconstruction of a cylinder of radius 2.5 mm and contr
g520.0295 with an internal cylinder of radius 0.2 mm a
contrastg50.0632. These contrast values correspond, ba
on tissue parameters given in Ref. 32, to the sound-sp
contrasts of human skeletal muscle for the outer cylinder
of human fat for the inner cylinder. The second panel sho
a reconstruction of a 2.5-mm-radius cylinder with rando
internal structure. The third reconstruction shown employ
a portion of a chest wall tissue map from Ref. 45. In th
case, the synthetic data was obtained using a tissue mo45

that incorporates both sound speed and density variation
that the reconstructed quantity is given by Eq.~26!. In Fig.
6~c!, black denotes connective tissue (g520.1073, gr

50.1134), dark gray denotes muscle (g520.0295, gr

50.0543), and light gray denotes fat (g50.0632, gr

520.0453).
The real part of each reconstruction in Fig. 6 sho

FIG. 5. Images of time-domain reconstructions for cylinders of vary
radiusa and contrastg. Each panel shows the real part of the reconstruc
contrast, Re@gM(r )#, for a pulse of center frequency 2.5 MHz and26 dB
bandwidth 1.5 MHz. The area shown in each panel is 2a32a. All images
are shown on a linear, bipolar gray scale where white represents the m
mum amplitude ofugM(r )u and black represents21 times the maximum
amplitude.
3069 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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good image quality, with high resolution and very little ev
dence of artifacts. Particularly notable is the accurately
tailed imaging of internal structure for the random cylind
and the chest wall cross section. As expected, the den
variations present in the chest wall cross section have
greatly affected the image appearance; there is, howeve
slight edge enhancement, associated with the Laplacian
in Eq. ~26!, at boundaries between tissue regions. Also
table is the nearly complete absence of any artifacts out
the scatterer in each case; this result indicates that high
trast resolution has been achieved. However, in each c
the imaginary part of the reconstruction is nonzero, indic
ing that the Born approximation is not fully applicable. Th
imaginary parts of each reconstruction are, however, sm
compared to the real parts. Thus, simple aberration cor
tion methods@of which one example is given by Eq.~24!#
could substantially reduce this phase error, as for multip
frequency diffraction tomography in Ref. 19.

Three-dimensional reconstructions of a homogene
slab are shown in Fig. 7. The scatterer is characterized by
~31! with g050.01, ax50.5 mm,ay51.0 mm, andaz51.5
mm. Synthetic data was computed using Eq.~34! for 288
incident-wave directions and 1152 measurement directio
each evenly spaced in the anglesF and Q. Signal param-
eters were as for the examples above, except that the in
sampling rate for the time-domain signals was 9.0 MHz. I
surface renderings of the real part ofgM are shown for the
surfacesgM50.0025. Since the scattering data were o
tained using a Born approximation for the 3D case,

d

xi-

FIG. 6. Time-domain reconstructions from full-wave synthetic data for th
arbitrary scattering objects. Each row shows the actual~purely real! contrast
function g together with the real and imaginary parts of the reconstruc
contrast functiongM , using the same linear bipolar gray scale for ea
panel. Each panel shows a reconstruction area of 535 mm2. ~a! Cylinder,
radius 2.5 mm, with an internal cylinder of radius 0.2 mm.~b! Cylinder,
radius 2.5 mm, with random internal structure.~c! Tissue structure, with
variable sound speed and density, from chest wall cross section 5
Ref. 45.
3069T. Douglas Mast: Time-domain diffraction tomography
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imaginary part of each reconstruction is identically zero
both reconstructions. Consistent with the point-spread fu
tions shown in Fig. 2, the time-domain reconstruction
much more accurate than the single-frequency reconst
tion. While the single-frequency reconstruction shows an
roneously rippled surface, the time-domain reconstructio
smooth. The time-domain reconstruction is nearly identi
to the original object except for some rounding of the sh
edges due to the limited high-frequency content of the sig
employed. The length scale of the rounded edges is on
order of one-half the wavelength of the highest frequency
the pulse, i.e., about 0.2 mm for the26-dB cutoff of 3.25
MHz.

Since three-dimensional inverse scattering is a comp
tionally demanding problem, comparison of computatio
efficiency for single-frequency and time-domain methods
of interest. For both reconstructions shown in Fig. 7, iden
cal discretizations of the reconstructed medium were e
ployed. Both computations included solution of the app
cable linearized forward problem as well as the inve
problem. Nonetheless, the time-domain method was m
efficient than the single-frequency method; the total C
time required on a 200-MHz AMD K6 processor was 133
CPU min for the time-domain method and 287.4 CPU m
for the single-frequency method. This gain in efficiency w
possible because the greatest computational expense
curred in the ‘‘backpropagation’’ of the signals for each r
construction point. For the single-frequency method, t
step required evaluation of complex exponentials for e
incident-wave direction, measurement direction, and spa
point. For the time-domain method, however, the compu
tionally intensive steps~including the forward problem solu
tion and Fourier interpolation of the scattered signa!
needed only to be performed once for each transmit/rec
pair. For the backpropagation step, performed at each p
in the 3D spatial grid, the time-domain reconstructi
method required only linear interpolation of the oversamp
farfield pressure waveforms.

IV. CONCLUSIONS

A new method for time-domain ultrasound diffractio
tomography has been presented. The method provides q
titative images of sound speed variations in unknown me
when two pulse center frequencies are employed, the me
is also capable of imaging density variations. Reconstr
tions performed using this method are equivalent to multip

FIG. 7. Three-dimensional reconstructions of a uniform slab with cont
g50.01. Each reconstruction shows an isosurface rendering of the su
gM50.0025. Left: single-frequency reconstruction. Right: time-domain
construction.
3070 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
r
c-

c-
r-
is
l

p
al
he
n

a-
l
s
i-
-

-
e
re

s
oc-
-
s
h
al
-

ve
int

d

an-
a;
od
c-
-

frequency reconstructions using filtered backpropagation,
can be obtained with much greater efficiency.

The time-domain reconstruction algorithm has been
rived as a simple filtered delay-and-sum operation applie
far-field scattered signals. This algorithm is closely related
time-domain confocal synthetic aperture imaging, so tha
can be considered a generalization of imaging algorith
employed in current clinical instruments. The simplicity
the imaging algorithm allows straightforward addition of fe
tures such as time-gain compensation and aberration co
tion.

Numerical results obtained using synthetic data for
and 3D scattering objects show that the time-domain met
can yield significantly higher image quality~and, in some
cases, also greater efficiency! than single-frequency diffrac
tion tomography. Quantitative reconstructions, obtained
ing signal parameters comparable to those for present
clinical instruments, show accurate imaging of objects w
simple deterministic structure, random internal structure,
structure based on a cross-sectional tissue model.
method is hoped to be useful for diagnostic imaging pro
lems such as the detection and characterization of lesion
ultrasonic mammography.
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