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The spatial-frequency spectra of the spatial properties of a scattering medium can be determined
from measurements of scattering over a number of angles or frequencies. In such measurements, the
spatial localization associated with transducer beam patterns and time gates causes an uncertainty in
the measured spatial-frequency domain properties of the scatterer. This uncertainty is analyzed using
an analytic and computational model in which system effects are represented by a spatial-frequency
domain function. Wave space resolution in a particular direction is shown to be inversely
proportional to the spatial-frequency spread of the system function in that direction. In the
backscatter case, wave space resolution is limited in the direction of the scattering vector by a
convolution of the emitted pulse and the detector time gate, and resolution in the lateral direction
depends mainly on the transducer aperture, increasing approximately in proportion to the aperture
diameter. In the case of backscatter measurements, smooth aperture apodization improves lateral
resolution somewhat but has little effect on resolution in the direction of the scattering vector. For
angular scattering measurements, resolution in all directions depends on both the aperture size and
~for sufficiently short time gates! on the time gates employed. Illustration of the practical importance
of wave space resolution is provided using analysis of two previously published tissue
characterization experiments. ©1995 Acoustical Society of America.

PACS numbers: 43.80.Ev, 43.80.Vj

INTRODUCTION

The acoustic scattering caused by a given inhomoge-
neous object may, under the proper circumstances, be corre-
lated directly with the spatial-frequency spectrum of the ob-
ject’s inhomogeneities. More specifically, for weakly
scattering media, the scattered field corresponds to a spatial
Fourier transform of the medium variations. Since the early
20th century, measurements of x-ray diffraction based on this
principle have been used for materials characterization.1

The potential of ultrasonic scattering measurements for
tissue characterization has been recognized since the
1970s.2–6 Since that time, the theoretical basis for the deter-
mination of tissue structure from scattering measurements
has been laid by a number of investigators considering
backscatter7–15 and angular scattering16–20 configurations.
Because disease can affect the acoustic scattering properties
of certain tissues, tissue characterization of this kind has po-
tential use as a diagnostic tool. Experimental techniques
based on this principle have been implemented for diagnosis
of disease in cardiac tissue,21–23 liver,22,24–26kidney,25 breast
tissue,27 and skeletal muscle.28

The principle behind tissue characterization from ultra-
sonic scattering is that scattering measurements can be used
to estimate the spatial-frequency properties of tissue. For
weak scattering, the average differential scattering cross sec-
tion for a given angle and frequency is approximately pro-
portional to the spatial-frequency spectrum of the medium
variations for a given value of the scattering vector,29 which
is defined to be the difference of the incident wave vector
and the scattered wave vector. In the case of backscatter

measurements, the temporal-frequency dependence of the
backscatter coefficient is approximately proportional to the
spatial-frequency dependence of the spectrum of the medium
variations.

These relations are approximate, even for weak scatter-
ing, since in practical scattering measurement systems the
incident wave is a beam rather than a plane wave, the scat-
tered field is detected over a finite aperture rather than at a
point, the incident wave has a finite duration, and detection
occurs over a finite temporal interval. These deviations from
the ideal situation have the result that the measured scattered
field is not directly proportional to the spatial-frequency
spectrum of the scatterer properties. Instead, the measured
field can be interpreted as an integral of this spectrum
weighted by a function that represents the measurement sys-
tem effects.

The effect of the measurement system is usually as-
sumed to be equivalent to a frequency- and angle-dependent
scaling of the scattering data. The theories cited above7–19

include methods to remove this scaling so that intrinsic scat-
terer properties such as the differential scattering cross sec-
tion or backscatter coefficient can be determined from scat-
tering measurements. Such an approach requires the implicit
assumption that removal of measurement system depen-
dences yields an accurate approximation of the scatterer
properties. Scattering measurements for which this assump-
tion is invalid cannot be normalized to accurately obtain in-
trinsic scatterer properties, so that such measurements may
not be useful for tissue characterization.

The validity of this assumption is examined in the
present paper using a previously developed model18,19 for
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system effects in ultrasonic scattering measurements. In this
model, the system effects are represented in the spatial-
frequency and temporal-frequency domains by a ‘‘system
function.’’ Because the acoustic fields do not cover all of real
space, the system function is not concentrated at a point in
wave space, but has a finite spread. This wave space spread
causes a loss of resolution in measurements of the spatial-
frequency properties of a scatterer. When resolution is lost,
features in the spatial-frequency spectrum of the scattering
object are blurred and useful diagnostic information may be
lost. When the system function spread is comparable to the
spread of the spatial-frequency properties of the scattering
object, accurate measurement of the spatial-frequency prop-
erties of the object is impossible. For these reasons, consid-
eration of wave space resolution is important for the design
of quantitative imaging and tissue characterization measure-
ments.

Section I of this paper briefly reviews the theory pre-
sented in Refs. 18 and 19 and develops a link between sys-
tem function properties and wave space resolution. Detailed
system function computations are outlined in Sec. II and
computational results are presented in Sec. III. The effect of
wave space resolution limitations on tissue characterization
and quantitative imaging experiments is discussed in Sec. IV
in the context of two previously published experiments.

I. THEORY

Below, the usual ideal, approximate relations used in
tissue characterization measurements are briefly stated. More
general expressions18,19 for the relations between measured
scattering and spatial-frequency spectra of tissue are then
summarized. These general expressions are then used to de-
rive the relationship between the achievable spatial-
frequency resolution and the properties of the measurement
system used in a scattering experiment.

The present theory treats measurement of scattering
from inhomogeneous media. The inhomogeneities consid-
ered consist of local variations in compressibilityk and in
densityr, defined, respectively, as

gk5
k2k0

k0
, gr5

r2r0
r

, ~1!

wherek0 is the ambient compressibility andr0 is the ambient
density.

For single-frequency, plane-wave incidence, point recep-
tion in the far field of the scattering region, and whengk!1
andgr!1 ~so that the Born approximation holds!, the scat-
tered pressure is29

ps~K0!5A2p2k0
2~eik0r /r !G~2K0!. ~2!

Here k05v0/c is the wave number of the incident wave
wherev0 is the radial frequency andc is the speed of sound
outside the inhomogeneous region. The amplitude of the in-
cident wave is denoted byA. The distancer is the magnitude
of a vector r pointing to the measurement point from the
origin. The reference scattering vectorK0 is defined as

K05I02O0 , ~3!

whereI0 is a vector of magnitudek pointing in the direction
of propagation of the incident wave andO0 is a vector of
magnitudek and the same direction asr . The reference scat-
tering vector has the magnitude

K052~v0 /c! cos~u!, ~4!

where 2u is the angle between the emitter and the detector, as
sketched later in Fig. 2. The functionG~K0! is the three-
dimensional Fourier transform of the variation function

g~r !5gk~r !1
I0–O0

k0
2 gr~r !. ~5!

Equations~2!–~5! have the result that in backscatter mea-
surements~u50!, the frequency-dependent backscatter coef-
ficient is directly proportional to the spectrum of the medium
variations, while in angular scattering measurements this
spectrum can be determined from the angular dependence of
scattering.

For the case of statistically homogeneous or stationary
random scattering media, the power spectrum of the medium
variations may be defined as the Fourier transform of the
autocorrelation function of the medium variations:

Sg~K0!5
1

~2p!3
E
V
^g~r 8!g~r 81r !&e2 iK0–r d3r . ~6!

When the ‘‘ideal’’ conditions listed before Eq.~2! are
valid, the scattered power~averaged over many realizations
of the scattering medium! is directly proportional to the
spatial-frequency spectrum of the medium variations. This
proportionality is governed by the relation29

s̄d~K0!5~k0
4p/2!Sg~K0!, ~7!

where the average differential scattering cross sections̄d~K0!
is defined as the average scattered power for unit intensity,
solid angle, and scatterer volume.

The foregoing simple relationships no longer hold when
the incident wave is not planar, when the area of detection is
finite, or when the times of transmission and detection are
finite. In this nonideal case, expressions analogous to Eqs.
~2! and ~7! are18,19

Pm~K0 ,v0!5E
K

G~2K ,v0!LW~K ,K0 ,v0!d
3K ~8!

for the case of scattering media with well-defined Fourier
transforms and

^uPm~K0 ,v0!u2&5E
K
Sg~K ,v0!uLW~K ,K0 ,v0!u2 d3K

~9!

for the case of statistically homogeneous scattering media.
The measured quantity is now taken to bePm~K0,v0!, the
temporal harmonic spectrum of the measured pressure inte-
grated over the surface of the receiving transducer. The vari-
ables of integration are the components of the scattering vec-
tor K , defined asI2O where the variable local vectorsK , I ,
and O are defined in a manner analogous to the constant
reference vectorsK0, I0, andO0. Here the general wideband
‘‘system function’’LW , which incorporates the effects of fi-
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nite emitter and detector beam patterns and time gates, is
given by

LW~K ,K0 ,v0!5~2p!4k0
2 E WE~v!WD~v02v!F ivr

4p

3E VE~n!VD~h!eizEn3eizDh3 dfGdv,

~10!

whereWE andWD are temporal spectra of the emitter wave-
form and the detector time gate,VE and VD are angular
spectra of the emitter and detector velocity beam patterns,
andzE andzD are distances from the origin to the emitter and
detector. Definitions for the spatial-frequency vectorsn and
h, their componentsn3 andh3, and the anglef as well as the
limits of thef integration are given in Ref. 18. The vectorsn
and h are functions off. The quantity within the square
brackets is defined to beL~K ,K0,v0! and is called the beam
intersection function since it represents a wave space product
of emitter and detector beam functions.

Sketches of the scattering geometry in real space and
wave space are given in Figs. 1 and 2 for backscatter and
angular scattering configurations, respectively. In the back-
scatter case, the extent of the scattering region in range is
determined by the emitter and detector time gates and the
extent in azimuth is determined by the emitter and detector

beam patterns. In the angular scattering case shown, the scat-
tering region is defined by the intersection of the emitter and
detector beams. The effective scattering region may also, in
general, be influenced by the emitted waveform and the de-
tector gate. In any case, the finite extent of the scattering
region in real space corresponds to a finite spread of the
beam intersection function in wave space about the point
corresponding to the reference scattering vectorK0.

In the derivation below, an arbitrary vectorK is repre-
sented by its Cartesian componentsK1, K2, and K3, or,
equivalently,Kx , Ky , andKz . Thex direction is defined as
perpendicular to they andz directions, so that in Fig. 2 the
Kx axis points into the page. TheKr component of a vector
K , as shown in Fig. 1, is defined asAK1

21K2
2.

When all significant contributions to thev integration
come from the frequency region whereuv2v0u/v0!1 and
when the overall spread ofL is small with respect tok, LW

can be approximately represented by the narrow-band system
function19

LN~K ,K0 ,v0!

5~2p!4k0
2 E LF SK22

v2v0

c
cosu i3D ,K0 ,v0G

3WE~v!WD~v02v!eiv~zE1zD!/c dv. ~11!

Here,i3 is the unit vector in theK3 direction. In this case, the
narrow temporal-frequency spectra of the emitter and detec-
tor beams and the narrow spatial-frequency extent ofL allow
theK3 integration to be represented by a convolution in the
temporal frequencyv.

For the case of an infinite detector time gate,WD takes
the form of a Dirac delta function and the system function
LW simplifies to the form

LA5~2p!4k0
2WE~v0!e

ik0~zE1zD!L~K ,K0 ,v0!. ~12!

Thus, in the case of an infinitely long detector gate, the
spread of the system function depends only on the character-
istics of the emitter and detector beams, while the finite du-
ration of the emitter waveform affects the system function
only through a multiplicative constant.

The spectral functionsG~K0! and Sg~K0! can be esti-
mated from scattering measurements ifLW is concentrated
near one point in wave space and ifG and Sg are slowly
varying relative toLW . Then the effect ofLW in the integrals
of Eqs. ~8! and ~9! is like that of a Dirac delta function. In
this case, the spectra may be estimated as

G~K0 ,v0!'Pm~2K0 ,v0!/H~• !
V ~13!

and

Sg~K0 ,v0!'^uPm~K0 ,v0!u2&/uH ~• !u2, ~14!

respectively, where

H ~• !
V 5E

K
L~• ! d

3K, ~15!

uH ~• !u25E
K

uL~• !u2 d3K, ~16!

FIG. 1. Backscatter geometry. In the left panel, a transducer serving as
emitter E and detector D probes a scattering object. The effective scattering
region, defined by the transducer’s beam pattern, pulse length, and receiver
time gate, is denoted by stippling. In the right panel, the wave space repre-
sentation of this scattering system is shown. The spread of the effective
scattering region in real space corresponds in wave space to a concentration,
denoted by stippling, around the scattering vectorK0.

FIG. 2. Angular scattering geometry. In the left panel, an emitter E and a
detector D, separated by an angle 2u, probe a scattering object. The effective
scattering region, denoted by stippling, is defined by the intersection of the
emitter and detector beams. The right panel shows the wave space represen-
tation of this system, in which the real-space spread of the effective scatter-
ing region corresponds in wave space to a concentration, denoted by stip-
pling, about the scattering vectorK0.
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and ~•! representsW, A, or N.
In Eqs. ~15! and ~16!, the overall system effects at one

spatial-frequency pointK0 are approximated by an integra-
tion of a system functionL~•! over all wave space. These
approximations are strictly valid only in the limit where the
system functionL~•! is tightly concentrated at one point in
wave space. For realistic measurement systems, when Eq.
~15! or ~16! is used to estimate the spatial-frequency proper-
ties of a scattering object or region, error results from the
finite extent of the functionsL~•! in wave space. This error
has the effect of decreasing the spatial-frequency resolution
that can be achieved. When the spatial-frequency resolution
is inadequate, certain features of the spatial-frequency spec-
trum of the scatterer properties~for instance, peaks in the
spectrum corresponding to nearly periodic spacings of corre-
lated inhomogeneities! will not be resolved.

The specific link between system function spread and
wave space resolution is shown in the following derivation.
The general problem of resolving features of scattering ob-
ject spatial-frequency spectra is represented in this derivation
by a simple canonical problem. The spatial-frequency spec-
trum of the scattering object is taken to be a sum of Dirac
delta functions, corresponding to two dominant spatial-
frequency components in the spectrum. This can be regarded
as a fundamental limiting case of the problem of resolving
narrow features of the spatial-frequency spectrum.

Consider a Gaussian system function~written, for con-
venience, without constant coefficients! such that

uL~• !u25e2uK2K0u2/~2a2! ~17!

and a scattering region for whichSg is comprised of two
Dirac delta functions, which may be assumed without loss of
generality to be located along thei3 axis, such that

Sg~K0 ,v0!5d@~K82e!i32K0#1d@~K81e!i32K0#,

~18!
where e is an arbitrary spatial-frequency parameter. The
functionSg may be estimated by measuring^uPm~K0!u

2& for
scattering vectorsK0 having directioni3 ~which corresponds
to backscatter measurements! and varying magnitudeK0.

Then, from Eq.~9!, the spectrum of the measured pres-
sure is

^uPm~K0!u2&

52e2~K0
2
22K8K01K821e2!/~2a2! cosh

e~K02K8!

a2 .

~19!

The measured spectrum̂uPmu2& will resolve the two peaks
only if a is sufficiently small. The absolute limit beyond
which the peaks cannot be resolved is the value ofa for
which d2^uPmu2&/dK0

2 is equal to zero; this occurs fora5e,
so that peaks separated by less than 2a cannot be resolved.

The increase of resolution with decreasinga can be
quantified by examining the ratio of^uPmu2& evaluated at one
of the peaks and̂uPmu2& evaluated at the central point be-
tween the peaks:

^uPm~K81e!u2&
^uPm~K8!u2&

5
1

2
ee2/~2a2!~11e22e2/a2!. ~20!

This ratio takes a value of& ~3 dB! for a50.70e and takes
a value of 2~6 dB! for a50.60e, so that spatial-frequency
features are resolvable by 3 dB if separated by more than 2.9
a and are resolvable by 6 dB if separated by more than 3.3a.

In general, the spread ofuL~•!u
2 in a given direction may

be described by the second central moment in that direction,
given by18

sn
2~ uL~• !u2!5

*K~Kn2 in–K0!
2uL~• !~K !u2 d3K

*KuL~• !u2 d3K
, ~21!

wheren51, 2, or 3.
For the Gaussian form ofuL~•!u

2 given in Eq.~17!, the
second central moment in each direction is simplya2. In this
case, for estimates of the spectrumSg , spectral features
spaced more closely in the directionin than 2sn~uL~•!u

2! can-
not be resolved. For other forms ofuL~•!u

2, the second central
moment provides an estimate of the system function spread
that is analogous to the Gaussian parametera as long as
uL~•!u

2 is concentrated in the region of its main peak. This is
the case for all the system functions to be examined in this
paper so that, for all cases examined here, the second central
moment in a given direction, as defined by Eq.~21!, is used
to obtain an estimate of the achievable wave space resolu-
tion.

Asymptotic results for Gaussian apertures and time gates
have been previously described.19 These results were derived
for the case in which the emitter size is equal to the detector
size and the Gaussian parameter of the emitted pulse is equal
to that of the detector time gate. The asymptotic approxima-
tions made were consistent with the assumptions that the
system functionL~•! is concentrated over a small region in
wave space and that the emitter and detector time gates are
sufficiently long for the narrow-band approximation to be
applicable. These assumptions are validated by the good
agreement of the asymptotic and exact results obtained for
Gaussian apertures.

The asymptotic results given in Ref. 19 are briefly sum-
marized here for convenient reference, using the symbolsH
and` to denote the asymptotic forms ofH andL. However,
the corresponding equations forHN

V andHA
V in Ref. 19 are in

error by a factor of~2p!4 while those foruHNu2 and uHAu2 are
in error by factors of~2p!8; these errors are corrected in the
following equations.

The assumptions behind the following equations are that
the system functionL is concentrated near one point in wave
space, so that a spatial-frequency analog of the Fresnel ap-
proximation may be used, and that the narrow-band approxi-
mation is valid. Under these conditions, for Gaussian aper-
tures with Gaussian parametera and time gates with
Gaussian parameterat and nondimensional amplitudeAt ,

HA
V~K0 ,v0!5

i22p3rA0v0WE~v0!e
i2k0z

~11 iz/k0a
2!2

, ~22!

uHA~K0 ,v0!u25
21/2p9/2r2A0

2a3v0
2uWE~v0!u2

@11~z/k0a
2!2#1/2

1

sin 2u
,

~23!

HN
V~K0 ,vc!5

i2p5/2rA0At
2a tvce

i2kcz

~11 iz/kca
2!2

, ~24!
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uHN~K0 ,vc!u25
225/2p7/2r2cA0

2At
4a t

3a2vc
2

$@11~z/kca
2!2#@11~ca t tan u!2/a21~z/kca

2!2#%1/2
1

cos2 u
, ~25!

s1~ u` ~• !u2!5
1

a
, s2~ u` ~• !u2!5

cosu

a
, ~26!

and

s3~ u` ~• !u2!5A 1

~ca t!
2 cos

2 u1
1

a2 sin
2 u. ~27!

As shown above, wave space resolution in thei th direction
for a given measurement system is proportional to 1/si . Thus
Eqs.~26! and~27! lead to the conclusion that the wave space
resolution limit achievable with Gaussian transducers is ap-
proximately inversely proportional to the aperture size of the
transducer except in the backscatter direction. There, the
resolution limit in the lateral direction is approximately in-
versely proportional to the aperture size while the resolution
limit in the axial direction is inversely proportional to the
time gate length. For other transducers, analogous asymp-
totic results imply that the wave space resolution limit is
approximately inversely proportional to the aperture size~al-
though by a different constant! as long as the assumptions
behind Eqs.~22!–~27! are valid. As seen from Eq.~27!, how-
ever, short time gates will further decrease the wave space
resolution achieved in angular scattering experiments.

II. COMPUTATIONAL METHOD

Computations ofL~K ,K0,v0! and LN~K ,K0,v0! were
carried out for axially symmetric Gaussian, exponential, and
uniform ~disk! emitters and detectors in backscatter and an-
gular scattering configurations.

The apertures were defined such that for equivalent radii
r eq, the total emitted power and the far-field on-axis ampli-
tude were equal. Without loss of generality, the emitter ve-

locity amplitude and detector sensitivity were taken to be
unity for the disk apertures. For the equivalence conditions
to hold, the apodizationsf (r ) ~emitter velocity distribution
and detector sensitivity patterns! are as follows:

f ~r !5H u~r eq2r ! ~disk!,
4e2r /a, a5r eq/~2& ! ~exponential!, ~28!

2e2r2/~2a2!, a5r eq/2 ~Gaussian!,

whereu represents the Heaviside step function andr is the
magnitude of a vectorr directed from the origin to a point on
the emitter or detector surface.

Constant parameters in the calculations weref55.0
MHz, z5135 mm,c51.503 mm/ms, andr50.001 g/mm3.
The only parameters varied were the angle, transducer size,
and time gate length, since these quantities control the spread
of the system function and therefore the wave space resolu-
tion. Variations in frequency and distance affect the magni-
tudes of the normalization integrals but do not strongly affect
the spread of the system function.19

Backscatter calculations were carried out for effective
transducer radii of 3.175, 6.5, and 10 mm and for Gaussian
time gate parameters of 3 and 6ms as well as infinite time
gates. In all cases, the emitter and detector time gate param-
eters were equal. Angular calculations were carried out using
effective radii of 6.5 mm and angles of 33°, 48°, and 60°.
These angles, together with the backscatter calculations, cor-
respond to evenly spaced steps between 3.33 and 6.65
cy/mm in the spatial-frequency variableK/2p.

The narrow-band system functionLN was not calculated
for the angular scattering configurations examined here be-
cause the spread of the system functions in these cases is
primarily determined by the aperture characteristics, because

FIG. 3. System function magnitudes for 6.5-mm Gaussian, exponential, and disk apertures in backscatter configuration. Each is shown over a 60-dB range
where white represents the maximum value and black represents values more than 60 dB below the maximum. Top row:LA , second row:LN , st56 ms;
bottom row:LN , st53 ms.
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in practical experiments long time gates may be used in these
configurations, and because the narrow-band assumption was
sometimes invalidated by the considerable spread ofL.

The system functionL was computed by a method de-
scribed previously.18 The narrow-band system functionLN

was obtained for the case of Gaussian time gates by imple-
menting Eq.~11! as a convolution in theK3 direction for
each (K1 ,K2) pair.

The transfer functionsHA
V anduHAu2 were calculated for

each case using the reference valueWE~v0!51 s. The
narrow-band transfer functionsHV

N and uHNu2 were calcu-
lated for the backscatter configurations with finite time gates.
The second central moments ofuLAu2 and uLNu2 were com-
puted in all three Cartesian directions for the angular scatter-
ing case, and in the axial and lateral directions for the back-
scatter case.

III. RESULTS

Representative system function magnitudes for the back-
scatter case are shown in Fig. 3. The results illustrate that
increasing the length of the emitter and detector time gates
decreases the spread of the system function and therefore
improves wave space resolution in theKz direction, i.e., in
the direction of the reference scattering vector. Wave space
resolution in the lateral direction is controlled by the aperture
size and apodization; the time gate lengths have almost no
effect on the resolution in this direction.

Cross-sectional renderings of the system function mag-
nitude uLAu are shown in Fig. 4 for Gaussian, exponential,
and disk apertures of radius 6.5 mm. Of particular note here
is the large spread of the system function in the case of disk
apertures. This large spread means that measurements nomi-
nally taken at the reference scattering vectorK0 are blurred
by spatial-frequency information far fromK0.

Quantitative results of the computations are shown in
Table I for the backscatter calculations and Table II for the
angular scattering calculations. All of the reported calcula-
tions for Gaussian apertures agree with the asymptotic results
@Eqs. ~22!–~27!# within a fraction of 1%. The calculations
for exponential and disk apertures show, for the most part,
agreement with the angular dependences predicted by the
asymptotic results for Gaussian apertures. The transfer func-
tions H (•)

V are nearly constant with angle and the transfer
functions uH ~•!u

2 are nearly proportional to 1/sin~2u!, as pre-
dicted by the asymptotic theory. Likewise, the total radial
second central moments 5 As1

21s2
21s3

2 is nearly constant
with angle for all three apertures in the angular scattering
configurations. For all the apertures in the backscatter con-

FIG. 4. System function magnitudesuLAu for 6.5-mm Gaussian, exponential,
and disk apertures in angular scattering configuration. The system functions
are shown in cross sections taken at the planeKx50. Each is shown over a
30-dB range where white represents the maximum value and black repre-
sents values more than 30 dB below the maximum. Each of the three panels
showsuLAu for u533°, 48°, and 60°, respectively, from top to bottom.

TABLE I. Radial and axial momentss i(uLNu2) ands i(uLAu2) and normalization factorsuHNu2, uHAu2, uHN
Vu, anduHA

Vu, for identical Gaussian, exponential, and
uniform apertures in backscatter configuration. The subscriptA corresponds to results for infinite time gates and the subscriptN corresponds to results for
finite time gates obtained using the narrow-band approximation.

Effective
radius
~mm!

Time gate
parameter

~ms!

Gaussian Exponential Uniform

sr

~cy/mm!
sz

~cy/mm!
uH ~•!u2

g2/mmms2

uH (•)
V u

g/~mm2

ms!
sr

~cy/mm!
sz

~cy/mm!
uH ~•!u2

g2/~mmms2!

uH (•)
V u

g/~mm2

ms!
sr

~cy/mm!
sz

~cy/mm!

uH ~•!u2

g2/~mm
ms2!

uH (•)
V u

g/~mm2 ms!

3 0.142 0.0353 0.0213 1.75 0.149 0.0353 0.0160 1.34 0.188 0.0357 0.0206 1.91
3.175 6 0.142 0.0177 0.171 3.50 0.149 0.0178 0.128 2.69 0.188 0.0178 0.165 3.83

` 0.142 0.00214 6.60 2.07 0.189 0.00707 6.60 1.59 0.187 0.0143 5.31 2.26

3 0.0693 0.0353 0.492 9.60 0.0875 0.0353 0.451 7.88 0.106 0.0354 0.361 13.0
6.5 6 0.0693 0.0177 3.93 19.2 0.0875 0.0177 3.61 15.8 0.106 0.0179 2.89 26.0

` 0.0692 0.000510 110 11.3 0.0921 0.00165 113 9.31 0.0914 0.00336 92.5 15.3

3 0.0450 0.0353 1.50 12.4 0.0661 0.0353 1.97 15.1 0.0945 0.0354 0.766 6.84
10 6 0.0450 0.0177 12.0 24.8 0.0661 0.0177 15.7 30.2 0.0944 0.0179 6.13 13.7

` 0.0450 0.000215 648 14.6 0.0596 0.000703 634 17.8 0.0593 0.00141 516 8.08
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figuration, the dependence of the moments and transfer func-
tions on the time gate length agree closely with those pre-
dicted by the asymptotic theory.

The only notable discrepancy with the predictions of the
asymptotic theory is seen in the results of the angular calcu-
lations for the disk apertures. In this case, as can be seen in
Fig. 4, the spread of the system function in theK2 andK3
directions is considerably greater than that in theK1 direc-
tion, while the asymptotic theory predicts that the spread is
always largest in theK1 direction. Also, for disk apertures,
the total second central moments is larger in the angular
scattering configuration than in the backscatter configuration,
while the asymptotic theory predicts that it should be con-
stant. The total second central moment is nearly constant
over all angles examined for the exponential and Gaussian
apertures.

The implications of these results for wave space resolu-
tion may be summarized as follows. For angular scattering
measurements, the total second central moment
s5As1

21s2
21s3

2 may be used to estimate an overall limit
on the wave space resolution. Since the second central mo-
ment is approximately inversely proportional to the aperture
size,19 the 3-dB resolution limit for angular scattering mea-
surements may be estimated~in cy/mm! as

DK

2p
5H 2.86s,

2.6r eq
21 ~disk!,

1.7r eq
21 ~exponential!,

1.3r eq
21 ~Gaussian!.

~29!

For backscatter measurements,sr is close to s for
equivalent transducers in an angular scattering configuration,
so that wave space resolution in the lateral direction may be
estimated using Eq.~29!. More precise estimates based on
the detailed calculations reported here are shown in Fig. 5.

Resolution in the direction of the scattering vector de-
pends mainly on the characteristics of the emitted pulse and
the detector gate. For a backscatter configuration employing
Gaussian time gates, the 3-dB resolution limit in the axial
direction is approximately

DK/2p52.86~2pca t!
21. ~30!

The approximate expression given in Eq.~30! agrees very
well with the calculated values reported in Table I for all the
apertures and time gates examined.

IV. DISCUSSION

The results of this study may be used for quantitative
estimation of the wave space resolution achievable with a
given measurement system. Below, the principles of charac-
terizing an experimental scattering configuration are illus-
trated by two examples.

The results of Waaget al.30 provide an example of a
tissue characterization experiment employing angular scat-
tering measurements. In their study, measurements of angu-
lar scattering from calf liver were used. The emitter and de-
tector were disk transducers of radius 3.175 mm, and the
scattering volume was illuminated by tone bursts. The 3-dB
resolution limit for this measurement system may be esti-
mated from Eq.~29! as DK/(2p)52.6r 0

2150.8 cy/mm.
The scanned range of spatial frequencyK/~2p! was 3.5–7.0
cy/mm. Thus the measured spatial-frequency information
was blurred over scales on the order of 0.8 cy/mm, so that
spatial-frequency features of smaller scale than this were not
resolvable. However, since the resolution limit was consid-

FIG. 5. Calculated lateral 3-dB resolution limit for Gaussian, exponential,
and disk apertures in backscatter configuration.

TABLE II. Momentss i(uLAu2) ands~uLAu2! and normalization factorsuHAu2 and uHA
Vu for identical Gaussian,

exponential, and uniform apertures in angular scattering configuration.

Aperture
u

~deg!
sx

~cy/mm!
sy

~cy/mm!
sz

~cy/mm!
s

~cy/mm!
uHAu2

g2/~mmms2!
uHA

Vu
g/~mm2 ms!

33 0.0490 0.0411 0.0267 0.0693 124 11.3
Gaussian 48 0.0490 0.0328 0.0364 0.0693 114 11.3

60 0.0490 0.0245 0.0424 0.0693 130 11.3

33 0.0620 0.0551 0.0358 0.0903 119 9.23
Exponential 48 0.0620 0.0440 0.0488 0.0903 109 9.23

60 0.0620 0.0328 0.0569 0.0903 126 9.23

33 0.0665 0.0100 0.0714 0.140 95.0 15.5
Uniform 48 0.0665 0.0834 0.0892 0.139 87.2 15.5

60 0.0665 0.0661 0.0973 0.135 100 15.5
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erably smaller than the range scanned, the measured spectra
accurately characterized spatial-frequency variations on
scales larger than 0.8 cy/mm.

As an example of a tissue characterization experiment
employing backscatter measurements, the study of Zagzebski
et al.31 may be examined. In this study, backscatter from
human liver tissue was measuredin vivo using a commercial
scanner. Real-space images were also formed using the scat-
tering data, so that wideband pulses and relatively short time
gates were used in order to increase the real-space resolution.
Time gating was performed with a Blackman–Harris win-
dow of length 4ms applied in software postprocessing.
Broadband backscatter signals were decomposed into fre-
quency components over the range 2.25–3.75 MHz, which
corresponds to a spatial-frequency range of 3.0–5.0 cy/mm.

The effect of the windowing may be estimated using the
results reported here for Gaussian time gates. Since the emit-
ted pulses were wideband, the combined effect of the emitter
and detector time gates may be approximated by that of the
detector gate alone. In this case, the wave space resolution in
the axial direction can be obtained from the formulas given
above for the case of identical emitter and detector time gates
with at replaced byat/&.

The Blackman–Harris window used by Zagzebskiet al.
corresponds best~in the least-mean-square error sense! to a
Gaussian time gate withat50.680ms. The 3-dB resolution
limit in the direction of the scattering vector is, using Eq.
~30!, approximately 0.63 cy/mm and the estimated absolute
resolution limit is 0.44 cy/mm. The frequency step in this
study was 0.25 MHz, which corresponds to a spatial-
frequency increment of 0.33 cy/mm. Thus their measured
backscatter data were somewhat blurred by system effects
over a range on the order of one spatial-frequency step.
However, as in the case of Ref. 30, the scale of the spatial-
frequency blur was considerably smaller than the extent of
the spatial-frequency range examined, so that the measured
frequency-dependent backscatter coefficient can still be in-
terpreted as an accurate estimation of the tissue spatial-
frequency spectrum. The resolution limit calculated here is
consistent with Zagzebski’s empirical observation that win-
dow lengths smaller than 4ms resulted in inadequate deter-
mination of the frequency dependence of backscatter for a
frequency step of 0.5 MHz~corresponding to a spatial-
frequency step of 0.67 cy/mm!.31

In the present study, attenuation of scattering objects
was not considered. Although attenuation would affect the
magnitudes of the transfer functions derived here, the present
results for wave space resolution are still valid for weakly
attenuating media. More specifically, the wave space resolu-
tion effects described here are not significantly changed by
attenuation as long as the length scale over which the attenu-
ation occurs is considerably larger than the correlation length
of the scattering medium variations. Since tissue is weakly
attenuating over the range of ultrasonic frequencies relevant
for tissue characterization, the wave space resolution results
presented here are expected to be valid for ultrasonic scatter-
ing by tissue.

Although the theory presented here provides extensive
insight about the spatial-frequency blur caused by measure-

ment system effects, the full computations reported here are
not an ideal approach to normalization of scattering measure-
ments. Calculation of the exact normalization factorsuH ~•!u

2

andH (•)
V requires extensive computations. For example, the

computations reported here typically required 1–12 h of
CPU time on an IBM ES 9000 computer.

For this reason, calculation of normalization factors us-
ing the full integral expressions is most useful as a bench-
mark for simplified, more computationally efficient methods.
When the accuracy of approximations made is verified using
such a benchmark, reasonable accuracy may be obtained
conveniently from the asymptotic formulas given here for
Gaussian apertures and time gates@Eqs.~22!–~25!#, since the
results for all apertures had nearly the angle and time gate
dependence predicted by the asymptotic Gaussian theory.
The differences in magnitude of the normalization integrals
may be removed by any calibration procedure that uses a
known scattering object, e.g., a perfect reflector.

The results of the present study have important implica-
tions for tissue characterization measurements. The calcula-
tions show that accurate determination of the spectral fea-
tures of tissue properties requires a tight concentration of the
emitter and detector beam patterns in wave space, which in
turn requires a broad region of plane-wave-like illumination
in real space. Because of this trade-off between real-space
and wave space resolution, high spatial resolution ultrasonic
measurements such as those used in conventional b-scan im-
aging are not well suited for tissue characterization tech-
niques of the type discussed here. This trade-off also limits
the quality of any quantitative imaging system in which real-
space images of scattering object properties are made using
the principles of tissue characterization as discussed in the
present paper.

A further implication for tissue characterization is that
small regions of tissue cannot easily be characterized using
the methods discussed here. For instance, a tumor in the
early stages of growth may not be sufficiently large to com-
prise a scattering region of the size needed for good wave
space resolution. Tissue characterization techniques such as
those reported here do, however, have potential for diagnosis
of diffuse disease in relatively isotropic tissue such as liver.

V. CONCLUSION

Spatial-frequency resolution of scattering measurement
systems for tissue characterization has been analyzed using
wave space representations of emitter and detector beam pat-
terns and time gates. The theory explicitly characterizes the
wave space resolution achievable with a given scattering
measurement system in either backscatter or angular scatter-
ing configurations.

Detailed computations of measurement system effects
have been performed for Gaussian, exponential, and disk ap-
ertures for three transducer sizes in a backscatter configura-
tion and for three angles in an angular scattering configura-
tion. The computations show the nonuniform weight
imposed by measurement system effects on estimates of
spatial-frequency scattering medium properties. In the case
of disk apertures, this weight extends over a region of wave
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space that is large compared to the region where the weight
is mainly concentrated.

The computational and theoretical results show that
wave space resolution increases with aperture size and that
smooth transducer apodization also increases resolution. In
the case of backscatter measurements, axial resolution is de-
termined by the time gate lengths while lateral resolution is
determined by the apertures. In all cases, system require-
ments for high spatial-frequency resolution are converse to
those required for high spatial~imaging! resolution. In other
words, high spatial-frequency resolution requires broad,
plane-wave-like beams and long time gates, while high spa-
tial resolution requires tightly focused beams and short time
gates.
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