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An inverse scattering method that uses eigenfunctions of the scattering operator is presented. This
approach provides a unified framework that encompasses eigenfunction methods of focusing and
quantitative image reconstruction in arbitrary media. Scattered acoustic fields are described using a
compact, normal operator. The eigenfunctions of this operator are shown to correspond to the
far-field patterns of source distributions that are directly proportional to the position-dependent
contrast of a scattering object. Conversely, the eigenfunctions of the scattering operator specify
incident-wave patterns that focus on these effective source distributions. These focusing properties
are employed in a new inverse scattering method that represents unknown scattering media using
products of numerically calculated fields of eigenfunctions. A regularized solution to the nonlinear
inverse scattering problem is shown to result from combinations of these products, so that the
products comprise a natural basis for efficient and accurate reconstructions of unknown
inhomogeneities. The corresponding linearized problem is solved analytically, resulting in a simple
formula for the low-pass-filtered scattering potential. The linear formula is analytically equivalent to
known filtered-backpropagation formulas for Born inversion, and, at least in the case of small
scattering objects, has advantages of computational simplicity and efficiency. A similarly efficient
and simple formula is derived for the nonlinear problem in which the total acoustic pressure can be
determined based on an estimate of the medium. Computational results illustrate focusing of
eigenfunctions on discrete and distributed scattering media, quantitative imaging of inhomogeneous
media using products of retransmitted eigenfunctions, inverse scattering in an inhomogeneous
background medium, and reconstructions for data corrupted by noise. ©1997 Acoustical Society
of America.@S0001-4966~97!02308-4#

PACS numbers: 43.20.Fn, 43.60.Pt, 43.35.Wa, 43.80.Qf@ANN#
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INTRODUCTION

This paper presents a new inverse scattering method
employs the focusing properties of certain acoustic fields
tained by retransmitting eigenfunctions of the scattering
erator.

Eigensystem decomposition of the scattering opera
regardless of the inversion method employed, has pote
advantages in methods of collecting and analyzing scatte
data. Previous work in electrical impedance tomography
employed eigenfunction decomposition of an operator as
ciated with the measurement process to determine opt
input current patterns and quantify the achievable resolu
of imaging systems.1,2 These optimal inputs can also be d
termined by iteratively retransmitting input patterns that
proportional to the measured scattered field. This approac
essentially an analog implementation of the ‘‘pow
method’’ for determining the eigenvectors of matrices.2,3

Likewise, the techniques of optical and acoustic ph
conjugation4–7 and the analogous process of time reversa8,9

a!Current affiliation: Applied Research Laboratory, The Pennsylvania S
University, P.O.B. 30, State College, PA 16802.
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can be understood as analog methods of computing
eigenfunctions of an operator associated with the phase
jugation or time-reversal process. Simple focusing by ph
conjugation, in which received echoes are conjugated or t
reversed and retransmitted, is equivalent to a single itera
of the power method. Further iterations of this procedu
correspond to additional steps in the power method, and
converge to the most significant eigenfunction of the ass
ated operator at a rate specified by the ratio of the two larg
eigenvalues.3 The eigenfunctions of the ‘‘time-reversal op
erator,’’ whether obtained by iterative time reversal or
numerical diagonalization, have been previously shown
correspond to source distributions that can focus incid
energy on strong, pointlike scatterers.10,11

Eigensystem analysis has historically played a role
the theory of inverse scattering for radially symmet
objects.12 For these objects, separation of variables natura
leads to a representation of the scattering operator in term
trigonometric functions. Since these eigenfunctions are
same for any radial scatterer, the inverse scattering prob
could be reduced to the problem of determining the unkno
object from the eigenvalues of the scattering operator.

te
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However, before the method presented here, the fo
ing properties of eigenfunctions have not been exploited
quantitative reconstruction of inhomogeneous media. I
stated in Ref. 9 that the concept of time reversal ‘‘cannot
directly compared to computed tomography’’ or to ‘‘tec
niques that generate the image of the medium through si
analysis.’’ Although the basic principles of focusing on po
targets using the eigenfunctions of scattering operators h
been put forth in Ref. 10, these principles have not pre
ously been shown to apply to general distributed inhomo
neities. Furthermore, no general imaging method has hith
been based on these principles.

The current method presents a solution to the imag
problem by bringing together recent results in the theory
focusing, diffraction tomography, and inverse problems
synthesize a unified framework for quantitative imaging
inhomogeneous media. Application of the method shows
focusing on distributed inhomogeneities can be achieved
ing eigenfunctions and also provides a technique for qua
tative imaging of discrete and distributed inhomogeneit
using focusing properties.

This method has several advantages over current inv
scattering methods. First, the eigenfunction formulation p
vides optimal bases for reconstruction of unknown media
that inversions are performed with the minimum possi
complexity. Second, the method is applicable to any sca
ing medium for which the total acoustic pressure associa
with an incident plane wave can be estimated. Inverse s
tering in inhomogeneous background media as well as it
tive nonlinear inverse scattering can therefore be dire
implemented. Third, part of the computation necessary
the inverse scattering algorithm can be performed by ana
means using ideas from the power method.

The present approach also provides new understan
about existing methods of focusing and imaging. For sim
scattering objects, the new method presented here reduc
a quantitative specification of focusing similar to that o
tained by iterative phase conjugation or time reversal. T
eigenfunctions of scattering operators are shown not onl
focus on pointlike scatterers, as has been previou
shown,10,11 but also to concentrate incident energy in t
vicinity of general, distributed inhomogeneities. The meth
also improves on previous approaches to focusing us
eigenfunctions in that quantitative images of medium para
eters are obtained simultaneously with optimal incide
wave distributions. For the case of weakly scattering obje
the method reduces to a simple inversion algorithm tha
mathematically equivalent to the filtered backpropagat
algorithm,13–15but is optimally tailored to the unknown sca
tering medium. The method reduces to a comparably sim
and efficient formula for the case of weakly nonlinear
verse scattering.

Analysis given in Sec. I shows that eigenfunctions
scattering operators are equal to the acoustic fields of ef
tive source distributions that are proportional to the co
pressibility contrast of the scattering object. An inverse sc
tering method that incorporates products of retransmi
fields of eigenfunctions is presented. The general metho
then employed to derive an analytic inversion formula va
716 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
s-
r

is
e

al
t
ve
i-
e-
to

g
f

o
f
at
s-
ti-
s

se
-
o

e
r-
d
t-

a-
ly
r
g

ng
e
s to
-
e
to
ly

d
g
-
-
s,
is
n

le

f
c-
-
t-
d
is

under the Born approximation as well as a simple nonlin
formula valid for small multiple-scattering effects. Numer
cal implementation of these methods is presented in Sec
Numerical results shown in Sec. III illustrate focusing o
discrete and distributed inhomogeneities using a few eig
functions. Also, quantitative inverse scattering results
shown both within the context of a homogeneous ba
ground medium and an inhomogeneous background med

I. THEORY

A. Background

An inverse scattering method for a medium of variab
sound speed is derived. For simplicity of exposition, the de
vation is given for the canonical two-dimensional scatter
configuration sketched in Fig. 1. However, with minor mod
fications, the method is applicable to arbitrary geometr
and dimensions.

When the incident pressure is a plane wave of unit a
plitude propagating in the directiona, so that
pi(x)5eika•x, the corresponding total acoustic pressu
p(x,a) at the positionx is given by the Lippman–Schwinge
equation16,17

p~x,a!5eika•x2E G0~x2y,k!q~y!p~y,a!dy, ~1!

whereG0(x2y) is the Green’s function for the Helmholt
equation in a homogeneous medium. In an unbounded t
dimensional medium,G0(x2y) is given by the Hankel func-
tion (i /4)H0

(1)(kux2yu).18 The anglea is defined as the
angle corresponding to the direction unit vectora, the wave
numberk is equal to 2p f /c0 wherec0 is the wave speed o
the background medium, andf is the temporal frequency o
the incident wave. The integral appearing in Eq.~1!, as well
as subsequent integrals inx and y, are understood to be
taken over the entire plane inR2. The scattering potentia
q is given for a medium of variable sound speed by

q~x!52k2S c0
2

c2~x!
21D . ~2!

The quantity within parentheses is equal, for a medium
constant density, to the compressibility contrastgk , as de-
fined in Ref. 17. The scattering potential is assumed to

FIG. 1. Scattering configuration. An incident plane wave traveling in
directiona is scattered by an inhomogeneity and the scattered field is m
sured in the directionu.
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real-valued and to be short-range, that is, the potentiaq
decreases at large distances such that

uq~x!u<C~11uxu!212d, ~3!

whereuxu is the magnitude of the position vectorx, for some
d.0.

At a measurement radiusr in the far field and a mea
surement angleu, the scattered pressure,ps5p2pi , is of
the form

ps~r ,u,a!52A i

8p

eikr

Akr
A~u,a!1oS 1

Akr
D , ~4!

whereA is the far-field pattern of the scattered pressure

A~u,a!5E e2 iku–xq~x!p~x,a!dx. ~5!

The incident pressure may be more generally taken
superposition of plane waves propagating in all direction

pi~x!5E f ~a!eika–x da. ~6!

The far-field pattern of the corresponding scattered acou
pressure is then

A f~u!5E A~u,a! f ~a!da. ~7!

Equation~7! defines an operatorA that maps an incident
wave distributionf (u) into the corresponding far-field sca
tered pressureA f(u). The operatorA is related to the usua
scattering operatorS ~Ref. 19! by

S5I 2
i

4p
A, ~8!

whereI is the identity operator.
The operatorA is compact19 and therefore has a coun

able number of discrete eigenvalues with zero as the o
possible cluster point. In practice, only a finite number
eigenvalues are distinguishable from zero. Since the po
tial q is real-valued, the scattering operator is unitary, so t
the eigenvalues ofA lie in the complex plane on the circl
centered at24p i and passing through the origin. It als
follows thatA is normal (A* A5AA* , whereA* is the Her-
mitian transpose ofA), so that an orthonormal basis$ f i% for
L2@0,2p# exists consisting of eigenfunctions ofA.

SinceA is a normal operator, the Hermitian transpo
A* satisfies the relationA* f i5l* f i , where f i is an eigen-
function of A and l i

* is the complex conjugate ofl i . The
eigenfunctions ofA therefore also satisfy the equation

A* A fi5ul i u2f i . ~9!

Thus the functionsf i also constitute a basis of eigenfunctio
for A* A and the corresponding eigenvalues are the squ
magnitudes of the eigenvalues ofA. The operatorA* A is
essentially a far-field analog of the ‘‘time-reversal operato
as defined in Ref. 10.
717 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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B. Focusing properties

The focusing properties ofA are seen by considering th
ratio of the scattered amplitude to the incident amplitu
SinceA is normal, the magnitude of its largest eigenvalue
equal to the largest possible value of this ratio for any n
zero f :

ul1u5supF iA f~u!iL2

i f ~u!iL2
G , ~10!

where sup~•! denotes the least upper bound andi f (•)iL2

denotes the root-mean-square magnitude of a squ
integrable function. Thus the eigenfunction associated w
the largest eigenvalue ofA specifies an incident-wave distr
bution that maximizes the energy scattered to the far fie
Other eigenfunctions also focus energy on inhomogene
with an efficiency that is quantified by the associated eig
values.

The focusing property of eigenfunctions ofA is further
illustrated by introducing the acoustic fields of incident-wa
distributions specified by the eigenfunctions. One may de
retransmitted fields of an incident-wave distributionf (a) as

E~x!5E f ~a!eika–x da,
~11!

F~x!5E f ~a!p~x,a!da,

where E(x) is the retransmitted field associated with t
incident-wave distribution in a homogeneous medium a
F(x) is the retransmitted field in a medium containing t
inhomogeneityq(x).

For incident-wave patterns corresponding to eigenfu
tions that have nonzero eigenvalues, the retransmitted fi
of Eqs.~11! can be written using Eqs.~5! and~7! in the form

Ei~x!5
2p

l i
E J0~kux2yu!Fi~y!q~y!dy,

~12!

Fi~x!5
1

l i
E ^p~x,u!,eiku–y&Fi~y!q~y!dy.

The brackets in Eq.~12! denote the inner product

^u,v&5E
0

2p

u~u!v* ~u!du, ~13!

while the inner product appearing in the expression forEi

was evaluated using the identity

J0~z!5
1

2pE eiz cosu du ~14!

known as Parseval’s integral.20 The retransmitted fields o
Eq. ~11! are thus seen to be equivalent to a weighted con
lution of the unknown scattering potential with inner pro
ucts of acoustic fields.

When the scattering potentialq(x) is concentrated in a
finite number of pointlike scatterers, each very small co
pared to a wavelength, Eq.~12! reduces to an expression o
diffraction-limited focusing on each point scatterer. That
for a scattering medium defined by
717T. D. Mast et al.: Eigenfunctions of the scattering operator
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q~x!5(
1

M

m jd~x2xj !, ~15!

the retransmitted fieldEi(x) is

Ei~x!5
2p

l i
(

j
Fi~xj !J0~kux2xju!m j , ~16!

so that in this case, the retransmitted fieldEi(x) is equal to a
weighted sum of Bessel functions, each centered at the l
tion of one of the point scatterers. These Bessel functi
correspond to a group of diffraction-limited main lobes, ce
tered at each scatterer positionxj, with corresponding Besse
sidelobes that combine coherently. Thus each retransm
field Ei focuses to some extent on all of the individual po
scatterers.

The close relationship between the retransmitted fie
of eigenfunctions and the unknown scattering potential,
seen in Eq.~12!, is an expression of the focusing property
eigenfunctions. That is, since eigenfunctions ofA correspond
to incident-wave patterns that concentrate energy within
support of the scattering potential, they can be said to fo
on general distributed inhomogeneities as well as point
scatterers. This idea is illustrated numerically later in t
paper.

C. Inverse scattering method

Because of the focusing properties outlined above,
transmitted fields of eigenfunctions are a useful starting p
for inverse scattering reconstructions. A general inverse s
tering method incorporating these ideas is outlined below

The starting point for this method is an expression of
inverse scattering problem in terms of the operatorA of
Eq. ~7! and the corresponding retransmitted fields defined
Eq. ~11!:

^A fi , f j&5d i j l i5E Fi~x!Ej
* ~x!q~x!dx,

i , j 51,2,... . ~17!

The problem can be regularized by seeking the solution
minimizes the weightedL2 norm

iqiW
2 5E uq~x!u2W~x!dx ~18!

with W(x) an appropriate weight. For the analysis given b
low, this weight is defined asW(x)5(11uxu)d,d.0. For the
explicit computations given later, other choices ofW(x) are
more natural.

A solution to the minimization problem is obtained u
ing the method of Lagrange multipliers, analogous to
approach used in Ref. 21 for a linearized electric impeda
tomography problem. At a minimum, the~infinite-
dimensional! gradient ofiqiW

2 is a linear combination of the
gradients of the constraints in Eq.~17!. The latter can be
calculated using the two-potential formula16
718 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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Aq1
~u,a!2Aq2

~u,a!5E p1~x,a!

3„q1~x!2q2~x!…p2~x,u1p!dx,

~19!

whereAq1
, p1 , Aq2

, andp2 are the scattering operators an
the total acoustic pressures for the inhomogeneous m
defined by q1(x) and q2(x), respectively. Equation~19!
yields the derivative

lim
e→0

Aq1e q̃~u,a!2Aq~u,a!

e
5E p~x,a! q̃~x!p~x,u1p!dx,

~20!

while the infinite-dimensional gradient ofiqiW
2 is found from

lim
e→0

iq1e q̃iW
2 2iqiW

2

e
52E q~x! q̃~x!W~x!dx. ~21!

The result follows that if the potentialqM(x) solves the
regularized inverse scattering problem@minimization of the
weighted norm from Eq.~18! under the constraint of Eq
~17!#, qM must be of the form

qM~x!5
1

W~x!(l
(
m

QlmFl~x!F̄m
* ~x!, ~22!

where F̄m
* (x), the complex conjugate of the retransmitte

field corresponding to an incoming condition at infinity,
defined as

F̄ * ~x!5E f * ~a!p~x,a1p!da, ~23!

and the coefficientsQlm are the Lagrange multipliers. If the
above gradients are taken with respect to the real and im
nary parts of a complex potential, Eq.~22! as stated is also
found to be valid when the potentialqM is complex. In some
of the simplifying approximations made below, Eq.~22! will
yield a complex potentialqM even when the data are a
sumed to come from a unitary scattering operator associ
with the real potentialq.

By substituting Eq.~22! into Eq. ~17!, the inverse prob-
lem is reduced to the problem of finding the coefficien
Qlm from the nonlinear system

d i j l i5(
l

(
m

F E Fi~x!Ej
* ~x!Fl~x!F̄m

* ~x!

W~x!
dxGQlm ,

i , j 51,2,... , ~24!

where the dependence of the fieldsF and F̄ * on the scatter-
ing potentialq is implicit.

In general, the scattering potentialq(x), and therefore
the total pressure fieldp(x,a), are unknown in inverse scat
tering problems. The functionp(x,a) that implicitly appears
in Eq. ~24! may therefore be replaced by the best availa
estimate for the total pressure. Equation~24! can then be
solved for the coefficientsQlm by standard numerical tech
niques for solution of linear systems.

The number of termsN can be chosen arbitrarily; how
ever, increasingN beyond the number of nonzero eigenva
718T. D. Mast et al.: Eigenfunctions of the scattering operator
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ues ofA is of limited benefit in reconstructions. For simp
scattering objects,q can be represented by expansions e
ploying small values ofN. For instance, for an inhomogene
ity consisting of finitely many point scatterers,N comparable
to the number of scatterers is sufficient.

The above method simplifies further in the case o
weakly scattering medium, for which the total pressurep can
be approximated by the incident pressure. In this case, ta
the weightW(x)[1, the coefficientsQlm can be evaluated
analytically. From Eq.~22!, under the Born approximation
the scattering potential takes the form

qB~x!5(
l

(
m

QlmEl~x!Em
* ~x!. ~25!

Substituting Eq.~25! into Eq. ~5! gives the equation

A~u,a!5(
l

(
m

QlmE e2 iku–xEl~x!Em
* ~x!p~x,a!dx.

~26!

Replacement ofp(x,a) in Eq. ~26! by the incident plane
wave eika–x, use of Eq.~11!, and integration inx over R2

yields

A~u,a!5
~2p!2

k2 (
l

(
m

QlmE
2p

p E
2p

p

d~u2a2u81a8!

3 f l~u8! f m
* ~a8!du8da8 ~27!

for u2a not equal to 0 orp. The double integral in Eq.~27!
can be evaluated using the change of variables

x185cosu82cosa8, x285sin u82sin a8, ~28!

which is one-to-one when restricted to the regionsa8,u8
anda8.u8. Evaluation of the integral yields

usin~u2a!uA~u,a!5
~2p!2

k2 (
l

(
m

Qlm„f l~u! f m
* ~a!

1 f l~a1p! f m
* ~u1p!…. ~29!

Equation~29! can be solved for the coefficientsQlm using
the fact that the eigenfunctionsf l(u) are orthonormal as wel
as the reciprocity identity16

A~u1p,a1p!5A~a,u!. ~30!

The solution is

Qlm5
k2

8p2EEusin~u2a!uA~u,a! f l
* ~u! f m~a!da du.

~31!

Equations~25! and ~31! specify a solutionqB to the
linearized inverse problem. This solution is, in general, co
plex, even when the true potentialq is purely real. A physi-
cal way to understand why the Born approximation yield
complex scattering potential for a lossless medium is to r
ognize that this approximation neglects multiple scatter
and thus, the resulting output energy differs from the in
energy. The corresponding scattering operator is then
longer unitary, and is only physically realizable by a pote
tial with a nonzero imaginary part. For weak scattering,
719 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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energy discrepancy is small and so is the imaginary par
the potential.

The analytic solution of Eqs.~25! and~31! is equivalent
to the well-known filtered backpropagation formula13–15and
has the advantage of computational simplicity, as discus
later in this paper. Equivalence between the two formula
shown by formulating an expansion ofe2 ika–x, viewed as a
function ofa, in terms of the orthonormal basis$ f m(a)%. In
view of Eqs.~11!, this expansion yields the identity

e2 ika–x5(
m

Em
* ~x! f m~a!. ~32!

Substituting Eq.~31! in Eq. ~25! and using Eq.~32! as well
as its conjugate gives

qB~x!5
k2

8p2EEusin~a2u!uA~u,a!eikx•~u2a!da du, ~33!

which is the standard filtered backpropagation formu
Equation~33! yields the low-pass-filtered version of the tru
potentialq if multiple scattering effects are negligible. Th
correct nonlinear generalization of the linearized low-pa
filtered solutionqB is the minimalL2 ~or weightedL2) so-
lution qM , which is of a form specified by Eq.~22!.

The inverse scattering method developed above can
be used with any orthonormal set of basis functions
L2@0,2p#. For instance, reconstructions can be perform
using eigenfunctions ofA for axisymmetric objects rathe
than using the eigenfunctions associated with the meas
A. In this case, the eigenfunctions take the form

f m~u!5
1

A2p
eimu, m50,61,62,... . ~34!

The retransmitted fieldsEm can be analytically evaluated t
be

Em~r ,f!5A2p i meimfJm~kr !, ~35!

and the coefficientsQlm for the low-pass-filtered reconstruc
tion of q are given by

Qlm5
k2

16p3EEusin~u2a!uA~u,a!e2 i l ueimada du.

~36!

While the retransmitted fields specified by Eq.~35! are not
ideally matched to nonaxisymmetric scattering media, th
can be analytically evaluated and stored for use in fast
constructions. Since these retransmitted fields are also u
fected by uncertainties in scattering measurements, they
suitable for reconstructions from data corrupted by noise

Finally, use of the eigenfunction method beyond line
inversion is demonstrated by considering the case where
inhomogeneous-medium retransmitted fieldsF can be esti-
mated from a first approximation to the scattering poten
q. One approach in this case is to solve the full system
equations defined by Eq.~24!; however, a more numerically
efficient correction to the Born approximation can be o
tained by invoking the localized nonlinear approximation
troduced in Ref. 22 for electromagnetic scattering. This
proximation follows from writing the Lippman–Schwinge
equation@Eq. ~1!# in the form
719T. D. Mast et al.: Eigenfunctions of the scattering operator
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p~x,a!5G~x!S eika–x2E „p~y,a!2p~x,a!…

3q~y!G0~x2y!dyD , ~37!

where the quantityG(x), called the depolarization tensor i
electromagnetic scattering,22 is defined by

G~x!5S 11E q~y!G0~x2y!dyD 21

. ~38!

The second term in Eq.~37! is presumed to be small becau
the singularity of the Green’s function is cancelled by t
difference term appearing in the integrand. Thus the to
pressure may be approximated by the formula

p~x,a!'G~x!eika–x. ~39!

The form for the scattering potential given by Eq.~22!
then becomes

qM~x!'
G~x!2

W~x! (l
(
m

QlmEl~x!Em
* ~x!. ~40!

Substituting this form into Eq.~5! and using Eq.~39!
gives

A~u,a!'(
l

(
m

QlmE e2 iku–xW~x!21El~x!Em
* ~x!

3G~x!3eika–x dx. ~41!

An approximate nonlinear formula for the scattering pote
tial q can be obtained by takingW(x)[G(x)3. Equation~41!
then yields the coefficientsQlm from Eq.~31! and the result-
ing solution for the scattering potential is

qM~x!'(
l

(
m

Qlm

El~x!Em
* ~x!

G~x!
. ~42!

The solution of Eq.~42! is simplified by making the
further approximation

1

G~x!
'22G~x!, ~43!

which is valid for small scattering potentials. This substi
tion results in

qM~x!'(
l

(
m

Qlm„2El~x!2Fl~x!…Em
* ~x!. ~44!

This nonlinear equation for the potentialqM can be approxi-
mately solved by using a form of the retransmitted fie
Fl(x) corresponding to the low-pass-filtered potentialqB or
to another estimate of the scattering potential.

II. COMPUTATIONAL METHODS

The focusing and imaging methods outlined in Sec
were implemented using numerically computed scatte
fields of inhomogeneous objects. Scattering operators w
calculated using a method due to Kirsch and Monk,23 in
which an inner solution of the Helmholtz equation for a m
dium of variable sound speed is matched to an outer solu
of integral equations that implicitly satisfy the Sommerfe
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radiation condition. The inner solution is obtained using
finite-element method, while the outer integral equations
solved using Nystro¨m’s method.23

Scattering data were calculated numerically for a nu
ber of incident plane waves evenly distributed overM angles
between 0 and 2p. For each incident-wave angle, the sca
tered field was computed atM far-field receiver angles be
tween 0 and 2p, so that the angular sampling rate w
M /(2p) samples per radian. The number of receiver ang
M should be chosen such that the scattered field has no
nificant frequency components above the Nyquist freque
of M /(4p) samples per radian. This computation yields
discrete representation of the scattering operatorA as an
M3M matrix, AM .

The eigenfunctions ofA and their associated eigenva
ues were estimated numerically by direct computation of
eigenvectors and eigenvalues ofAM . Retransmitted fields of
eigenfunctions were evaluated numerically by numerical
tegration of Eq.~11!. Images of inhomogeneous objects we
then obtained using a straightforward numerical implem
tation of Eqs.~25! and~31!. The integrals appearing in thes
equations were evaluated using corresponding discrete s
mations of the components ofAM and its eigenvectors. Fo
comparison, standard diffraction tomography inversio
were also performed by numerical integration of Eq.~33!.

Stability of the eigenfunction imaging method wa
tested by inversion of noisy data obtained by adding num
cally generated Gaussian white noise to the scattering ma
AM . The rms amplitude of the noise was specified as a fr
tion of the rms value ofAM . Thus, for instance, a signal-to
noise ratio of 6 dB was obtained by adding noise with an r
amplitude one-half the rms value ofAM .

Inversions were also performed using the basis of eig
functions corresponding to axisymmetric inhomogeneiti
In this case, the formula of Eq.~25! was implemented nu-
merically using the trigonometric basis functions defined
Eq. ~34!, the retransmitted fields given in closed form in E
~35!, and the coefficients defined in Eq.~36!.

Nonlinear eigenfunction images were obtained using
analytic formula of Eq.~44! with the total pressurep(x,a)
approximated by the total pressure for a medium includin
cylinder of specified radius and compressibility contra
This computation employed an exact solution for the scat
ing of a plane wave by a cylinder.17

III. NUMERICAL RESULTS

Focusing of eigenfunctions on a distributed scatter
object is illustrated in Fig. 2. Here, the magnitudes of t
retransmitted fieldsE1(x) andE2(x) are shown for an inho-
mogeneity consisting of a weakly scattering triang
(gk50.01) approximately two wavelengths in height. T
triangle is shown in outline together with the retransmitt
fields. The corresponding scattering operator, calculated
ing the finite-element/Nystro¨m method described above, wa
represented by a matrix of size 1283128. The retransmitted
fields show that the significant eigenfunctions ofA specify
incident-wave patterns that concentrate energy within
support of the inhomogeneity. Notable is that this focus
energy is distributed throughout the support of the triang
720T. D. Mast et al.: Eigenfunctions of the scattering operator
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Implementation of the eigenfunction method in focusi
on pointlike scatterers is illustrated in Figs. 3 and 4. Th
figures, obtained using the linearized eigenfunction meth
show not only diffraction-limited focusing but also quantit
tive reconstructions of the associated scattering potent
Figure 3 shows images made from the scattered field of
pointlike scatterers at locations (20.5,0) and (0,20.2), each
of radius 0.01 and compressibility variation20.9. The nu-
merically computed scattered field was sampled at
equally spaced angles for each of 128 incident-wave ang
so that the operatorA was represented by a 1283128 matrix.
The wave number used was 10, so that the scatterers
separated by approximately one wavelength. Since, in
case, two eigenvalues ofA were much larger than the re
maining eigenvalues, the basic reconstruction required o
the use of two retransmitted fields. This result illustrates th
for an inhomogeneity consisting of finitely many pointlik
scatterers, the present inverse scattering method provide
accurate reconstruction with diffraction-limited point reso
tion using a corresponding number of eigenfunctions.

A stability test of the eigenfunction method is illustrate
in Fig. 4. This image shows a reconstruction of the t
pointlike scatterers of Fig. 3 using the same scattering d
with added Gaussian white noise for a signal-to-noise r
of 3 dB. The method of reconstruction was identical to th
used for Fig. 3. The reconstruction shown is almost indis
guishable from the noiseless reconstruction, indicating
stability of the eigenfunction imaging method.

Linear eigenfunction images of the triangular inhomog
neity of Fig. 2 are presented in Fig. 5. These images w
constructed using the same scattering data as that use
Fig. 2. The first image, obtained using five retransmit
fields, shows that strong focusing is achieved using onl
few eigenfunctions ofA. The entire inhomogeneity is well
insonified and little incident energy is transmitted outside
support of the inhomogeneity. The second image, obtai
using 15 eigenfunctions, shows that the eigenfunct
method rapidly converges to the ideal low-pass-filtered so
tion for the scattering potential. Notable is that the eige
function method using 15 eigenfunctions required 69.1 s
CPU time on a Sun SPARCstation 10, while an analog
image obtained using the diffraction tomography formula
Eq. ~33!, with the integrals evaluated in an analogous m
ner, required 3014.3 s.

Eigenfunction reconstructions of a test phantom, sho
in Figs. 6–8, illustrate application of the eigenfunction im
aging method to a larger-scale imaging problem. The ph
tom, also represented in Fig. 1, is a cylinder of compressi
ity contrast 0.01 and diameter of 5 mm. Internal obje
include a water-filled~cystic! region of diameter 1 mm, a
wire of diameter 0.1 mm and compressibility contra
20.5, and an internal cylinder of diameter 1 mm and co
pressibility contrast20.01. Scattered fields were calculat
using the methods described above, with the operatorA dis-
cretized as a matrix of 2563256 points. The first image
shown in Fig. 6, obtained using the single wave num
k510 has high resolution but contains ringing~Gibbs phe-
nomenon! artifacts and loss of contrast in the cystic regio
These artifacts are removed by compounding of images
721 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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tained using five linearly spaced wave numbers, 8<k<12,
so that the dimensionless parameterka varied between 20
and 30. The five-frequency image, shown in the second p
of Fig. 6, also shows increased point and contrast resolu
compared to the single-frequency image. Both images sh
in Fig. 6 were obtained using the linearized eigenfunct
method described above, with 64 eigenfunctions ofA for
k58, 9, and 10, 68 eigenfunctions fork511, and 72 eigen-
functions fork512.

Reconstructions of the test phantom obtained from no
data are shown in Fig. 7. Gaussian white noise was adde
the scattering data employed in Fig. 6, so that the signal
noise ratio was 6 dB at each of the frequencies employ
The reconstructions employed the formula of Eq.~25! and
coefficients obtained from Eqs.~34!–~36!. The numbers of
basis functions employed were equal to the number of eig
functions employed in Fig. 6. These results indicate the
bility of the method for large objects with scattering da
severely degraded by noise.

Nonlinear reconstructions of the same test phantom,
tained using Eq.~44!, are presented in Fig. 8 together wi
linear reconstructions. In the nonlinear reconstructions,
retransmitted fieldsFl(x) were estimated using pressu
fields associated with a cylinder of diameter 5 mm and co
pressibility contrast 0.01.17 The scattering data employe
was identical to that used in Fig. 6~b!, with five linearly
spaced wave numbers such that 20<ka<30. The number of
eigenfunctions employed in each image were also the s
as those used for the images in Fig. 6. The first panel sh
the real part of the nonlinear reconstruction, taken along
line y50, together with the real part of the analogous line
reconstruction from Fig. 6~b!. The nonlinear reconstruction
shows improved resolution over the linear reconstruction
increased height of the peak associated with the inte
wire. The second panel shows the imaginary part of the n
linear reconstruction with the corresponding linear reco
struction from Fig. 6~b!. Here, the inaccuracy of the Bor
approximation results in a significant imaginary part for t
linear reconstruction, while the true potential is purely re
The nonlinear inversion shows improved quantitative ac
racy over the linear inversion by reduction of the reco
structed imaginary part.

IV. DISCUSSION

Our method has shown that eigenfunctions of the sc
tering operator can be employed to focus on distributed
homogeneities as well as pointlike scatterers. However,
focusing on distributed inhomogeneities occurs in a differ
manner from focusing on pointlike scatterers. That is,
incident energy is not maximized at a single point within t
medium. Instead, when combined according to the pres
reconstruction method, retransmitted eigenfunctions spe
incident-wave distributions that distribute energy through
the inhomogeneous region. This type of focusing, which
sults from the eigenfunction property of maximizing th
scattered energy, is clearly connected to imaging of the
dium by inverse scattering.

The quantitative inverse scattering method presente
this paper can considerably simplify imaging computatio
721T. D. Mast et al.: Eigenfunctions of the scattering operator
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FIG. 2. Focusing on a distributed inhomogeneity. Magnitudes of the retransmitted fields of the two most significant eigenfunctions are shown on a l
scale with black indicating zero and white indicating maximum amplitude. The scattering object is a uniform triangle, compressibility contrast 0.01, w
sketched boundaries.~a! E1(x), ~b! E2(x).
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The computational complexity of the current method d
pends mainly on the number of significant eigenfunctio
which in turn depends only on the complexity of the scatt
ing medium. Furthermore, the basis for expansion of the
known medium is determined directly from the scatteri
data. Since the basis functions are closely related to the
known medium, reconstructions performed using this ba
employ a minimal amount of unnecessary information. T
property gives the present inverse scattering method ad
tages over other methods in which a fixed basis is use
expand the unknown medium.24–27 These advantages ar

FIG. 3. Eigenfunction image of two pointlike scatterers, compressibi
contrast20.9, separated by approximately one wavelength. The image
obtained using retransmitted fields of the two most significant eigenfu
tions.
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most apparent for inhomogeneities a small number of wa
lengths in size.

The present inverse scattering method also has the
vantage of applicability to any medium for which the bac
ground pressure field can be estimated. Use of backgro
pressure estimates can greatly improve accuracy over re
structions based on simpler approximations. For instan
Born inversion can yield a spurious reconstructed imagin
part even when the true potential is real-valued; use of
estimated background pressure field can greatly reduce
error, as seen in Fig. 8. The inverse scattering method

as
c-

FIG. 4. Effect of noise on eigenfunction reconstruction. The object of Fig
was reconstructed from two eigenfunctions of synthetically noised scatte
data with a signal-to-noise ratio of 3 dB.
722T. D. Mast et al.: Eigenfunctions of the scattering operator
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FIG. 5. Eigenfunction images of a triangle about three wavelengths in height having compressibility contrast 0.01.~a! Real part of an inversion obtained usin
retransmitted fields of five eigenfunctions.~b! Analogous image obtained using 15 eigenfunctions.
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still
sented here is also extensible to any background medium
which a pressure field can be estimated, including mov
fluids, layered or stratified media, and enclosed or otherw
bounded regions.

The imaging, focusing, and inverse scattering meth
presented here also intrinsically take advantage of any po
tial increase in resolution that is associated with multi
scattering or other higher-order effects, as long as these
fects are taken into account in the estimated pressure fi
This increase in resolution is possible because the retrans
ted fields of eigenfunctions may have desirable qualit
such as higher spatial-frequency components, that are a
ciated with the presence of an inhomogeneous backgro
Such improvements in resolution have been shown exp
mentally for time-reversal focusing in a multiply scatterin
medium.28
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The most significant eigenfunctions ofA can be deter-
mined experimentally through iterative retransmission of
ceived scattered fields in a manner similar to that perform
in Refs. 1 and 10. This implementation of the power meth3

allows computation of the most significant eigenfunctions
A by analog means, which may be preferable to numer
computation for very large scattering objects. These eig
functions are useful as optimal incident-wave patterns
inverse scattering experiments.

The inverse scattering method presented here inclu
the assumption that the scattering potential is purely r
that is, the inhomogeneous medium is assumed to have
absorption. Eigensystem analysis of the scattering oper
A is more complicated in the presence of absorption.29,30

However, the methods introduced here are expected to
n
hat
FIG. 6. Eigenfunction images of a test object having background compressibility contrast 0.01, a cystic~water-filled! region, a pointlike scatterer, and a
internal cylinder. The images are shown on a logarithmic scale with a 40 dB dynamic range.~a! Real part of inversion obtained for a wave number such t
ka525. ~b! Analogous image obtained using five wavenumbers such that 20,ka,30.
723T. D. Mast et al.: Eigenfunctions of the scattering operator
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FIG. 7. Images of test object obtained using noised data with 6 dB signal-to-noise ratio. The images are shown on a logarithmic scale with a 40 d
range.~a! Real part of inversion obtained for a wave number such thatka525. ~b! Analogous image obtained using five wave numbers such that 20,ka
,30.
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be useful for media such as biological tissue when absorp
is finite but small.

A disadvantage of the inverse scattering method as
rently implemented is that nonlinear inversion requires
accurate specification of the background acoustic field. T
disadvantage is not unique to the eigenfunction method,
is a common feature of most current inversion methods.
cent theoretically exact methods, while not limited in th
manner,31,32 have not yet been implemented numerically.

FIG. 8. Cross sections of real and imaginary parts of test object recons
tions using data from five wave numbers. Linear reconstructions were
tained using retransmitted fields in a homogeneous medium, while nonli
reconstructions were obtained using retransmitted fields in a homogen
medium and in a background cylinder of compressibility contrast 0.01.~a!
Cross sections of real parts.~b! Cross sections of imaginary parts.
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The general, nonlinear version of the eigenfuncti
imaging approach, as defined in Eqs.~24! and~44! and illus-
trated in Fig. 8, has obvious application to iterative reco
struction of unknown inhomogeneities. In such reconstr
tions, the total pressure field can be estimated at e
iteration from a numerical solution of the direct scatteri
problem for the currently estimated inhomogeneity, and
eigenfunction inversion can be performed using this press
field. This procedure can then be repeated to obtain
proved estimates of the scattering potential until converge
is achieved.

V. CONCLUSION

A method for focusing and imaging using scatter
fields has been presented. The method outlined here m
use of the physical properties of scattering operators by u
their eigenfunctions as incident-wave patterns. The eig
functions have been shown to provide optimal focusing
pointlike and distributed scattering objects.

The inverse scattering scheme presented exploits the
cusing properties of eigenfunctions as well as recent ana
results to obtain a robust and efficient means of quant
tively reconstructing unknown scattering media. This n
method has a complexity dependent only on the size
complexity of the scattering medium. Particular cases of
method provide improved implementations of eigenfunct
focusing and filtered backpropagation. The method can
implemented for any background medium for which the to
acoustic pressure field can be estimated.

Another particular case of the presented method res
in a nonlinear inverse scattering formula that yields a so
tion for the scattering potentialq in terms of retransmitted
fields of eigenfunctions in the scattering medium and in
background medium. This formula has been demonstrate
yield improvement in accuracy and resolution over Born
version.

c-
b-
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The ideas reported here are expected to be usefu
further studies of inverse scattering, adaptive focusing,
ultrasonic imaging. The eigenfunctions of the scattering
eratorA, whether determined by iterative retransmission
by numerical diagonalization, may be used to focus throu
inhomogeneous media and to determine optimal incide
wave patterns for inverse scattering experiments. Also,
products of fields of eigenfunctions are expected to form
useful basis for expansion of unknown scattering media
iterative reconstruction algorithms.
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