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An inverse scattering method that uses eigenfunctions of the scattering operator is presented. This
approach provides a unified framework that encompasses eigenfunction methods of focusing and
quantitative image reconstruction in arbitrary media. Scattered acoustic fields are described using a
compact, normal operator. The eigenfunctions of this operator are shown to correspond to the
far-field patterns of source distributions that are directly proportional to the position-dependent
contrast of a scattering object. Conversely, the eigenfunctions of the scattering operator specify
incident-wave patterns that focus on these effective source distributions. These focusing properties
are employed in a new inverse scattering method that represents unknown scattering media using
products of numerically calculated fields of eigenfunctions. A regularized solution to the nonlinear
inverse scattering problem is shown to result from combinations of these products, so that the
products comprise a natural basis for efficient and accurate reconstructions of unknown
inhomogeneities. The corresponding linearized problem is solved analytically, resulting in a simple
formula for the low-pass-filtered scattering potential. The linear formula is analytically equivalent to
known filtered-backpropagation formulas for Born inversion, and, at least in the case of small
scattering objects, has advantages of computational simplicity and efficiency. A similarly efficient
and simple formula is derived for the nonlinear problem in which the total acoustic pressure can be
determined based on an estimate of the medium. Computational results illustrate focusing of
eigenfunctions on discrete and distributed scattering media, quantitative imaging of inhomogeneous
media using products of retransmitted eigenfunctions, inverse scattering in an inhomogeneous
background medium, and reconstructions for data corrupted by noisd999 Acoustical Society

of America.[S0001-49667)02308-4

PACS numbers: 43.20.Fn, 43.60.Pt, 43.35.Wa, 43.80M3N ]

INTRODUCTION can be understood as analog methods of computing the

This paper presents a new inverse scattering method thg{geqfunctiops of an operator associated with the phase con-
employs the focusing properties of certain acoustic fields Ob]_uga_ltlon or tlme-re_versal Process. Simple focu_smg by phase
tained by retransmitting eigenfunctions of the scattering opSoniugation, in which received echoes are conjugated or time
erator. reversed and retransmitted, is equivalent to a single iteration

Eigensystem decomposition of the scattering operator‘?f the power method. Further iterations of this procedure
regardless of the inversion method employed, has potentigorrespond to additional steps in the power method, and thus
advantages in methods of collecting and analyzing scatteringonverge to the most significant eigenfunction of the associ-
data. Previous work in electrical impedance tomography hagted operator at a rate specified by the ratio of the two largest
employed eigenfunction decomposition of an operator assctigenvalues. The eigenfunctions of the “time-reversal op-
ciated with the measurement process to determine optim&lrator,” whether obtained by iterative time reversal or by
input current patterns and quantify the achievable resolutioRumerical diagonalization, have been previously shown to
of imaging system$? These optimal inputs can also be de- correspond to source distributions that can focus incident
termined by iteratively retransmitting input patterns that areenergy on strong, pointlike scatteréfs?
proportional to the measured scattered field. This approach is Eigensystem analysis has historically played a role in
essentially an analog implementation of the “powerthe theory of inverse scattering for radially symmetric
method” for determining the eigenvectors of matriéés. objects*? For these objects, separation of variables naturally

Likewise, the techniques of optical and acoustic phaséeads to a representation of the scattering operator in terms of
conjugatiof~” and the analogous process of time revérial trigonometric functions. Since these eigenfunctions are the
same for any radial scatterer, the inverse scattering problem
acurrent affiliation: Applied Research Laboratory, The Pennsylvania Staté:OUId be reduced to the problem of determining the unknown

University, P.O.B. 30, State College, PA 16802. object from the eigenvalues of the scattering operator.
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However, before the method presented here, the focus-
ing properties of eigenfunctions have not been exploited for
quantitative reconstruction of inhomogeneous media. It is
stated in Ref. 9 that the concept of time reversal “cannot be
directly compared to computed tomography” or to “tech-
nigues that generate the image of the medium through signal
analysis.” Although the basic principles of focusing on point
targets using the eigenfunctions of scattering operators have
been put forth in Ref. 10, these principles have not previ-
ously been shown to apply to general distributed inhomoge-

neities. Furthermore, no general imaging method has hitherto _ o o o
been based on these principles. FIG. 1. Scattering configuration. An incident plane wave traveling in the

. . . directiona is scattered by an inhomogeneity and the scattered field is mea-
The current method presents a solution to the imagingyred in the directiord.

problem by bringing together recent results in the theory of

focusing, diffraction tomography, and inverse problems to o ] )
synthesize a unified framework for quantitative imaging ofunder the Born approximation as well as a simple nonlinear
inhomogeneous media. Application of the method shows thadPrmula valid for small multiple-scattering effects. Numeri-
focusing on distributed inhomogeneities can be achieved u&2l implementation of these methods is presented in Sec. II.
ing eigenfunctions and also provides a technique for quantiNumerical results shown in Sec. IIl illustrate focusing on
tative imaging of discrete and distributed inhomogeneitiegliscrete and distributed inhomogeneities using a few eigen-
using focusing properties. functions. Also, quantitative inverse scattering results are

This method has several advantages over current inverS$'0Wn both within the context of a homogeneous back-
scattering methods. First, the eigenfunction formulation pro9reund medium and an inhomogeneous background medium.

vides optimal bases for reconstruction of unknown media, so
that inversions are performed with the minimum possible
complexity. Second, the method is applicable to any scatter- THEORY
ing medium for which the total acoustic pressure associateg\
with an incident plane wave can be estimated. Inverse scat-’
tering in inhomogeneous background media as well as itera- An inverse scattering method for a medium of variable
tive nonlinear inverse scattering can therefore be directipound speed is derived. For simplicity of exposition, the deri-
implemented. Third, part of the computation necessary foration is given for the canonical two-dimensional scattering
the inverse scattering algorithm can be performed by analogonfiguration sketched in Fig. 1. However, with minor modi-
means using ideas from the power method. fications, the method is applicable to arbitrary geometries
The present approach also provides new understandirgnd dimensions.
about existing methods of focusing and imaging. For simple ~ When the incident pressure is a plane wave of unit am-
scattering objects, the new method presented here reducesptitude propagating in the directione, so that
a quantitative specification of focusing similar to that ob-pi(x)=€***, the corresponding total acoustic pressure
tained by iterative phase conjugation or time reversal. Thd(X,a) at the positior is given by the Lippman—Schwinger
eigenfunctions of scattering operators are shown not only tgquation®*’
focus on pointlike scatterers, as has been previously .
shown!®!! but also to concentrate incident energy in the p(X,a)=e'k“'X—J Go(x—y,K)a(y)p(y,@)dy, 1)
vicinity of general, distributed inhomogeneities. The method
also improves on previous approaches to focusing using/hereGo(x—Y) is the Green’s function for the Helmholtz
eigenfunctions in that quantitative images of medium parameguation in a homogeneous medium. In an unbounded two-
eters are obtained simultaneously with optimal incident-dimensional mediunGy(x—y) is given by the Hankel func-
wave distributions. For the case of weakly scattering objectdion (i/4)H§P(k|x—y]).'® The anglea is defined as the
the method reduces to a simple inversion algorithm that i§hgle corresponding to the direction unit vectgrthe wave
mathematically equivalent to the filtered backpropagatiorlumberk is equal to 2rf/c, wherecy is the wave speed of
algorithm®*~put is optimally tailored to the unknown scat- the background medium, arfdis the temporal frequency of
tering medium. The method reduces to a comparably simpl#h€e incident wave. The integral appearing in Ef), as well
and efficient formula for the case of weakly nonlinear in-@s subsequent integrals inandy, are understood to be
verse scattering. taken over the entire plane iR?. The scattering potential
Analysis given in Sec. | shows that eigenfunctions ofd is given for a medium of variable sound speed by
scattering operators are equal to the acoustic fields of effec- c2
tive source distributions that are proportional to the com-  q(x)=—k? 2—0—1). 2
pressibility contrast of the scattering object. An inverse scat- ()
tering method that incorporates products of retransmittedhe quantity within parentheses is equal, for a medium of
fields of eigenfunctions is presented. The general method isonstant density, to the compressibility contrast, as de-
then employed to derive an analytic inversion formula validfined in Ref. 17. The scattering potential is assumed to be

Background
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real-valued and to be short-range, that is, the potemtial B. Focusing properties

decreases at large distances such that The focusing properties & are seen by considering the

lg(x)|<C(1+]x|)"17° 3) ratio of the scattered amplitude to the incident amplitude.
SinceA is normal, the magnitude of its largest eigenvalue is
where|x| is the magnitude of the position vectorfor some  equal to the largest possible value of this ratio for any non-

6>0. zerof:

At a measurement radiusin the far field and a mea- IAT(O)I, 2
surement anglé, the scattered pressurps=p—p;, is of |?\1|=SUI{—L}, (10)
the form MHEIE

= gk where suf-) denotes the least upper bound ard-)ll 2
__ e o denotes the root-mean-square magnitude of a square-
Ps(r,e) = 8w \/WA(Q’QHO \/ﬁ> @ integrable function. Thus the eigenfunction associated with
the largest eigenvalue & specifies an incident-wave distri-
whereA is the far-field pattern of the scattered pressure  pution that maximizes the energy scattered to the far field.
Other eigenfunctions also focus energy on inhomogeneities
A(gya):j e k0xq(x)p(x, a)dx. (5) Witlh an efficiency that is quantified by the associated eigen-
values.
The focusing property of eigenfunctions Afis further
trated by introducing the acoustic fields of incident-wave
distributions specified by the eigenfunctions. One may define
retransmitted fields of an incident-wave distributiffw) as

The incident pressure may be more generally taken as ﬂ
superposition of plane waves propagating in all directions, Hus

IOi(X)=f f(a)e** da, (6)

E(x):f f(a)e*** da,
The far-field pattern of the corresponding scattered acoustic
pressure is then

1D

F0= [ f(epixade,
Af(a)_j Alb@)f(a)da. @ where E(X) is the retransmitted field associated with the
incident-wave distribution in a homogeneous medium and
F(x) is the retransmitted field in a medium containing the
inhomogeneityq(x).

For incident-wave patterns corresponding to eigenfunc-
tions that have nonzero eigenvalues, the retransmitted fields
of Egs.(11) can be written using Eq$5) and(7) in the form

Equation(7) defines an operatoh that maps an incident-
wave distributionf () into the corresponding far-field scat-
tered pressurdf(6). The operatoA is related to the usual
scattering operatd® (Ref. 19 by

i

S=1- EA’ (8) o
Ei(x)=rf Jo(kIx=yDFi(y)a(y)dy,
wherel is the identity operator. ! (12

The operatoA is compact’ and therefore has a count- 1 ,
able number of discrete eigenvalues with zero as the only Fi(X)= rJ (p(x,0),e**M)Fi(y)q(y)dy.
possible cluster point. In practice, only a finite number of '
eigenvalues are distinguishable from zero. Since the poterFhe brackets in Eq(12) denote the inner product
tial q is real-valued, the scattering operator is unitary, so that om
the eigenvalues of lie in the complex plane on the circle (u,v)=f u(f)v*(0)de, (13
centered at—4xi and passing through the origin. It also 0
follows thatA is normal A*"A=AA", whereA* is the Her-  hijle the inner product appearing in the expressionEpr
mitian transpose o), so that an orthonormal bagif;} for  was evaluated using the identity
L?[0,27] exists consisting of eigenfunctions &t L

Since A is a normal operator, the Hermitian transpose _ | Lizcose
A* satisfies the relatiol*f;=\*f;, wheref; is an eigen- Jo(2)= 27rf € do (14
function of A and \} is the complex conjugate of;. The

. . . ; known Parseval’s int .The retransmitted fiel f
eigenfunctions ofA therefore also satisfy the equation own as Parseval’s integré.The retransmitted fields o

Eqg. (11) are thus seen to be equivalent to a weighted convo-

AAT = |\ |2, (99 lution of the unknown scattering potential with inner prod-
ucts of acoustic fields.

Thus the function$; also constitute a basis of eigenfunctions When the scattering potentig(x) is concentrated in a

for A*A and the corresponding eigenvalues are the squarefthite number of pointlike scatterers, each very small com-

magnitudes of the eigenvalues Af The operatorA*A is  pared to a wavelength, E¢L2) reduces to an expression of

essentially a far-field analog of the “time-reversal operator” diffraction-limited focusing on each point scatterer. That is,

as defined in Ref. 10. for a scattering medium defined by
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M
q(x):; i S(X—X;), (15 Aql(ﬁ.a)—qu(ﬁ.aFf P1(X @)

X (01(X) = 02(X))Pa(X, 6+ m)dX,
(19
2 .
Ei(x)= }\_z Fi(x) Jo(KIx— x| » (16) WhereAql, P1, A'qz, andp, are the sca.ttenng operators and.
! the total acoustic pressures for the inhomogeneous media

defined byqq(x) and g,(x), respectively. Equatior{19)
c gjelds the derivative

the retransmitted field;(x) is

so that in this case, the retransmitted fiEldx) is equal to a
weighted sum of Bessel functions, each centered at the lo

tion of one of the point scatterers. These Bessel function? Ag+cq(b,a)—Ag(0,0) ~ 0+ md
correspond to a group of diffraction-limited main lobes, cen-é'in0 € = | px.@)a(x)p(x, 6+ m)dx,
tered at each scatterer positign with corresponding Bessel (20)

sidelobes that combine coherently. Thus each retransmitted
field E; focuses to some extent on all of the individual point"V
scatterers. =12 a2
. . . _ _ llg+eqliyy—ligllyy -
The close relationship between the retransmitted fields lim—— =2 q(x) g(X)W(x)dx. (21
of eigenfunctions and the unknown scattering potential, as -0 €

seen in Eq(12), is an expression of the focusing property of e reqult follows that if the potentiay (x) solves the
eigenfunctions. That is, since eigenfunctiong\aforrespond regularized inverse scattering probléminimization of the

to incident-wave patterns that concentrate energy within th?veighted norm from Eq(18) under the constraint of Eq.
support of the scattering potential, they can be said to focu(sﬂ)] gy must be of the form

on general distributed inhomogeneities as well as pointlike™ M

scatterers. This idea is illustrated numerically later in this 1 —

oaper. W)= 2 2 QmFIIFLX), (22

| m

hile the infinite-dimensional gradient M]IIS\, is found from

where F;(x), the complex conjugate of the retransmitted
i field corresponding to an incoming condition at infinity, is
C. Inverse scattering method defined as
Because of the focusing properties outlined above, re-
transmitted fields of eigenfunctions are a useful starting point  F*(x)= f f*(a)p(X,a+ m)da, (23
for inverse scattering reconstructions. A general inverse scat-
tering method incorporating these ideas is outlined below. and the coefficient,,, are the Lagrange multipliers. If the
The starting point for this method is an expression of theabove gradients are taken with respect to the real and imagi-
inverse scattering problem in terms of the operatoof  nary parts of a complex potential, E2) as stated is also
Eq. (7) and the corresponding retransmitted fields defined irfound to be valid when the potentig|, is complex. In some
Eq. (12): of the simplifying approximations made below, E§2) will
yield a complex potentiat,, even when the data are as-
sumed to come from a unitary scattering operator associated
with the real potentiad.
By substituting Eq(22) into Eq.(17), the inverse prob-
lem is reduced to the problem of finding the coefficients
from the nonlinear system

- Fi()E; OOF (00 F (%)
5IJ)\I_2| Em: J W(X) dx Q|m1
hj=12,..., (24)

with W(x) an appropriate weight. For the analysis given be-where the dependence of the fiesand F* on the scatter-
low, this weight is defined a#/(x) = (1+|x|)?,6>0. For the ing potentialq is implicit.
explicit computations given later, other choicesviéfx) are In general, the scattering potentig{x), and therefore
more natural. the total pressure field(x,«), are unknown in inverse scat-
A solution to the minimization problem is obtained us- tering problems. The functiop(x, «) that implicitly appears
ing the method of Lagrange multipliers, analogous to then Eg. (24) may therefore be replaced by the best available
approach used in Ref. 21 for a linearized electric impedancestimate for the total pressure. Equati@%) can then be
tomography problem. At a minimum, theinfinite- solved for the coefficient®),, by standard numerical tech-
dimensional gradient ofllqll\%\, is a linear combination of the niques for solution of linear systems.
gradients of the constraints in E¢L7). The latter can be The number of term&l can be chosen arbitrarily; how-
calculated using the two-potential formtfia ever, increasindgN beyond the number of nonzero eigenval-

<Afi!fj>:5ij)\i:j Fi(x)Ej (x)q(x)dX,
ij=12,... . (17)

The problem can be regularized by seeking the solution thapim
minimizes the weightedl® norm

gl = f la(x)|2W(x)dx (18)
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ues ofA is of limited benefit in reconstructions. For simple energy discrepancy is small and so is the imaginary part of
scattering objectsy can be represented by expansions emthe potential.

ploying small values oN. For instance, for an inhomogene- The analytic solution of Eq$25) and(31) is equivalent
ity consisting of finitely many point scatteref$,comparable  to the well-known filtered backpropagation formt#a®and
to the number of scatterers is sufficient. has the advantage of computational simplicity, as discussed

The above method simplifies further in the case of aater in this paper. Equivalence between the two formulas is
weakly scattering medium, for which the total presspigan  shown by formulating an expansion ef “**, viewed as a
be approximated by the incident pressure. In this case, takinfyinction of ¢, in terms of the orthonormal basi§.,(«)}. In
the weightW(x)=1, the coefficient®Q,,, can be evaluated view of Eqgs.(11), this expansion yields the identity
analytically. From Eq(22), under the Born approximation,
the scattering potential takes the form e kex=" E* (x)f(a). (32
m

ag(¥) =2, > QumEI(X)Ex(x). (25)  Substituting Eq(31) in Eq. (25) and using Eq(32) as well
Fom as its conjugate gives
Substituting Eq(25) into Eq. (5) gives the equation K2 _
qg(X)= Ffﬁsin(a— 0)|A(0,a)e**(=Yda dg, (33
ar

A(6,0)=2 2 Qi J e B (O ER(X)p(x, @) dx. o , _
m which is the standard filtered backpropagation formula.
(26) Equation(33) yields the low-pass-filtered version of the true

Replacement op(x,a) in Eq. (26) by the incident plane potentialq if multiple scattering effects are negligible. The
wave eX*X use of Eq.(11), and integration inx over R? correct nonlinear generalization of the linearized low-pass

yields filtered solutiongg is the minimalL? (or weightedL?) so-
)2 o lution qy , which is of a form specified by Eq22).

A6, a) = ( ? 2 E lef f S(0-a—0 +a') The inverse scattering method developed above can also
k m L be used with any orthonormal set of basis functions for

O (0 do da’ 5 L?[0,27]. For instance, reconstructions can be performed
xfi(6")f(a')do da (27) using eigenfunctions oA\ for axisymmetric objects rather
for 6— & not equal to 0 orr. The double integral in Eq27)  than using the eigenfunctions associated with the measured

can be evaluated using the change of variables A. In this case, the eigenfunctions take the form
,: g 4 ,: i I —gj ! 1 R
X;=c0s @' —cosa’, X,=sinf —sina’, (28 f(6)= @M m—0+1+2.. . 34)
which is one-to-one when restricted to the regiaris< 6’ vem
anda’>6'. Evaluation of the integral yields The retransmitted fieldg, can be analytically evaluated to
2 be
. _(2m) S . _
|sin(0— a)| A6, @)= R Qim(fi (&) () En(r,$)=2mimem, (kr), (39
. and the coefficient®,, for the low-pass-filtered reconstruc-
Hhlat+min(6+m). (29 tion of q are given by

Equation(29) can be solved for the coefficien,,, using k2 _ o

the fact that the eigenfunctiorig 8) are orthonormal as well Q|m=mff|3m( 6—a)|A(0,a)e”" €M da db.

as the reciprocity identify (36)
A(0+ 7, a+ 7)=A(a,0). (30  While the retransmitted fields specified by Eg5) are not

ideally matched to nonaxisymmetric scattering media, they
can be analytically evaluated and stored for use in fast re-
k2 constructions. Since these retransmitted fields are also unaf-
Q|m=—2ff|3in( 60— a)|A(0,a)f} (0)fn(a)da dé. fected by uncertainties in scattering measurements, they are
8m suitable for reconstructions from data corrupted by noise.
(31) Finally, use of the eigenfunction method beyond linear
Equations(25) and (31) specify a solutiongg to the inversion is demonstrated by considering the case where the
linearized inverse problem. This solution is, in general, cominhomogeneous-medium retransmitted fieklsan be esti-
plex, even when the true potentiglis purely real. A physi- mated from a first approximation to the scattering potential
cal way to understand why the Born approximation yields ag. One approach in this case is to solve the full system of
complex scattering potential for a lossless medium is to recequations defined by E¢§24); however, a more numerically
ognize that this approximation neglects multiple scatteringefficient correction to the Born approximation can be ob-
and thus, the resulting output energy differs from the inputained by invoking the localized nonlinear approximation in-
energy. The corresponding scattering operator is then ntroduced in Ref. 22 for electromagnetic scattering. This ap-
longer unitary, and is only physically realizable by a poten-proximation follows from writing the Lippman—Schwinger
tial with a nonzero imaginary part. For weak scattering, theequation[Eq. (1)] in the form

The solution is
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, radiation condition. The inner solution is obtained using a
p(X,a)=F(X)(e'k“'x—f (p(y,a) = p(x,@)) finite-element method, while the outer integral equations are
solved using Nystim’s method?®

Scattering data were calculated numerically for a num-
ber of incident plane waves evenly distributed oveangles
between 0 and 2. For each incident-wave angle, the scat-
tered field was computed 8 far-field receiver angles be-
tween 0 and %, so that the angular sampling rate was
M/(2) samples per radian. The number of receiver angles
M should be chosen such that the scattered field has no sig-
nificant frequency components above the Nyquist frequency
of M/(4m) samples per radian. This computation yields a
screte representation of the scattering operdtoas an
XM matrix, Ay .

The eigenfunctions oA and their associated eigenval-

Xq(y)Go(x—y)dy), (37)

where the quantity’(x), called the depolarization tensor in
electromagnetic scatterirffd,is defined by
-1

I'(x)= (39

1+f q(y)Go(x—y)dy

The second term in Eq37) is presumed to be small because
the singularity of the Green’s function is cancelled by the*
difference term appearing in the integrand. Thus the totafll
pressure may be approximated by the formula M

p(x, ) =T (x)e**™, (39  ues were estimated numerically by direct computation of the
The form for the scattering potential given by Eg2)  €igenvectors and eigenvaluesAyj . Retransmitted fields of
then becomes eigenfunctions were evaluated numerically by numerical in-
) tegration of Eq(11). Images of inhomogeneous objects were
Qo (X)~ ') E E QumE(X)E™(X) (40) then obtained using a straightforward numerical implemen-
M W(x) 4 & ~m! m tation of Eqs.(25) and(31). The integrals appearing in these

equations were evaluated using corresponding discrete sum-

Substituting this form into Eq(5) and using Eq(39) mations of the components &f,, and its eigenvectors. For

gives . . ' . )
comparison, standard diffraction tomography inversions
_ _ were also performed by numerical integration of E3B).
~ ko- 1 *
A(H,a)~2| % Q'mf e W00 B () Eqy(x) Stability of the eigenfunction imaging method was
- tested by inversion of noisy data obtained by adding numeri-
XT'(x)*e™** dx. (41)  cally generated Gaussian white noise to the scattering matrix

An approximate nonlinear formula for the scattering poten/m - The rms amplitude of the noise was specified as a frac-
tial q can be obtained by taking/(x)=T'(x)3. Equation(41) t|on of th_e rms value oA\, . Thus, for m;tance_, a S|gnal—to-
then yields the coefficien®,, from Eq.(31) and the result- "0iS€ ratio of 6 dB was obtained by adding noise with an rms

ing solution for the scattering potential is amplitude one-half the rms value 8§, . . .
Inversions were also performed using the basis of eigen-

Ei(X) Ef(x) functions corresponding to axisymmetric inhomogeneities.

qM(X)%Z Em: Qim r(x) (42 I this case, the formula of Eq25) was implemented nu-
. L ) merically using the trigonometric basis functions defined in
The solution of Eq.(42) is simplified by making the Eq. (34), the retransmitted fields given in closed form in Eg.

further approximation (35), and the coefficients defined in E@6).
1 Nonlinear eigenfunction images were obtained using the
m%Z—F(x), (43)  analytic formula of Eq(44) with the total pressur@(x, )

approximated by the total pressure for a medium including a
which is valid for small scattering potentials. This substitu-cylinder of specified radius and compressibility contrast.
tion results in This computation employed an exact solution for the scatter-

ing of a plane wave by a cylindéf.

am0~2 2 Qim(2Ei(X) = F1())Ex(X). (44
bom Ill. NUMERICAL RESULTS

Focusing of eigenfunctions on a distributed scattering
object is illustrated in Fig. 2. Here, the magnitudes of the
retransmitted field&,(x) andE,(x) are shown for an inho-
mogeneity consisting of a weakly scattering triangle
Il COMPUTATIONAL METHODS (?/K=0.0'l) approx'imatel'y two wavelengths in height. The

triangle is shown in outline together with the retransmitted

The focusing and imaging methods outlined in Sec. Ifields. The corresponding scattering operator, calculated us-
were implemented using numerically computed scattereéhg the finite-element/Nystro method described above, was
fields of inhomogeneous objects. Scattering operators wenepresented by a matrix of size 22828. The retransmitted
calculated using a method due to Kirsch and M&hkn  fields show that the significant eigenfunctionsAfspecify
which an inner solution of the Helmholtz equation for a me-incident-wave patterns that concentrate energy within the
dium of variable sound speed is matched to an outer solutioaupport of the inhomogeneity. Notable is that this focused
of integral equations that implicitly satisfy the Sommerfeld energy is distributed throughout the support of the triangle.

This nonlinear equation for the potentil, can be approxi-
mately solved by using a form of the retransmitted field
F,(x) corresponding to the low-pass-filtered potentjglor

to another estimate of the scattering potential.
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Implementation of the eigenfunction method in focusingtained using five linearly spaced wave numbers;k8<12,
on pointlike scatterers is illustrated in Figs. 3 and 4. Theseso that the dimensionless parameier varied between 20
figures, obtained using the linearized eigenfunction methodand 30. The five-frequency image, shown in the second panel
show not only diffraction-limited focusing but also quantita- of Fig. 6, also shows increased point and contrast resolution
tive reconstructions of the associated scattering potentialsompared to the single-frequency image. Both images shown
Figure 3 shows images made from the scattered field of twin Fig. 6 were obtained using the linearized eigenfunction
pointlike scatterers at locations-(0.5,0) and (0;-0.2), each method described above, with 64 eigenfunctionsAofor
of radius 0.01 and compressibility variatien0.9. The nu- k=8, 9, and 10, 68 eigenfunctions fkre=11, and 72 eigen-
merically computed scattered field was sampled at 128unctions fork=12.
equally spaced angles for each of 128 incident-wave angles, Reconstructions of the test phantom obtained from noisy
so that the operatdk was represented by a 12828 matrix. ~ data are shown in Fig. 7. Gaussian white noise was added to
The wave number used was 10, so that the scatterers wellge scattering data employed in Fig. 6, so that the signal-to-
separated by approximately one wavelength. Since, in thigoise ratio was 6 dB at each of the frequencies employed.
case, two eigenvalues & were much larger than the re- The reconstructions employed the formula of E25) and
maining eigenvalues, the basic reconstruction required onlgoefficients obtained from Eq$34)—(36). The numbers of
the use of two retransmitted fields. This result illustrates thatbasis functions employed were equal to the number of eigen-
for an inhomogeneity consisting of finitely many pointlike functions employed in Fig. 6. These results indicate the sta-
scatterers, the present inverse scattering method provides Ality of the method for large objects with scattering data
accurate reconstruction with diffraction-limited point resolu- severely degraded by noise.
tion using a corresponding number of eigenfunctions. Nonlinear reconstructions of the same test phantom, ob-

A stability test of the eigenfunction method is illustrated tained using Eq(44), are presented in Fig. 8 together with
in Fig. 4. This image shows a reconstruction of the twolinear reconstructions. In the nonlinear reconstructions, the
pointlike scatterers of Fig. 3 using the same scattering datéetransmitted fieldsF(x) were estimated using pressure
with added Gaussian white noise for a signal-to-noise ratidields associated with a cylinder of diameter 5 mm and com-
of 3 dB. The method of reconstruction was identical to thatPressibility contrast 0.01" The scattering data employed
used for Fig. 3. The reconstruction shown is almost indistinWas identical to that used in Fig.(l§, with five linearly
guishable from the noiseless reconstruction, indicating théPaced wave numbers such that2(a<30. The number of
stability of the eigenfunction imaging method. eigenfunctions employed in each image were also the same

Linear eigenfunction images of the triangular inhomoge-as those used for the images in Fig. 6. The first panel shows
neity of Fig. 2 are presented in Fig. 5. These images weréhe real part of the nonlinear reconstruction, taken along the
constructed using the same scattering data as that used i€ ¥ =0, together with the real part of the analogous linear
Fig. 2. The first image, obtained using five retransmittedf€construction from Fig. ®). The nonlllnear reconstruction
fields, shows that strong focusing is achieved using only éhows |mpr0\{ed resolution over the Ilpear reqonstruc_tlon by
few eigenfunctions oA. The entire inhomogeneity is well- increased height of the peak associated with the internal
insonified and little incident energy is transmitted outside theVire. The second panel shows the imaginary part of the non-
support of the inhomogeneity. The second image, obtainelil”ear_ reconstrugnon with the cor_respondlng linear recon-
using 15 eigenfunctions, shows that the eigenfunctiorptruction from Fig. ). Here, the inaccuracy of the Born
method rapidly converges to the ideal low-pass-filtered solu@PProximation results in a significant imaginary part for the
tion for the scattering potential. Notable is that the eigen.inear reconstruction, while the true potential is purely real.
function method using 15 eigenfunctions required 69.1 s of he nonlinear inversion shows improved quantitative accu-
CPU time on a Sun SPARCstation 10, while an analogou%acy over the_ linear inversion by reduction of the recon-
image obtained using the diffraction tomography formula ofStructed imaginary part.
Eq. (33), with the integrals evaluated in an analogous man-
ner, required 3014.3 s. IV. DISCUSSION

Eigenfunction reconstructions of a test phantom, shown  Our method has shown that eigenfunctions of the scat-
in Figs. 6-8, illustrate application of the eigenfunction im- tering operator can be employed to focus on distributed in-
aging method to a larger-scale imaging problem. The phanhomogeneities as well as pointlike scatterers. However, the
tom, also represented in Fig. 1, is a cylinder of compressibilfocusing on distributed inhomogeneities occurs in a different
ity contrast 0.01 and diameter of 5 mm. Internal objectsmanner from focusing on pointlike scatterers. That is, the
include a water-filled(cystic) region of diameter 1 mm, a incident energy is not maximized at a single point within the
wire of diameter 0.1 mm and compressibility contrastmedium. Instead, when combined according to the present
—0.5, and an internal cylinder of diameter 1 mm and com-econstruction method, retransmitted eigenfunctions specify
pressibility contrast-0.01. Scattered fields were calculated incident-wave distributions that distribute energy throughout
using the methods described above, with the operatdis-  the inhomogeneous region. This type of focusing, which re-
cretized as a matrix of 256256 points. The first image sults from the eigenfunction property of maximizing the
shown in Fig. 6, obtained using the single wave numbeiscattered energy, is clearly connected to imaging of the me-
k=10 has high resolution but contains ringit@ibbs phe- dium by inverse scattering.
nomenon artifacts and loss of contrast in the cystic region. The quantitative inverse scattering method presented in
These artifacts are removed by compounding of images olthis paper can considerably simplify imaging computations.
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a- b.

FIG. 2. Focusing on a distributed inhomogeneity. Magnitudes of the retransmitted fields of the two most significant eigenfunctions are shown on a linear gray
scale with black indicating zero and white indicating maximum amplitude. The scattering object is a uniform triangle, compressibility contrast 0.01, within the
sketched boundariega) E4(x), (b) Ex(X).

The computational complexity of the current method de-most apparent for inhomogeneities a small number of wave-
pends mainly on the number of significant eigenfunctionslengths in size.

which in turn depends only on the complexity of the scatter-  The present inverse scattering method also has the ad-
ing medium. Furthermore, the basis for expansion of the unvantage of applicability to any medium for which the back-
known medium is determined directly from the scatteringground pressure field can be estimated. Use of background
data. Since the basis functions are closely related to the umpressure estimates can greatly improve accuracy over recon-
known medium, reconstructions performed using this basistructions based on simpler approximations. For instance,
employ a minimal amount of unnecessary information. ThisBorn inversion can yield a spurious reconstructed imaginary
property gives the present inverse scattering method advapart even when the true potential is real-valued; use of an
tages over other methods in which a fixed basis is used testimated background pressure field can greatly reduce this
expand the unknown mediufi-?’ These advantages are error, as seen in Fig. 8. The inverse scattering method pre-

FIG. 3. Eigenfunction image of two pointlike scatterers, compressibility

contrast—0.9, separated by approximately one wavelength. The image wa§1G. 4. Effect of noise on eigenfunction reconstruction. The object of Fig. 3
obtained using retransmitted fields of the two most significant eigenfuncwas reconstructed from two eigenfunctions of synthetically noised scattering
tions. data with a signal-to-noise ratio of 3 dB.
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FIG. 5. Eigenfunction images of a triangle about three wavelengths in height having compressibility contrdal B€dl. part of an inversion obtained using
retransmitted fields of five eigenfunctior(®) Analogous image obtained using 15 eigenfunctions.

sented here is also extensible to any background medium for The most significant eigenfunctions &f can be deter-
which a pressure field can be estimated, including movingnined experimentally through iterative retransmission of re-
fluids, layered or stratified media, and enclosed or otherwisgeived scattered fields in a manner similar to that performed
bounded regions. in Refs. 1 and 10. This implementation of the power method
The imaging, focusing, and inverse scattering methodgjows computation of the most significant eigenfunctions of

presented here also intrinsically take advantage of any poten by analog means, which may be preferable to numerical

tial increase in resolution that is associated with multlplefomputation for very large scattering objects. These eigen-

scattering or other higher-order effects, as long as these ef- . . L
. : ; ; nctions are useful as optimal incident-wave patterns for
fects are taken into account in the estimated pressure fleldl.J . .
verse scattering experiments.

This increase in resolution is possible because the retransmif? ) ) )
ted fields of eigenfunctions may have desirable qualiies, ~1he inverse scattering method presented here includes
such as higher spatial-frequency components, that are asdbe assumption that the scattering potential is purely real,
ciated with the presence of an inhomogeneous backgrounéat is, the inhomogeneous medium is assumed to have zero
Such improvements in resolution have been shown experiabsorption. Eigensystem analysis of the scattering operator
mentally for time-reversal focusing in a multiply scattering A is more complicated in the presence of absorpfiil.
medium?® However, the methods introduced here are expected to still

FIG. 6. Eigenfunction images of a test object having background compressibility contrast 0.01, gvegtsiefilled region, a pointlike scatterer, and an
internal cylinder. The images are shown on a logarithmic scale with a 40 dB dynamic (anBeal part of inversion obtained for a wave number such that
ka=25. (b) Analogous image obtained using five wavenumbers such thakae:30.
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FIG. 7. Images of test object obtained using noised data with 6 dB signal-to-noise ratio. The images are shown on a logarithmic scale with a 40 dB dynamic
range.(a) Real part of inversion obtained for a wave number such ktlaat 25. (b) Analogous image obtained using five wave numbers such thaka0
<30.

be useful for media such as biological tissue when absorption The general, nonlinear version of the eigenfunction
is finite but small. imaging approach, as defined in E¢&4) and(44) and illus-

A disadvantage of the inverse scattering method as cuttrated in Fig. 8, has obvious application to iterative recon-
rently implemented is that nonlinear inversion requires arstruction of unknown inhomogeneities. In such reconstruc-
accurate specification of the background acoustic field. Thisons, the total pressure field can be estimated at each
disadvantage is not unique to the eigenfunction method, buteration from a numerical solution of the direct scattering
is a common feature of most current inversion methods. Reproblem for the currently estimated inhomogeneity, and an
cent theoretically exact methods, while not limited in this eigenfunction inversion can be performed using this pressure
manner!3?have not yet been implemented numerically. ~ field. This procedure can then be repeated to obtain im-

proved estimates of the scattering potential until convergence
is achieved.

Re (nonlinear) —

0.021 Re (linear) - V. CONCLUSION

A method for focusing and imaging using scattered
fields has been presented. The method outlined here makes
use of the physical properties of scattering operators by using
their eigenfunctions as incident-wave patterns. The eigen-
functions have been shown to provide optimal focusing on
pointlike and distributed scattering objects.

The inverse scattering scheme presented exploits the fo-
cusing properties of eigenfunctions as well as recent analytic
results to obtain a robust and efficient means of quantita-

-0.021

-0.041

-0.061

-0.08 [

3 2 i 0 ! 2 3 tively reconstructing unknown scattering media. This new
0.04 Im (nonlinear) — method has a complexity dependent only on the size and
0.02 Im (linear) ---- complexity of the scattering medium. Particular cases of the

0 , method provide improved implementations of eigenfunction

focusing and filtered backpropagation. The method can be
-e.021 implemented for any background medium for which the total
0.04 acoustic pressure field can be estimated.
3 2 -1 0 1 2 8 Another particular case of the presented method results

FIG. 8. Cross sections of real and imaginary parts of test object reconstrué!_q a nonlinear inverse scattering formula that ylelds a solu-

tions using data from five wave numbers. Linear reconstructions were obtion for the scattering potential in terms of retransmitted
tained using retransmitted fields in a homogeneous medium, while nonlinedields of eigenfunctions in the scattering medium and in the

reconstructions were obtained using retransmitted fields in a homogeneotB;aCkground medium. This formula has been demonstrated to

medium and in a background cylinder of compressibility contrast q#)1. . . . . .
Cross sections of real partd) Cross sections of imaginary parts. yleld_ improvement in accuracy and resolution over Born in-
version.
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