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A theory is presented for the mechanism by which resonators are excited by grazing flow. The 
theory allows prediction of oscillation characteristics for the range of Reynolds numbers, 
Frequencies, and resonator amplitudes for which the acoustically excited mean flow rolls up into 
discrete vortices. The resonator-flow system is treated as an autonomous nonlinear system. Limit 
cycles of the system are found using describing-function analysis, in which each component of a 
nonlinear oscillating system is represented by an associated frequency-response thnction. This 
mathematical approach is shown to be a generalization of models in which the reson•ator and flow 
are considered parts of a feedback system. The theory's predictions for the frequencies of oscillation 
compare favorably with experiment. The results indicate that both "e•ge" and "resonator" 
feedback contribute to the mechanism of self-excited oscillations of the resor ator-flow system. 

PACS numbers: 43.28.Ra, 43.28.Py 

INTRODUCTION 

Many nonlinear systems exhibit limit cycles, that is, 
they cao undergo nearly-periodic oscillations in which the 
effects of the system's nonlinearity are balanced by the ef- 
fects of the linear parts of the system. Such an oscillation is 
called "self-excited," since there is no external forcing 
which is independent of the motion. For a self-excited oscil- 
lation to occur, there must exist a stable, nearly periodic 
solution to the nonlinear system of equations which de- 
scribes the motion of the physical system. 

Self-excited flow oscillations are common examples of 
nonlinear systems which possess limit cycles. This is true for 
flows in many geometries (Rockwell, 1983; Blake and Pow- 
ell, 1986). However, these flows are extremely difficult to 
model analytically. Workers who have attempted to model 
such flows from first principles have, because of the inherent 
complexity of the problem, been forced to make great sim- 
plifications. Although such models have been quite success- 
ful in characterizing the physical nature of self-excited flow 
oscillations, they have had less success in predicting quanti- 
tative chara.cteristics of these oscillations such as the fre- 
quency and amplitude (Howe, 1981; Nelson etal., 1983; 
Crighton, 1992). 

Alternatively, the limit cycles can be understood in 
terms of a feedback process (Powell, 1961; Cromer and 
!sing, 1968). A few investigators have analyzed flow- 
resonator oscillations in this way. Cromer and Ising (1968), 
Elder (1973), and Yoshikawa and Saneyoshi (1980) have 
treated the case of jet excitation of organ pipes. [A review of 
Cromer and Ising's work is given in Mast (1993).] Elder and 
co-workers (Elder, 1978; Elder et al., 1982) have also ana- 
lyzed several cases of flow excitation of cavity resonators; in 
these studies the flow disturbances were treated using linear 
shear lfiyer instability models and the oscillation amplitude 
was assumed to be limited by nonlinear orifice resistance. 

Parthasarathy et al. •1985) and Shakkotai •t al. (1987) have 
put forth a complete'.y linear model in which "eddy" sources 
were represented by time-delayed linear terms. However, •l- 
though this model has some features similar to those of non- 
linear feedback models, no linear model can fully describe 
the essentially nonli near process involved in flow excitation 
of resonators. 

The complicated process of resonator-flow oscillations 
may be understood in a mathematically satisfying way when 
the resonator-flow system is analyzed using concepts bor- 
rowed from nonlinear control theory (Slotine and Li, 1991). 
This approach was first hinted at by Powell (1961), and was 
put into more concrete form by Cremer and Ising (1968), 
who used a feedback. model in their analysis of jet excitation 
of organ pipes. In the present paper, feedback descriptions of 
flow-resonator systems are shown to be complementary to 
analytic descriptions which employ describing-function 
analysis. Describing-function analysis is used here to analyze 
a flow-resonalor system that is considerably different from 
that treated by Cremer and I.,,ing. 

In this paper, a new theory is presented for the self- 
excited oscillations of resonators subjected to grazing 
boundary-layer flow. Nonlinearity is assumed to be associ- 
ated with the finite growth and saturation of flow distur- 
bances rather than with nonlinear orifice resistance. The 

theory explicity treats the linear and nonlinear parts of the 
flow-resonator system using describing-function analysis. 
The describing function for t•e nonlinear part of the system 
is estimated for the case of a nonlinearly saturated flow dis- 
turbance by making, use of experimental observations of 
flow-resonant systems. This describing function and a func- 
tion describing the linear response of the resonator are used 
to determine the amplitude, frequency, and mean-flow char- 
acteristics for limit-cycle oscillations of the flow-resonator 
system. 
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I. DESCRIBING-FUNCTION ANALYSIS 

In order to clarify the nature of the mathematical analy- 
sis presented in this paper, it is believed warranted to present 
a brief introduction to the techniques used. Since readers in 
the acoustical community may not be familiar with tech- 
niques and nomenclature used in nonlinear control theory, a 
few notes about describing-function analysis are given here. 

Describing-function analysis is a method by which non- 
linear oscillating systems can be modeled as a group of 
coupled elements, with each element represented by an asso- 
ciated frequency-response function. This technique is com- 
monly used in control theory to calculate limit cycles of 
nonlinear systems--typically, the nonlinear part of the sys- 
tem is represented by one frequency response function and 
the linear part by another. In the nomenclature of control 
theory, the frequency response functions are called "describ- 
ing functions" (Slotinc and Li, 1991, pp. 157-190). These 
differ from linear transfer functions in that the describing 
functions themselves may be nonlinear functions of their ar- 
gument: in other words, the output may depend nonlinearly 
on the input amplitude or phase. 

In this section, a simple example of describing-function 
analysis is given in order to illustrate how this method is 
used to find limit cycles of nonlinear systems. The system to 
be used as an example is the unforced Van der Pol equation 
(Slotinc and Li, 1991, p. 158): 

•+ a(X 2-- 1)•+X=0. (1) 

Equation (1) represents a one-degree-of-freedom oscillator 
which is negatively damped for amplitudes below one and 
positively damped for amplitudes above one. 

For a system like that described by Eq. (1), it is reason- 
able to expect that a limit cycle may exist. This is so because 
Eq. (1) has the general form of an equation describing a 
forced linear oscillator: 

.•- ot.• + x=y. (2) 

Here the "forcing" function y is not external to the system, 
but depends on the amplitude of oscillation: 

y = - ,x2s:. (3) 

To seek a limit cycle, one first postulates an approximate 
solufon of the form 

x=A cos(tot) (4) 

and substitutes the postulated solution into Eq. (2) with y 
given by Eq. (3). This results, after some trigonometric ma- 
nipulation, in the equation 

(1 -- to2)cos(cot) + a sin(cot) 

= (A2otto/4)[sin tot+ sin(3cot)]. (5) 

A solution to Eq. (1) will not be sinusoidal for finite 
values of or. However, it is possible to postulate a nearly- 
sinusoidal solution and to determine the amplitude of the 
fundamental component of this solution. Once an approxi- 
mate solution is found, it can be checked in Eq. (1) to deter- 
mine its range of validity. 

Nonlinear Pan 

Describing Function 

Linear Part 

Describing Function 

y 

FIG. 1. Feedback loop illustrating the describing-function method for seek- 
ing limit cycles of Van der PoPs equation. 

To seek the fundamental component of a nearly sinu- 
soidal limit cycle of Eq. (1), the term of frequency 3co in Eq. 
(5) is dropped. Then all terms are of frequency to. The re- 
sulting equation can be thought of as the real part of the 
complex equation 

(1-co2)e-itøt--iote-itøt=(-icoA2ot/4)e -itot, (6) 

or simply 

-icoA2a 1 

4 (1_ co2)_io t =1. (7) 

The criterion expressed in Eq. (7) is that the product of 
two describing functions equal one. Equation. (7) can be writ- 
ten in the form 

y(x) x(y) 
-- = 1. (8) 

x y 

The first term here corresponds to the first term in Eq. (7); 
the second terms in the equations also correspond. 

The first term of Eq. (8) is the describing function asso- 
ciated with the nonlinear part of the system; this describing 
function represents the fundamental part of the response of 
the nonlinear part of the system for the case of sinusoidal 
input. The second term describes the response of the linear 
part of the system to sinusoidal input (including the negative 
resistance which the oscillator incurs at small amplitudes). 
Both of these describing functions have the form of 
frequency-response functions. 

These two parts of the system can be interpreted as com- 
prising the feedback loop sketched in Fig. 1. The output x of 
the linear block is fed into the nonlinear block. The output y 
of the nonlinear block is then fed back into the linear block. 

Mathematically, these two operations amount to specifica- 
tions that y is a function of x [as seen in Eq. (3)] and that x is 
in turn a function of y [as seen in Eq. (2)]. The criterion for 
a limit cycle of the feedback system shown in Fig. 1 is that 
the product of the two describing functions be equal to one; 
of course, this is just the condition stated in Eqs. (7) and (8). 

Equation (7) has a solution for co=l and A = 2; this so- 
lution is the sought limit cycle. Thus there is a solution for x 
of the form 

x•--2 cos(t). (9) 

This is precisely the limit cycle which is found when Eq. (1) 
is treated by averaging or by perturbation methods; the error 
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associated with the approximations made is of order O(a 2) 
(Guckenheimer and Holmes, 1990, pp. 68-69). 

Describing-function analysis is a conceptually simple 
way to determine the leading-order behavior of a nonlinear 
system. In the example just given, the system of interest can 
be conveniently studied by other analytic means. This is not 
the case, however, for the physical system of a flow-excited 
resonator; in this case, describing-function analysis provides 
analytic insight not otherwise available. 

II. THEORY 

In this section, the method of describing-function analy- 
sis is applied to develop a theory for flow excitation of reso- 
nators that can be described by lumped-element models. The 
scope of the model includes flow excitation of Helmholtz 
resonators (such as wine bottles) and of flexible-walled cav- 
ity resonators such as aneurysms in arteries (Mast, 1993; 
Mast and Pierce, 1995). The flow-resonator system is ana- 
lyzed as an autonomous nonlinear system in which the non- 
linearity is associated with saturation of disturbances in an 
unstable mean flow. The Mach number of the mean flow is 

assumed to be negligibly small, and all resonator dimensions 
are assumed to be much less than an acoustic wavelength. 

A. Flow-excited resonators as a nonlinear system 

Many resonators of size much smaller than a character- 
istic wavelength can be described as one-dimensional, 
lumped-element oscillators. The equation governing the mo- 
tion of such an oscillator is 

MS• + R• + Kx=F(x,t), (10) 

where x is the average displacement of the fluid in the open- 
ing (taken to be positive in the direction pointing into the 
cavity) and F(x,t) is the force exerted on the fluid in the 
resonator's opening; it is proportional to the pressure Padre 
above the opening. The pressure Pabove in general depends on 
the fluid displacement x as well as on the time t. Thus the 
system described by Eq. (10), composed of the resonator and 
the external flow, is nonlinear. One expects that, under cer- 
tain conditions, the system may possess limit cycles. That is, 
there may exist nearly-sinusoidal solutions for the indepen- 
dent variable x. 

Limit cycles of the system can be sought in a manner 
analogous to that used in Sec. I. That is, one first postulates 
a sinusoidal form for x (corresponding to the lowest-order 
Fourier component of the true oscillatory solution), and then 
determines the amplitude and frequency of the sinusold. The 
fundamental component of a limit cycle proves to be a good 
approximation to the physically occurring limit cycle when 
the linear part of the system (in this case, the resonator) has 
a moderate amount of damping (Slotinc and Li, 1991, pp. 
164-165). Since only the fundamental component of the so- 
lution is sought, the left side of Eq. (10) can be replaced by 
its counterpart for constant-frequency oscillations. 

The difficulty in such analysis is that the forcing func- 
tion F(x,t) is not explicitly known. However, even though 
F(x,t) cannot be precisely specified, the effect of the non- 
linearity of the system [completely contained in the function 
F(x,t)] can be determined using the method of describing- 

u 

FIG. 2. Sketch of the resonator-flow system, with breakdown of tile flow in 
the opening into the "orifice" flow qo and the "resonalor" flow qr- 

function analysis. For the purposes of this analysis, the de- 
scribing function characterizing the nonlinear part of the sys- 
tem can be approximated using empirically observed 
relationships between the oscillatory flow q=A• and the 
forcing function F(x,t). 

For reasons of simplicity and generality, it is desirable to 
carry out the describing-function analysis in terms of nondi- 
mensional quantities. In the present paper, the quantities used 
are the ratios of two volume velocities. Two such describing 
functions are derived. The first, termed the "forward gain 
function," describes the nonlinear interaction between the 
oscillatory flow in the resonator's neck and the unstable 
mean flow. The second, the "backward gain function," de- 
scribes how' flow disturbances in turn force the resonator. 

These two describing functions are chosen such that 
their product is identically one under the conditions for 
which a limit cycle occurs. This is ensured by specifying the 
two functions so that when an oscillation is occurring, the 
two functions are reciprocals of one another. 

The volume velocity i a the neck of the resonator is split 
into two parts, the "orifice" volume velocity qo and the 
"resonator" volume velocity qr- Each is taken to be positive 
in the direction pointing into the resonator cavity. Both are 
purely osci!latory quantities. The flow qo is the flow that 
would occur in the absence of any resonator for a given 
pressure disturbance across the orifice. The flow part desig- 
nated by qr is simply the •est of the flow: 

qr = qtotal-- qo' (11) 

When the resonator is sounding near its natural frequency, qr 
is approximately equal to qtota•' A schematic of this break- 
down of the flow field is shown in Fig. 2. 

The forward gain function yields the "orifice" volume 
velocity qo associated with a specified input "resonator" 
volume velocity qr- This describing function is associated 
with the flow disturbance caused by a given oscillation of the 
flow in the resonator's neck; thus for the purposes of deriv- 
ing this function the resonator flow qr is taken to be given. 
The forward gain function is then given by qo(q•)/q•. 

The backward gain function is associated with the re- 
sponse of the resonator to a given flow disturbance. For the 
purposes of calculating this function, the orifice flow qo (de- 
fined to be proportional to the pressure associated with the 
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flow disturbance) is taken to be given and the resulting reso- 
nator flow q• is calculated; the ratio of the two is the (non- 
dimensional) describing function. The backward gain func- 
tion is simply q•(qo)/qo. 

For a limit cycle of the system to exist, both q, and qo 
must be finite. Since each is a function of the other, a crite- 

rion analogous to Eq. (8) must be satisfied for a limit cycle to 
occur: 

Below, the two describing functions are derived and the 
procedure for seeking limit cycles of the flow-resonator sys- 
tem is outlined. A dispersion relation for the frequency of 
oscillation is then derived and a mathematically simple pro- 
cedure is given for finding numerical roots of the feedback 
equation describing the limit cycles of the system. 

B. Forward gain function 

First, the describing function corresponding to the non- 
linear interaction between the resonator and the unstable 

mean flow is derived. This describing function is termed the 
"forward gain function." 

The flow external to the resonator opening is assumed to 
take the form of an unstable shear layer. Ronneberger (1980) 
noted that an unstable shear layer exposed to a sinusoidal 
pressure disturbance will roll up into discrete vortices for 
Strouhal numbers St o such that 

Sta = toO/U•>O. 15, (13) 

where 0 is the momentum thickness of the shear layer and to 
is the radial frequency of the flow disturbance. (The vortices 
are shed at the frequency of the applied pressure distur- 
bance.) As the analysis in the present paper assumes that the 
flow disturbance takes the form of discrete vortices, it is 
valid only for Strouhal numbers that satisfy Eq. (13). For 
Strouhal numbers within this range and for high Reynolds 
number flows, the details of the boundary layer characteris- 
tics are not.important to the physical mechanism of oscilla- 
tion. 

Furthermore, Bmggeman and co-workers (Bmggeman, 
1987; Bmggeman et al., 1991) have shown that in the case 
of shear-layer flow past a resonator's opening, for a given 
resonator geometry, the disturbance source strength can be 
assumed constant (for constant frequency and varying ampli- 
tude of the acoustic field that excites the shear layer) if the 
system is sounding near the resonator's natural frequency 
and if the flow oscillations are of "moderate" amplitude. The 
amplitude is considered moderate if the velocity u' associ- 
ated with the flow disturbance is within the range 

O( I O- 3)•<u' /U•<O( I O-I). (14) 

Within this amplitude range the disturbance flow qo is 
proportional to the square of the mean flow velocity, U 2 
(Cremer and lsing, 1968). For a linear resonator response, 
this also implies that the pressure amplitude of the resonator 
oscillations will be proportional to U 2. This proportionality 
has been observed by many experimental investigators in 
studies of flow excitation of resonators (Blokhintsev, 1945; 

Cremer and Ising, 1968; Shakkotai et al., 1987; Bmggeman, 
1987; Bruggeman et al., 1991). The constant of proportion- 
ality, however, depends on the specific geometry of the reso- 
nator and flow (Bmggeman, 1987). The fact that the distur- 
bance flow is of constant amplitude means that the initially 
growing flow disturbances are saturated in amplitude at the 
time of their interaction with the downstream edge of the 
resonator. This saturation is a nonlinear effect, and renders 
linear shear layer theories invalid for oscillation amplitudes 
in this range. The present paper assumes that the amplitudes 
of oscillation will be within this range. 

When a pressure oscillation associated with the sound- 
ing of a resonator is present, the frequency of the vortex 
shedding will be equal to the frequency of that pressure os- 
cillation, as observed by Ronneberger (1980). The vortex 
shedding also occurs with a specific phase relationship to the 
pressure oscillations associated with the resonator. This 
phase relationship, along with the amplitude relationship 
stated above, provides the information necessary to estimate 
the describing function associated with the nonlinear part of 
the flow-resonator system, as is done below. 

In a given cycle, the shedding of the vortex from the 
upstream edge occurs when the triggering (acoustic) velocity 
first becomes positive, directed into the resonator (Brugge- 
man, 1987). For a rigid-walled Heimholtz resonator, this cor- 
responds to the point in the cycle when the oscillating pres- 
sure inside the resonator reaches its minimum value, since 

the cavity pressure is 

/3ca v-- pC2qneck/Vcav (15) 

(Pierce, 1989, p. 338). This implies that the cavity pressure 
will be at a minimum at the instant the vortex is shed from 

the upstream edge; this is exactly the phase relationship be- 
tween cavity pressure and vortex shedding that was observed 
by Nelson et al. (1981) in an experimental study of a flow- 
excited Helmholtz resonator. 

After being shed, the vortex corrects downstream at a 
speed close to half the mean-flow velocity (Nelson et al., 
1981; Bmggeman, 1987; Hirschberg et al., 1989). This con- 
vection speed is approximately equal to the average of the 
flow velocities above and below the opening. 

The flow disturbance initially grows as it convects 
downstream. Since the flow disturbance grows spatially 
while it is exposed to the exciting acoustic wave, it is at its 
largest when in the vicinity of the downstream edge of the 
cavity (Ronneberger, 1980; Nelson et al., 1981; Bmggeman, 
1987). Also, the vortical disturbance is a much more efficient 
source of sound when in the vicinity of a boundary (Curie, 
1955). For the purposes of approximating the form of the 
source, the downstream edge can be modeled as a rectangu- 
lar comer. Furthermore, as shown by the calculations of Con- 
lisk and Rockwell (1981), a single vortex approaching a cor- 
ner will not cause a significant pressure fluctuation until it 
reaches the immediate vicinity of the corner and the presence 
of the boundary causes the vortex to decelerate. One con- 
cludes the effect of the flow disturbance on the resonator can 

be idealized as that of an acoustic source located at the 

downstream edge of the opening. This is a common approxi- 
mation used in cavity-tone problems, and has been found in 
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many cases to provide good agreement with experiment 
(Heller and Bliss, 1975; Tam and Block, 1978; Blake and 
Powell, 1986). The form of the source used in the present 
development is an oscillating volume velocity. 

The sought source, then, is that oscillating volume ve- 
locity associated with the interaction of a single line vortex 
with the downstream edge of the cavity. The phase of the 
effective volume source is estimated here by making use of 
experimental measurements of vortex-corner interaction. 
Tang and Rockwell (1983) made detailed measurements of 
the wall pressure distributions associated with the interaction 
of line vortices and a square corner for vortices shed from an 
upstream edge at a constant frequency. The measurements 
were performed for a number of vortex paths, including 
paths for which the vortices impinged directly on the corner 
and paths for which the vortices were swept past the corner. 
In all cases, the time history of the pressure at any point on 
the wall was nearly sinusoidal. 

They found that near the corner, the pressure distribution 
was dipole-like, being 180 ø out of phase between the top and 
front sides of the comer at all times during an oscillation 
cycle. This is to be expected, as vorticity inhomogeneities 
near solid boundaries act as dipole sound sources (Curie, 
1955). Tang and Rockwell also observed that the phase of the 
dipole moment at the downstream edge depended on the path 
of the vortices path the corner. In the present discussion, it is 
assumed that the vortex is convected past the corner, incur- 
ring only slight distortion, since this path corresponds to that 
seen in the flow-visualization studies of Nelson et al. (1981) 
and Bmggeman (1987). In this case, the dipole moment at 
the comer passed through a zero (decreasing) at the instant 
when the leading edge of the vortex was approximately flush 
with the corner. 

The dipole moment is essentially a local value of the 
pressure gradient existing at the comer, and will locally in- 
duce a flow that can be determined from the constant- 

frequency version of Euler's equation: 

o = ( - iloop)Vp. (16) 

Since the time dependence of each side is e -iø•t, the velocity 
disturbance leads the pressure gradient (dipole moment) by 
rr/2. Thus when the dipole moment at the corner is zero and 
decreasing, velocity induced by the dipole moment will be at 
a minimum (that is, at its peak and pointing out of the cav- 
ity). This is the required information for specification of the 
phase of the source associated with the flow disturbance. 

The source associated with the flow disturbance is taken 

to be located at the downstream edge of the cavity. Then the 
travel time from upstream edge to source position is 2d/U, 
and the resultant phase lag will be 2tod/U. At this instant, 
the flow source associated with the vortex shedding has a 
phase that is 3rr/2 greater than the phase of the resonator 
flow at the moment the vortex was shed. The flow source 

then has a phase of 3 rr/2- 2tod/U relative to the resonator 
flow. 

The flow source thus has the form 

qo = gU2 e-i(3w/2- 2ø•a/U)( q, /IqrD , (17) 

where g is a quantity that is real, positive, and constant for a 
given frequency to, having dimensions of length X time. Here 
to is an unknown which is be solved for once all necessary 
describing functions are specified. 

Equation (17) can be expressed in a form without di- 
mensional constanls when the pressure fluctuation associated 
with the flow disturbance is constant, as expected for the 
range of parameters studied here. This pressure fluctuation, 
Pabove, relates to tile flow disturbance qo as 

qo=pat•e/( - itoM), (18) 

so that the amplitude of qo can be expressed as 

[qo[Ct fiA 2 pU2/(- itoM) (19) 
for a pressure disturbance Pabow=fipU 2. 

For the purpose of calculating the forward gain function, 
the average "resonator" riow is taken as given. One can now 
specify the forward gain function. The resonator volume 
flow qr is given, and the or'rice volume flow is given by Eq. 
(17), so that the forward gain function is 

(go) fiA2pU2_i(3,r/2_2oJdlU) • ro•,-•,•- e (20) a,Mlq,I 

The absolute value Iq•l appears because the phase of qo was 
defined relative to q•; the difference is phase is simply 
3 rr/2-toT, which in Eq. (220) appears entirely in the expo- 
nential term. 

Equation (20) has several features worthy of note. It 
contains the essential nonlinearity of the system in that qo 
depends nonlinearly on q•. Since the flow source is saturated 
in amplitude while the resonator is sounding, the amplitude 
of qo does not depend on that of qr, but the phase of qo is 
determined by the phase ot q•. It is this phase relationship 
which primarily governs the frequency of oscillation of the 
flow-resonator system. 

C. Backward gain function 

The backward gain function corresponds to the resonator 
flow caused by a specified orifice flow. It is assumed that the 
resonator response can be described by a lumped-element 
model. In such a model, the resonator is represented by an 
impedance composed of a mass, a stiffness, and a resistance. 
This represents a single-degree-of-freedom oscillator which 
responds to any disturbances to the flow outside the opening 
of the resonator. Here, these disturbances are represented by 
the "hydrodynamic:" pressure disturbance Pabove associated 
with the orifice flow qo. The use of Pat,o,,• rather than qo as 
the driving quantity is simply a matter of convenience; since 
the two quantities are related by Eq. (18), specifying one 
automatically specifies the other. 

The governing equation for this system is, for constant- 
frequency oscillations (as are assumed when a limit cycle is 
sought), the constant-frequency form of Eq. (10) for an e-i,ot 
time dependence: 

( -- o)2M - iooR + K)x = Apabove(X,t). (21) 

Here x is the average displacement of the fluid in the cavity 
opening. This includes "orifice" and "resonator" displace- 
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mcnts. Equation (21) applies for simple harmonic motion, 
which is assumed in this case since only the lowest-order 
Fourier component of the oscillatory flow is considered. 
Now, since for simple harmonic motion qtotal =- itoAx, 

- i top above A 2 
qtøtal= -- w2M- itoR + K' (22) 

The orifice flow qo is specified by Eq. (18). 
Thus, the resonator flow q, is [as defined by Eq. (11)] 

the remaining part of the total volume velocity: 

( K- i toR )A 2P abov½ 
(23) q ß: qtotal- qo -- i tom (K- M to2 _ i tar )' 

Now the backward gain function can be stated as 

(qr) 1-itoR/K •oo backward-- (to/to02) -- (1 -- itoR/K)' (24) 
Here too = q•/M is the natural frequency of the resonator. 

In terms of a nondimensional frequency parameter 
11= to/too and the quality factor Q = K,•--•/R, the backward 
gain function is 

(qr) 1-i•/Q (25) •oo backward--•2--(1--i•/Q) ' 

D. Loop gain criterion 

The criterion for stable self-excited oscillations is that 

the product of the two gain functions is identically one. If 
one thinks in terms of a feedback loop, this criterion implies 
that the total loop gain is equal to one. The criterion is given 
by an equation analogous to Eq. (12): 

(•r) forward(q•) backward= 1 . (26) 
For given mean flow velocity and resonator dimensions, the 
real and imaginary parts of this equation comprise two equa- 
tions in two variables--in dimensionless form, the two vari- 
ables are the Strouhal number tod/U and the velocity ratio 
lurl/U. These two equations can be solved numerically to 
yield possible solutions for stable oscillations. 

This criterion can be written as 

]•A2pU2 -i(3*r/2-2a•d/U) 1-itoR/K - 1. 
toMiqrl e (to/to•)- (1 -itoR/K) 

(27) 

In terms of nondimensional variables 12=to/to o, 
Q = •/R, and S = tod/U, the criterion may be written as 

•A 2pU2 -i(3•r/2- 2S) 1 - ifUQ = 1. (28) toMlqr [ e •2_(l_i•/Q ) 
To seek a solution of this equation, one can specify a 

value of U. Solutions then occur when, for a particular am- 
plitude and frequency, 

(q•) baclcward = 1 / (•r) forward. (29) 

Inverse of 
Forward Gain 

Function •. / 

Backward Gain 
Function 

Im 

Re 

FIG. 3. The two gain functions plotted in the complex plane. The vertical 
axis is the imaginary part of the horizontal axis is the real part of the 
respective function. 

The forward gain function and the inverse of the backward 
gain function can be plotted in the complex plane; neutrally 
stable oscillations occur when the two curves intersect at an 

equal frequency. Such a plot is shown in Fig. 3, for the 
resonator-flow system analyzed by Nelson et al. (1981). In 
this case, a solution exists near the negative imaginary axis, 
where U = 12 m/s, and f--609 Hz (close to the natural fre- 
quency of the resonator). At this point, the Strouhal number 
is tod/U=3.19, close to w, meaning that the distance be- 
tween successively shed vortices is close to the streamwise 
opening thickness d. The other intersection of the two curves 
(near the origin) is not a solution, since the two intersecting 
points correspond to different frequencies. 

The solution occuring near the negative imaginary axis 
is the solution (for high-Q resonators) that corresponds to 
oscillations near the natural frequency of the resonator, as 
was previously observed by Elder (1978). It can be seen 
from Eq. (25) that near the resonator's natural frequency 
(where one expects the largest response), the backward gain 
function will be nearly purely negative and imaginary. When 
to= too, f•= 1 and Eq. (25) becomes 

(q•ror)backward=l--i/Q i/Q •-iQ' (30) 
The phase of the forward gain function, as seen from Eq. 

(20), depends only on the nondimensional frequency tod/U. 
The inverse of the forward gain function crosses the negative 
imaginary axis at frequencies such that 

tod 
--=nw, n=1,2,3 ..... (31) 
U 

It may be noted that Eq. (31) does not imply that high- 
amplitude oscillations take place near frequencies 2to 0, 3to 0, 
etc. Although the forward gain function can cross the nega- 
tive imaginary axis near these frequencies, the backward 
gain function crosses this axis only at a frequency near too, 
so that the loop gain criterion predicts high-amplitude oscil- 
lation only at frequencies near too. 

The phase criterion of Eq. (31) is equivalent to a crite- 
rion for the flow disturbance wavelength k, 

k=d/n, n=1,2,3 ..... (32) 

since h = 2fd/U for a convection velocity of U/2. 
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One can see from Eq. (20) that for fixed d and U, the 
forward gain function is inversely proportional to the radial 
frequency to and to the resonator flow q,. Thus solutions for 
higher n correspond to lower oscillation amplitudes. The 
highest-amplitude oscillations occur for n = 1. Response for 
the n = 2 flow-disturbance mode will be approximately half 
that of the n = 1 mode, and responses associated with higher 
modes will be correspondingly lower in amplitude. 

Thus, for resonators of moderate to high Q, the highest- 
amplitude oscillations occur in the vicinity of to'to0 and 
tod/U• •r. When rod/U= •r, the wavelength of the flow dis- 
turbance is equal to the orifice diameter d, so that for the case 
calculated above, the distance between shed vortices is close 
to the opening's diameter. 

E. Procedure for solution 

The criterion for closure of the feedback loop [Eq. (28)] 
can be satisfied by numerically solving two equations [the 
real and imaginary parts of Eq. (28)] in two variables, the 
amplitude and frequency of oscillation. However, it is more 
efficient first to solve for the frequency of oscillation using 
the requirement that the phase of the loop gain be zero, and 
then to solve for the amplitude of oscillation. 

Equation (28) can only be satisfied if the imaginary part 
of the loop gain is precisely zero, that is, if 

Im( e -i(3•r/2- 2s) 1 - if•/Q ll2_ (1 - ill/Q)] = 0. (33) 
Rationalizing the denominator of Eq. (33) yields 

Im e -i(3•r/2-2s) ll2_ •- I- =0. (34) 
Expanding the exponential and taking the imaginary part of 
the resulting expression gives 

Ill2( 1 -- 32) - 1 lcos(2S) + ll3 -•- sin(2S) = 0, (35) 
so that one can write down the dispersion relation 

Q2_ll2(Q2_ l) 
tan(2S)- ll3Q , (36) 

or 

2_ll2( 2_ 
2S=tan-•(Q ll-• - 1)) +2n•r, (37) 

where n is an integer. The inverse tangent function has the 
range -•'/2<tan-•(x)< •r/2, and has a zero where the argu- 
ment x is zero. In Eq. (37), it can be seen that near the natural 
frequency of the resonator (fl=l) the argument of the in- 
verse tangent function will be small and near a zero crossing, 
so that the inverse tangent function will also be small. 

For the case n = 1 the resulting dispersion relation is 

rod 1[Q2-l12(Q2-1)\ / S= -•- =tan- [ ll-•-• -] 2 + •r. (38) 
The n = 1 case corresponds to the experimental observations 
of Nelson et al. (1981). As shown in Sec. II D, it also corre- 
sponds to the highest-amplitude oscillations of a flow-excited 
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HG. 4. Plot of nondimensional "Strouhal" frequency tod/U versus sound- 
ing frequency fifo for itow-disturbance mode n= I (k•d). 

resonator. Equation (38) yields values of S such that 3 •r/4 
<S<5•r/4 for 0<ll<•o. Equations of the form of Eq. (38), 
with higher values of n, yield values of S close to n 

Solutions of Eq. (38) for a range of values of Q are 
shown in Fig. 4. In this figure, U can be thought of as a 
parameter increasing from left to right and from top to bot- 
tom along each of the curve:; shown. The figure shows that as 
Q increases, the resonator exerts more and more frequency 
control in the vicinity of resonance. 

When a particular value of U is specified, Eq. (37) can 
easily be solved numerically for to, yielding the frequency of 
oscillation. When the resulting value of to is substituted into 
Eq. (28), one obtains a purely real equation for the "resona- 
tor" flow q,. The :otal velocity response in the neck of the 
resonator can then be calcu'ated as 

-1 
Iq,o,•ll = Iq,ll l + ( qr/qo)backward]' (39) 

Of course, the forward gain function could be used in place 
of the inverse of the backward gain function here, since the 
product of the two gain functions is identically one when Eq. 
(28) is satisfied. 

III. COMPARISON WITH EXPERIMENT 

To show that the theory of presented here is credible, it 
is necessary to coaapare its results to experiment. Nelson 
et al. (1981) peffor'ned a detailed experimental investigation 
of flow excitation of a ttelraholtz resonator. Their data pro- 
vide a good check for the theory developed above, since they 
explicitly measured the parameters K, M, and R used in the 
theory presented here. 

To perform such a comparison, one can find numerical 
solutions of Eq. (27), inserting the parameters describing the 
resonator of Nelson et al. (1981). These are (with the imped- 
ance terms stated in mechaaical units, for consistency with 
the derivation in this paper): 

M=2.2X10 -s kg, K=320 kg/s 2, 
(40) R=8.4X10 -3 kg/s, d=10 mm. 

This value of R is a radiation resistance, and was measured at 
the natural frequency of the resonator. For other frequencies, 
R will vary as (ka) '•-, as for a piston in an infinite baffle. The 
above stiffness and mass yield a resonance frequency 
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FIG. 5. Frequency of flow-excited oscillation (Hz) versus free-stream ve- 
locity (m/s). Line: theory; dots: experimental data from Nelson et al. (1981). 
The dashed line indicates the nominal natural frequency of the resonator, 
609 Hz. 

10=• =609 Uz. (41) 
The resonator's quality factor is 

Q = K,]•/R = 10. (42) 

Using the procedure outlined in Sec. II E, one can find 
numerical solutions for the frequency and amplitude of os- 
cillation of a flow-excited resonator having parameters iden- 
tical to the resonator of Nelson et al. (1981). Figure 5 shows 
the calculated (using the present model) and measured (by 
Nelson et al.) oscillation frequencies versus the free-stream 
velocity U (directly above the shear layer). Nelson et al. 
found that the free-stream velocity was U= 12 m/s directly 
above the shear layer for a maximum velocity (far from the 
shear layer) of U• = 22 m/s. The measured convection speed 
for his vortices was 6 m/s, which corresponds to U/2; hence 
U and not U• is used for comparison to the present theory 
(in which the vortex convection speed was assumed to be 
half the free-stream velocity). U is assumed here to be pro- 
portional to U:• by the constant 12/22, as it is for U• = 22 
m/s. Figure 5 shows that the model predicts the frequency of 
oscillation quite well in the vicinity of resonance. 

The relative amplitude of oscillation is predicted some- 
what less well. The model predicts peak excitation amplitude 
for U--13 m/s, while Nelson et al. (1981) observed peak 
excitation for U = 12 m/s. The general shape of the response 
curve (versus U), however, agrees approximately, as shown 
in Fig. 6. For the purpose of comparison, the mean-flow 
velocities were normalized to Upeak , the velocity at which 
the greatest response occurred. It is thus seen that the model 
yields a reasonable prediction of the range of flow velocities 
over which the resonator-flow system will oscillate with high 
amplitude. 

It should be emphasized that the agreement with experi- 
ment seen in Figs. 5 and 6 was obtained without any adjust- 
ment of unknown parameters. Every parameter needed by 
the present theory was directly measured by Nelson et aL 
(1981). The present authors are not aware of any published 
study other than that of Nelson et al. in which detailed fre- 
quency results were presented along with measurements of 
all the parameters required by the present theory. For this 
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FIG. 6. Normalized oscillation velocity amplitude versus normalized free- 
stream velocity. Line: theory; dots: experimental data from Nelson et al. 
(1981). 

reason, detailed quantitative comparisons of the kind shown 
in Figs. 5 and 6 could not be carried out using data from 
other studies. 

The quantitative predictions of the present theory for the 
characteristics of peak-amplitude oscillation are in good 
agreement with the observations of many investigators. This 
theory's predictions are in agreement with the common ob- 
servation that the peak response of a flow-excited resonator 
occurs near its natural frequency (Elder, 1973, 1978; Panton 
and Miller, 1975; Nelson et al., 1981). The prediction that 
this occurs when the vortex wavelength matches the opening 
diameter agrees with the observations of Nelson et al. 
(1981), as well as those of Bruggeman (1987), Bruggeman 
et al. (1991), Panton (1990), and Blokhintsev (1945). 

Likewise, Bmggeman (1987) found that for his flow- 
excited pipe resonator, strong excitation occurred for flow 
disturbance wavelengths that were an integral fraction of the 
streamwise opening diameter. He observed flow disturbance 
modes for which k/d was equal to 1, 2, and 3; for each 
mode, the flow disturbance appeared as a sequence of dis- 
crete vortices. Analogous results for the oscillation character- 
istics of flow-excited depth-mode resonators have been ob- 
tained by Blokhintsev (1945), lngard and Dean (1958), 
Hankey and Shang (1980), and Elder et al. (1982). 

It should be noted that other investigators have observed 
different frequency relations for flow-excited resonator oscil- 
lations (Blake, 1986; Shakkotai et al., 1987). The most 
commonly observed relation other than that stated above is 
that the flow disturbance wavelength is proportional to 
d(n-1/4) (Heller, and Blogg, 1975; Elder, 1978; Blake, 
1986). The explanation for the apparent discrepancy between 
these observations and the present theory is that the phase 
relationship between the resonator flow and the flow- 
disturbance/downstream edge interaction depends strongly 
on factors such as the flow geometry (Tang and Rockwell, 
1983; Panton, 1990) and the mean-flow characteristics (Elder 
et al., 1982). The theory presented in this paper assumed a 
phase relationship consistent with the flow visualizations of 
Nelson et aL (1981) and Bruggeman (1987); however, analo- 
gous reasoning incorporating a different phase relationship 
could be used to explain other experimental observations. 

In Fig. 5, one sees the "locking-in" to the resonance 
frequency of the resonator near f=fo. The slope of the 
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frequency-velocity curve is considerably smaller in this re- 
gion than in the off-re•onant regions. However, the fre- 
quency of oscillation still increases with increasing flow ve- 
locity near resonance. The slope in this part of the curve is 
smaller for larger resonator Q; the higher the Q, the more 
control the resonator exerts over the flow. 

Similar "lock-in" behavior is seen in many other studies 
of flow excitation of Helmholtz and standing-wave resona- 
tors (Ingard and Dean, 1958; Shakkotai et al., 1987; Panton, 
1990; Khosropour and Millet, 1990). These studies, however, 
are not amenable to detailed comparison with the present 
model Ingard and Dean (1958), Parthasarathy et al. (1985), 
and Shakkotai et al. (1987) examined standing-wave resona- 
tors, Panton (1990) did not report the damping (or equiva- 
lently, the Q) of his Helmholtz resonators, and Khosropour 
and Millet (1990) examined the excitation of a Helmholtz 
resonator by an air jet, for which a more complicated disper- 
sion relation applies (Fletcher and Thwaites, 1979). How- 
ever, in all these cases the same qualitative behavior was 
seen. That is, resonators showed their peak response near 
their natural frequencies, the frequency of oscillation in- 
creased monotonically with the mean flow velocity, and the 
tightness of frequency control exerted by the resonator in- 
creased with increasing Q. 

IV. CONCLUSION 

A theory for flow-excited oscillations of lumped-element 
resonators has been presented. This theory is based on a 
simple model for the nonlinear interaction between a resona- 
tor's oscillations and disturbances which arise in an unstable 

mean flow; this nonlinear interaction is analyzed by the 
method of describing-function analysis. The results of the 
model are in good agreement with experimental observation. 

The model's results indicate that there are two relevant 

feedback mechanisms in a flow-excited resonator. Each can 

be characterized by the corresponding induced volume ve- 
locity in the resonator's opening. One of these corresponds to 
a fluctuating volume velocity caused by the interaction of the 
unstable mean flow with the downstream edge of the open- 
ing; the other corresponds to the volume velocity associated 
with the resonant behavior of the system. 

The flow-edge interaction mechanism is most important 
for frequencies not close to the resonance frequency of the 
resonator. In these regions, one sees a nearly linear depen- 
dence of the sounding frequency on the mean-flow velocity. 
This is the type of feedback that drives the edgetone, in 
which no resonator at all is present. The feedback associated 
with the resonator is most important near its resonance fre- 
quency, where one sees the frequency-velocity dependence 
of the system flatten out somewhat. ltowever, since in this 
region one still sees a weak monotonic dependence of the 
sounding frequency on the mean flow velocity, one can con- 
clude that even in this region the resonator does not act as 
the sole source of feedback. Instead, both "resonator" feed- 
back and "edge" feedback are important for the entire range 
of mean-flow velocities in which limit cycles of the flow- 
resonator system occur. 

Last, it should be noted that there is not and cannot be 
any universal formula for the oscillation frequencies of flow- 

excited resonator.•. For a given resonator-flow system, the 
details of the geometry and the characteristics of the mean 
flow result in a particular phase relationship between the 
resonator's oscillations and the flow disturbance/edge inter- 
action. When this phase [elationship is known, the present 
theory may be adapted to model a wide variety of flow- 
resonator systems. 
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