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A k-space method for large-scale simulation of ultrasonic pulse propagation is presented. The
present method, which solves the coupled first-order differential equations for wave propagation in
inhomogeneous media, is derived in a simple form analogous to previous finite-difference methods
with staggered spatial and temporal grids. Likek-space methods based on second-order wave
equations, the present method is exact for homogeneous media, unconditionally stable for ‘‘slow’’
@c(r )<c0# media, and highly accurate for general weakly scattering media. In addition, unlike
previousk-space methods, the form of the method allows straightforward inclusion of relaxation
absorption and perfectly matched layer~PML! nonreflecting boundary conditions. Numerical
examples illustrate the capabilities of the presentk-space method. For weakly inhomogeneous
media, accurate results are obtained using coarser temporal and spatial steps than possible with
comparable finite-difference and pseudospectral methods. The low dispersion of thek-space method
allows accurate representation of frequency-dependent attenuation and phase velocity associated
with relaxation absorption. A technique for reduction of Gibbs phenomenon artifacts, in which
compressibility and exponentially scaled density functions are smoothed by half-band filtering, is
introduced. When employed together with this smoothing technique, thek-space method provides
high accuracy for media including discontinuities, high-contrast inhomogeneities, and scattering
structures smaller than the spatial grid resolution. ©2002 Acoustical Society of America.
@DOI: @10.1121/1.1421344#

PACS numbers: 43.20.Fn, 43.80.Qf, 43.35.Fj@ADP#
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I. INTRODUCTION

This paper presents a method for computation of aco
tic propagation in inhomogeneous media. The pres
method is an adaptation of thek-space method originally
derived by Bojarski1,2 and extended by several others.3–5 As
shown in Ref. 6, thek-space method has considerable adv
tages for large-scale simulations of ultrasonic propagatio
soft tissues. Thek-space method combines accurate spec
evaluation of spatial derivatives with a temporal iterati
procedure that is exact for homogeneous media. For soft
sues, in which local medium properties show small var
tions around nominal background properties, this meth
provides excellent efficiency and accuracy compared to o
approaches such as finite-difference and pseudospe
methods.6,7

Previous formulations of thek-space method for acous
tic propagation have numerically solved second-order dif
ential wave equations. Such formulations have some ad
tages, including conceptual simplicity and computatio
efficiency, since the acoustic fields are defined by only o
independent variable, the acoustic pressure fluctuation
stead of acoustic pressure and vector particle velocity fl
tuations. Propagation in inhomogeneous media includ
density variations can be computed using a simple trans
J. Acoust. Soc. Am. 111 (1), Pt. 1, Jan. 2002 0001-4966/2002/111(1)/
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mation of the pressure variable~e.g., as in Refs. 5 and 6!.
However, several desirable extensions to thek-space

method are not possible using the usual second-order for
lation. In particular, perfectly matched layer~PML! absorb-
ing boundary conditions are not readily incorporated in
current second-orderk-space methods, while PMLs are ea
ily formulated for coupled first-order acoustic propagati
equations. Additionally, as derived in Ref. 8, the full wa
equation incorporating relaxation absorption effects is of
der 21N, whereN is the number of relaxation process
employed. Relaxation effects can be incorporated more s
ply into numerical methods using coupled first-order acou
propagation equations.9

Here, ak-space method is derived based on the coup
first-order differential equations for linear acoustic propag
tion. The method accounts for spatially varying sound spe
density, and relaxation absorption processes, and inclu
PML absorbing boundary conditions. The formulation of th
method shows that thek-space method can be regarded a
finite-difference method containing linear correction ope
tors. Use of staggered spatial and temporal grids increa
the range of applicability for the method, and facilitates
clusion of relaxation absorption and PML boundary con
tions. The close analogy between the method presented
5353/11/$19.00 © 2002 Acoustical Society of America
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and existing finite-difference methods allows extensions
veloped for finite-difference methods to be easily applied
thek-space method, and also allows current finite-differen
algorithms to be improved by inclusion of thek-space opera-
tors introduced here.

The presentk-space method is, like previousk-space
methods based on second-order wave equations,6 temporally
exact for homogeneous media. For general media,
present method also has accuracy and efficiency advant
similar to previousk-space methods. Numerical results pr
sented here show that thek-space method presented here h
the high accuracy and stability characteristics of the origi
k-space method, including unconditional stability for med
with c(r )<c0 . The low numerical dispersion inherent to th
k-space method allows the frequency-dependent absorp
and physical dispersion associated with relaxation-proc
absorption to be accurately modeled.

A method for smoothing of discontinuous scattering m
dia is also presented here. Together with thek-space method
this smoothing method is shown to provide accurate res
for strongly scattering media and for media with structu
smaller than the grid resolution. Numerical examples a
demonstrate the efficiency of the presentk-space method for
large-scale computations of interest in ultrasonic imag
studies.

II. THEORY

A. Second-order and first-order k -space methods

The k-space method derived below is based on
coupled first-order linear acoustic propagation equations
a fluid medium of variable sound speed and density. Fo
lossless two-dimensional medium, these are10

r~r !
]u~r ,t !

]t
52¹p~r ,t !

~1!
1

r~r ! c~r !2

]p~r ,t !

]t
52¹•u~r ,t !,

whereu is the ~vector! acoustic particle velocity fluctuation
with componentsux anduy , p is the acoustic pressure fluc
tuation,r(r ) is the density of the medium,c(r ) is the sound
speed of the medium, andr denotes the vector coordina
(x,y).

Many numerical methods for acoustic wave propagat
have been based on Eq.~1!. For example, in Ref. 11, ultra
sonic propagation in an abdominal model was computed
ing a finite-difference method applied directly to the coup
equations.

The second-order wave equation corresponding to
~1! is10

¹•S 1

r~r !
¹p~r ,t ! D2

1

r~r ! c~r !2

]2p~r ,t !

]t2 50. ~2!

This equation can be solved numerically by thek-space
method. Below, a brief sketch of thek-space solution to Eq
~2! will be given and this solution will be analyzed to obta
a correspondingk-space method for coupled first-ord
propagation equations. For simplicity, the derivation will a
54 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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sume sound speed and density are constant, i.e.,r(r )5r0

and c(r )5c0 . A general derivation of the second-ord
k-space method is given in Ref. 6, while the first-ord
k-space method is straightforwardly extended to inhomo
neous media, as seen below.

For bandlimited signals such as typical ultrasonic puls
very accurate spatial derivatives can be obtained by Fou
transformation of the pressure field.12 This is the principle
behind pseudospectral methods like that described in R
13, in which the spatial derivatives from Eq.~1! are evalu-
ated using discrete Fourier transformation and tempora
eration is performed using a fourth-order Adams–Bashfo
Adams–Moulton scheme. For the case of homogene
sound speed and density, Eq.~2! can be written in the spatial
frequency domain as

]2p̂~k,t !

]t2 52c0
2k2p̂~k,t !, ~3!

where p̂(k,t) is the two-dimensional spatial Fourier tran
form of the acoustic pressure fluctuationp(r ,t).

A discrete form of the left-hand side of Eq.~3!, obtained
using a second-order-accurate finite-difference sche
yields a crude pseudospectral method, expressed as

p~r ,t1Dt !22p~r ,t !1p~r ,t2Dt !

~Dt !2

52c0
2 F21@k2 F@p~r ,t !##, ~4!

where F represents the two-dimensional spatial Four
transform. In numerical implementations of Eq.~4!, the spa-
tial derivatives from the right-hand side of Eq.~3! are accu-
rately represented using discrete Fourier transformat
Still, the discrete representation of the temporal derivative
the left-hand side is significantly dispersive. Current ps
dospectral methods12,13 typically use higher-order tempora
integration schemes to decrease dispersion errors. How
for the homogeneous-medium case, temporal iteration ca
performed exactly~e.g., without any dispersion! using the
k– t space scheme6

p̂~k,t1Dt !22 p̂~k,t !1 p̂~k,t2Dt !

~Dt !2 sinc~c0Dt k/2!2 52~c0k!2p̂~k,t !,

~5!

where sinc(m)[sin(m)/(m). The temporal iteration schem
of Eq. ~5! is mathematically equivalent to the scheme ori
nally presented in Ref. 2.~A similar exact discretization for
the linear part of the Korteweg–de Vries equation was p
sented in Ref. 14.!

As discussed in Ref. 6, the temporal exactness of
scheme follows from an exact discrete representation of
harmonic-oscillator differential equation, described in R
15. Temporal iteration can be performed in the spat
frequency domain, as done in Ref. 6 using a generali
form of Eq.~5!. Alternatively, an equivalent iteration metho
employing the real-space pressure can be obtained by inv
spatial Fourier transformation of Eq.~5!. The resulting itera-
tion formula is
Tabei et al.: A first-order k-space method
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p~r ,t1Dt !22 p~r ,t !1p~r ,t2Dt !

~Dt !2

52c0
2 F21@k2 sinc~c0Dt k/2!2 F@p~r ,t !##. ~6!

Below, the operation on the right-hand side of Eq.~6! is
called the second-orderk-space operator. This operator
defined as

@¹ (c0Dt)#2p~r ,t ![2F21@k2 sinc~c0Dt k/2!2F@p~r ,t !##;
~7!

the (c0Dt) superscript is meant to signify that the operato
employed, while similar to the standard gradient opera
are also functions of the parameterc0Dt.

The form of Eq. ~6! suggests that the second-ord
k-space method can be considered a corrected fin
difference method in which the spatial Laplacian is replac
by the k-space operator. However, thek-space operator o
Eq. ~7! incorporates not only spectral evaluation of the L
placian, but also a temporal correction term associated w
the k– t space iterator of Eq.~5!.

To construct ak-space method for coupled first-ord
wave propagation equations, the second-orderk-space opera-
tor can be factored into parts associated with each sp
direction. Below, this procedure is carried out for the tw
dimensional case. An appropriate factorization is given
the first-orderk-space operators

]p~r ,t !

] (c0Dt)1
x

[F21@ ikx eikxDx/2 sinc~c0Dt k/2!F@p~r ,t !##,

]p~r ,t !

] (c0Dt)1
y

[F21@ iky eikyDy/2 sinc~c0Dt k/2!F@p~r ,t !##,

~8!
]p~r ,t !

] (c0Dt)2
x

[F21@ ikx e2 ikxDx/2 sinc~c0Dt k/2!F@p~r ,t !##,

]p~r ,t !

] (c0Dt)2
y

[F21@ iky e2 ikyDy/2 sinc~c0Dt k/2!F@p~r ,t !##,

so that

S ]

] (c0Dt)1
x

]

] (c0Dt)2
x

1
]

] (c0Dt)1
y

]

] (c0Dt)2
y
D p~r ,t !

5@¹ (c0Dt)#2p~r ,t !. ~9!

The spatial-frequency componentskx andky are defined such
that k25kx

21ky
2 .

Using the operators of Eq.~8! within Eq. ~1! enables
construction of a first-orderk-space method equivalent to E
~6!. Application of the exponential coefficients from Eq.~8!
requires the acoustic particle velocity variablesux anduy to
be evaluated on grid points staggered by distances ofDx/2
andDy/2, respectively. The resulting algorithm is

ux~r1 ,t1!2ux~r1 ,t2!

Dt
52

1

r~r1!

]p~r ,t !

] (c0Dt)1
x

,

uy~r2 ,t1!2uy~r2 ,t2!

Dt
52

1

r~r2!

]p~r ,t !

] (c0Dt)1
y

, ~10!
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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p~r ,t1Dt !2p~r ,t !

Dt
52r~r ! c~r !2S ]ux~r1 ,t1!

] (c0Dt)2
x

1
]uy~r2 ,t1!

] (c0Dt)2
y

D ,

where

r1[~x1Dx/2,y!, r2[~x,y1Dy/2!,
~11!

t1[t1Dt/2, and t2[t2Dt/2.

In Eq. ~10!, the coefficientsc0 andr0 have been replaced b
the spatially varying sound speed and densityc(r ) andr(r ).
Spatial staggering in Eq.~10! is implicitly incorporated into
the spatial derivative operators employed. For example,
operators]/] (c0Dt)1

x and]/] (c0Dt)2
x defined by Eq.~8! cor-

respond, by the shift property of Fourier transformation,
derivatives evaluated after spatial shifts ofDx/2 and2Dx/2,
respectively.

Staggered temporal grids, discussed in the follow
section, have also been employed in Eq.~10!. Notable is that
the ordering of (c0Dt)1 and (c0Dt)2 operators is arbitrary
depending on how the staggered grids are configured; h
ever, for solution of coupled equations, the operators sho
be used in pairs such that the spatial shifting operations c
cel out over any temporal interval of lengthDt. Rationale for
the use of spatial and temporal staggering is given in
following section.

The k-space method of Eq.~10! is straightforwardly
shown to be equivalent to Eq.~5! for c(r )5c0 and r(r )
5r0 . Thus, this first-orderk-space scheme is temporally e
act for homogeneous media. As shown below, the met
also provides high accuracy for media with properties
close to the background values, and in conjunction with
appropriate smoothing algorithm, yields high accuracy ev
for media including high-contrast discontinuities.

Theoretical stability limits for the presentk-space
method can be computed as described in Ref. 6; given
glect of density variations and assumption of a worst-c
sound-speed variationc(r )5cmax, the results are identical to
those for the second-orderk-space method. The resultin
theoretical stability boundary is

sin
p CFL

2
<

c0

cmax
, ~12!

where CFL denotes the Courant–Friedrichs–Lewy num
c0Dt/Dx. Thus, like the originalk-space method,6 the
k-space method derived above is also expected to be un
ditionally stable for media withc(r )<c0 everywhere.

As with the second-orderk-space method, the first-orde
method of Eq.~10! can be regarded as a finite-differen
method with correction factors that appear within the spa
derivative terms. Thek-space algorithm of Eq.~10! is analo-
gous to standard second-order-accurate finite-differe
methods for computation of acoustic wave propagation9,16

except that second-order-accurate spatial derivatives h
been replaced by thek-space operators of Eq.~8! that incor-
porate spectral spatial accuracy as well as corrected temp
iteration.
55Tabei et al.: A first-order k-space method
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B. Properties of staggered spatial and temporal grids

The temporal and spatial sampling configuration e
ployed in thek-space method of Eq.~10! is directly analo-
gous to staggered-space, staggered-time schemes emp
in previous finite-difference methods.9,16 Such staggered
configurations are known to increase accuracy and stab
for discrete representations of odd-order spatial and temp
derivatives.12 For example, because the discrete Four
transform is implicitly periodic, Gibbs phenomenon~ringing!
artifacts result if the coefficients on the right-hand side of E
~8! have different values at the maximum spatial frequen
p/Dx and the minimum negative spatial frequency2p/Dx.
The coefficientik ~which would correspond to a nonsta
gered spatial grid! has a jump discontinuity of magnitud
2p/Dx at the transition betweenk5p/Dx and k
52p/Dx. Coefficients of the form used in Eqs.~8! remove
this discontinuity and, thus, can substantially reduce num
cal artifacts in some cases, such as when the wave fie
spatially undersampled. Accuracy and stability are parti
larly increased for media containing large discontinuities17

Although staggering slightly increases the complexity
thek-space algorithm, the benefit from spatial staggering
be easily understood by examining the physical relations
between sound pressure and particle velocity. Figure~a!
represents the spatial sampling locations for sound pres
and particle velocity in the present staggered grid. The ar
at each sampling location indicates the direction of part
motion represented by each parameter. In this configura
a local change in sound pressurep(x,y) immediately affects
the adjacent particle velocities. On the contrary, in a nons
gered grid configuration, in whichp, ux , and uy are all
sampled at the same grid points, symmetry prohibits a lo
change in sound pressure from immediately affecting
particle velocity components sampled at the same posit
This effect limits the accuracy of computations for hig
spatial-frequency components of the wave field.

Figure 1~b! shows the spatial-frequency response of
second-order-accurate discrete finite-difference operators
the first-order spatial derivative. Curve~i! shows the re-
sponse for a nonstaggered center difference configura
curve~ii ! shows the corresponding response for the stagg
grid center difference configuration, and curve~iii ! shows the
ideal frequency response for the continuous first-order

FIG. 1. Characteristics of discrete spatial derivative operators.~a! Sampling
locations for spatially staggered grid.~b! Spatial-frequency response of firs
derivative operators:~i! nonstaggered grid;~ii ! staggered grid;~iii ! ideal.
56 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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rivative. Finite-difference schemes with higher-order acc
racy show improved high-spatial-frequency response. Sp
tral computation of the first derivative on a staggered spa
grid, performed implicitly within the presentk-space
method, achieves this ideal frequency response up to the
tial Nyquist frequencyp/Dx.

Figure 2 illustrates the characteristics of the tempo
scheme employed. In panel~a!, the temporal iteration pro-
cess is shown for the staggered-time marching scheme.
cause the time step is interleaved, time derivatives are ev
ated based on values of spatial derivatives at the cente
each time step. This staggering minimizes error when a cr
time integration ~Euler! scheme is employed. Panel~b!
shows the difference between true derivatives~slopes of the
tangential lines! and staggered finite differences~slopes of
the straight lines between A, B, and C! at the center of each
time step. Although time staggering reduces the error
tween the finite difference and the actual derivative, st
gered finite-difference schemes still incur significant er
with large time steps. This error is compensated in
k-space method by introducing a correction factor that le
to a temporally exact solution for a medium with consta
sound speed. Although a temporally exact discrete solu
can also be obtained using a nonstaggered grid,15 staggered
grids allow the necessary compensation to be performed
ing a single multiplicative factor. Use of a staggered tim
scheme also facilitates modeling of absorption, as show
the next section. Thus, temporal staggering is importan
the first-orderk-space method.

C. Relaxation absorption and perfectly matched
layers

The close analogy between thek-space method of Eq
~10! and standard finite-difference techniques16 allows easy
addition of features such as perfectly matched layer~PML!
absorbing boundary conditions and relaxation-process
sorption to the presentk-space method.

In the following, the acoustic pressure fluctuationp(r ,t)
is split into x andy components,p(r ,t)5px(r ,t)1py(r ,t).
This splitting allows definition of direction-dependent a
sorption, which is necessary for incorporation of the PML9

Following the procedure applied to the finite-differen
method in Ref. 9, the field equations are then written a
group of coupled first-order equations, with decay terms c
responding to relaxation absorbtion and to the PML. Discr

FIG. 2. Characteristics of discrete time derivative operators.~a! Time-
staggered sampling for acoustic pressure and particle velocity.~b! Deriva-
tives estimated using a staggered time scheme and true derivatives eva
at the center of the time step.
Tabei et al.: A first-order k-space method



th
on

m

,

to
io

ra
-
-

o
iffi
be
qs
e

is
ne

rst-

ri-
s-
ut

e-

d

forms of these field equations are defined in a manner
provides high accuracy in the presence of large absorpti9

The ~continuous! field equations for a PML medium
with relaxation absorption can be written as

r~r !S ]ux~r ,t !

]t
1ax~r ! ux~r ,t ! D52

]~px~r ,t !1py~r ,t !!

]x
,

~13!

r~r !S ]uy~r ,t !

]t
1ay~r ! uy~r ,t ! D52

]~px~r ,t !1py~r ,t !!

]y
,

~14!

k~r ,t ! ^ S ]px~r ,t !

]t
1ax~r ! px~r ,t ! D52

]ux~r ,t !

]x
, ~15!

k~r ,t ! ^ S ]py~r ,t !

]t
1ay~r ! py~r ,t ! D52

]uy~r ,t !

]y
, ~16!

whereax(r ) anday(r ) are dispersionless absorption para
eters employed only within the PML and thê operator
denotes temporal convolution. Equations~15! and ~16! con-
tain a generalized compressibility,8 defined as

k~r ,t ![k`~r ! d~ t !1(
i 51

N
k i~r !

t i~r !
e2t/t i (r ) H~ t !, ~17!

where k`(r ) is the usual compressibility 1/@r(r )c(r )2#,
t i(r ) is the relaxation time for thei th relaxation process
k i(r ) is the relaxation modulus for thei th-order relaxation
process, with units of compressibility, andH(t) is the Heavi-
side step function. The integration~convolution! terms in
Eqs. ~15! and ~16! make these equations equivalent
second-order differential equations in time. The convolut
terms can be simplified using properties of the Diracd func-
tion and Heaviside step function that appear in the gene
ized compressibility~17! as well as identities for convolu
tions involving time derivatives.9 Thus, for example, the left
hand side of Eq.~15! can be written as

k`~r !S ]px~r ,t !

]t
1ax~r ! px~r ,t ! D1(

i 51

N
k i~r !

t i~r !
px~r ,t !

1F(
i 51

N
k i~r !

t i~r !
e2t/t i (r ) H~ t !S 2

1

t i~r !
1ax~r ! D G

^ px~r ,t !.

The last term in this latter expression is still a convolution
two time-dependent functions, and this form presents d
culties for numerical implementation. The difficulties can
resolved by introducing a state variable, which allows E
~13!–~16! to be rewritten as a set of simultaneous first-ord
differential equations. The state variable employed here
filtered version of the acoustic pressure fluctuation, defi
as

Si
(•)~r ,t ![S e2t/t i (r )

t i~r !
H~ t ! D ^ p(•)~r ,t !, ~18!

where~•! denotesx or y.
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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Using the state variables defined by Eq.~18!, the con-
tinuous field equations are rewritten as the coupled fi
order differential equations

]ux~r ,t !

]t
1ax~r ! ux~r ,t !52

1

r~r !

]~px~r ,t !1py~r ,t !!

]x
,

]uy~r ,t !

]t
1ay~r ! uy~r ,t !52

1

r~r !

]~px~r ,t !1py~r ,t !!

]y
,

]px~r ,t !

]t
1mx~r ! px~r ,t !

52
1

k`~r ! F ]ux~r ,t !

]x
2(

i 51

N

n i
x~r ! Si

x~r ,t !G ,

]py~r ,t !

]t
1my~r ! py~r ,t !

~19!
52

1

k`~r ! F ]uy~r ,t !

]y
2(

i 51

N

n i
y~r !Si

y~r ,t !G ,

]Si
x~r ,t !

]t
1

1

t i~r !
Si

x~r ,t !5
px~r ,t !

t i~r !
,

]Si
y~r ,t !

]t
1

1

t i~r !
Si

y~r ,t !5
py~r ,t !

t i~r !
,

where

m (•)~r ![
1

k`~r ! (i 51

N
k i~r !

t i~r !
1a (•)~r !, ~20!

and

n i
(•)~r ![

k i~r !

t i~r !
2k i~r ! a (•)~r !. ~21!

Each of Eqs.~19! has the form

]R~r ,t !

]t
1bR~r ,t !5Q~r ,t !, ~22!

whereb is a constant that controls the decay of a field va
able R. Following Ref. 9, the field equations can be tran
formed into a form that allows larger attenuations witho
numerical instability. This form is

]~ebtR~r ,t !!

]t
5ebtQ~r ,t !. ~23!

Equations of this form can be discretized using the tim
staggered scheme

eb(t1Dt)R~r ,t1Dt !2ebtR~r ,t !

Dt
5eb(t1Dt/2)Q~r ,t1Dt/2!,

~24!

and the equivalent form

R~r ,t1Dt !5e2bDt/2~e2bDt/2R~r ,t !1DtQ~r ,t1Dt/2!!.
~25!

To obtain the finalk-space scheme including PML an
relaxation absorption, Eq.~25! is applied directly to Eqs.
57Tabei et al.: A first-order k-space method
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~19!. The spatial derivatives are replaced by thek-space op-
erators~8!, and the particle velocity variablesux anduy are
evaluated on staggered spatial and temporal grids, as in
lossless algorithm of Eq.~10!. The state variablesSi

(•) are
evaluated using a staggered-time scheme. The final disc
field equations, written in a form suitable for direct nume
cal implementation, are

ux~r1 ,t1!5e2ax(r1)Dt/2Fe2ax(r1)Dt/2 ux~r1 ,t2!

2
Dt

r~r1! S ]~px~r ,t !1py~r ,t !!

] (c0Dt)1
x

D G ,

uy~r2 ,t1!5e2ay(r2)Dt/2Fe2ay(r2)Dt/2 uy~r2 ,t2!

2
Dt

r~r2! S ]~px~r ,t !1py~r ,t !!

] (c0Dt)1
y

D G ,

px~r ,t1Dt !5e2mx(r )Dt/2Fe2mx(r )Dt/2 px~r ,t !2
Dt

k`~r !

3S ]ux~r1 ,t1!

] (c0Dt)2
x

2(
i 51

N

n i
x~r ! Si

x~r ,t1!D G ,

~26!

py~r ,t1Dt !5e2my(r )Dt/2Fe2my(r )Dt/2 py~r ,t !2
Dt

k`~r !

3S ]uy~r2 ,t1!

] (c0Dt)2
y

2(
i 51

N

n i
y~r ! Si

y~r ,t1!D G ,

Si
x~r ,t1!5e2Dt/[2t i (r )]Fe2Dt/[2t i (r )] Si

x~r ,t2!1Dt
px~r ,t !

t i~r ! G ,
Si

y~r ,t1!5e2Dt/[2t i (r )]Fe2Dt/[2t i (r )] Si
y~r ,t2!1Dt

py~r ,t !

t i~r ! G ,
where the quantitiesm and n are defined by Eqs.~20! and
~21!, respectively.

This scheme provides spatial derivatives with spec
accuracy, temporal iteration that is exact for a homogene
lossless medium, and additional corrections that allow sta
computations to be made in the presence of large absorp
coefficients. The incorporation of relaxation processes allo
simulation of realistic absorption in tissue, while use of t
PML allows accurate computations to be carried out us
small grid sizes. As shown below, the combination of the
characteristics results in a powerful and flexible method
computation of ultrasonic propagation over long distance
inhomogeneous media such as soft tissues.

III. NUMERICAL METHODS

Numerical implementation of the presentk-space
method was accomplished using Eq.~26! directly. The
k-space operators of Eqs.~8! were evaluated using two
dimensional discrete Fourier transforms, implemented us
a fast Fourier transform~FFT! method.18
58 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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Initial conditions were chosen to specify a pulsatile i
cident plane wave with sinusoidal time variation and
Gaussian envelope. Boundary conditions were given by
perfectly matched layer~PML! on all sides of the grid. The
absorption parametersax and ay were tapered within the
PMLs using formulas of the form19

ax5A
c0

Dx S x2x0

xmax2x0
D 4

, ~27!

wherex0 is the coordinate at the inner edge of the PML,xmax

is the coordinate at the outer edge of the grid, andA is the
maximum absorption per cell, in nepers, within the PML.
PML thickness of 9 grid points, together with a maximu
PML absorptionA of 4 nepers per cell, were found to b
sufficient to reduce boundary reflection and transmission
efficients below290 dB for normally incident waves.

Relaxation-process absorption was implemented us
two relaxation processes. The parametersk i andt i were cho-
sen to approximate a linear dependence of absorption on
quency over the pulse bandwidth, using the formula
frequency-dependent absorption given in Ref. 8. The re
ation times chosen were

t15
1

5 f max
, t25

2

f max
, ~28!

where f max is the nominal maximum frequency of interes
For a maximum frequency of 5 MHz, these aret1540 ns
and t25400 ns. Given this choice of relaxation times,
absorption frequency dependence of 0.5 dB/cm/MHz is b
approximated~in a least-squares sense! for the frequency
range 0, f ,5 MHz by the compressibility coefficientsk1

50.004 749k` andk250.004 562k` .
Benchmark computations analogous to those descr

in Ref. 6 were carried out to test the accuracy and stability
the presentk-space method. As in Ref. 6, time-domain sc
tered fields for cylindrical test objects were computed a
quantitatively compared to an exact solution20 using anL2

error metric.21 The primary test object was, as in Ref. 6,
cylinder with radius 2.0 mm and acoustic properties of h
man fat ~c51.478 mm/ms, r50.950 g/cm3!11 in a back-
ground medium with acoustic properties of water at bo
temperature~c51.524 mm/ms, r50.993 g/cm3!. The inci-
dent pulse was a plane-wave with Gaussian temporal c
acteristics, a center frequency of 2.5 MHz, a temporal Gau
ian parameters50.25ms, which corresponds to a26-dB
bandwidth of 1.5 MHz, and a central starting position ofx
524.5 mm at time zero. Time histories of the total press
field were recorded, at 128 equally spaced ‘‘measureme
points spanning a circle of radius 2.5 mm concentric to
cylinder, using the interpolation method described in Ref
Another benchmark employed the same configuration exc
that the cylinder had the density and sound speed of hu
bone~c53.540 mm/ms, r51.990 g/cm3!.11

In some cases, model media were smoothed before
computation to reduce errors associated with aliasing cau
by discontinuities. Smoothing was applied by filtering an
lytic Fourier transforms of the inhomogeneities conside
using the half-band spatial-frequency filter described in R
6. This filter was found to give the most satisfactory resu
Tabei et al.: A first-order k-space method
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when applied to the quantitiesk`(r ) andr(r )2b, whereb is
a small coefficient. The accuracy of computations was fou
not to depend strongly on the value ofb employed; the value
b51/6 was used in the computations reported here.

A specific test of the smoothing method was imp
mented by computing scattering from a point~wire! scatterer
with dimensions less than the grid resolution. The test ob
employed in this case was a point-like scatterer with acou
properties of human bone~c53540 m/s, r51.990 g/cm3!
and a radius of 20mm. Computations were performed with
spatial step ofDx50.0833 mm ~four points per nominal
minimum wavelength of 0.333 mm! and a Courant–
Friedrichs–Lewy number (CFL[c0Dt/Dx) of 0.1. For a
k-space computation with smoothing, the model medi
was obtained by the spatial-frequency filtering procedure
scribed above applied to the analytic Fourier transform of
subresolution scatterer. For comparison, a computation u
a discrete single-grid-point scatterer was also carried ou
this case, the scatterer sound speed and density were
creased so that the compressibility contrastgk and the den-
sity contrastgr decreased in proportion to the relative i
crease in area, which corresponds~for a scatterer of
dimensions much smaller than the wavelength! to constant
scattering strength.20 For a scatterer area of 0.083
30.0833 mm2 ~one grid point!, this corresponds to a soun
speed of 1.5897 mm/ms and a density of 1.0921 g/cm3. Com-
putational configurations were the same as for the 2.0-
radius cylinder benchmarks, except that scattered fields~de-
termined by subtracting the computed incident field in
absence of the scatterer! instead of total fields were com
pared to the corresponding exact solutions.

Implementation of relaxation absorption was tested
the k-space method by computing propagation of a pla
wave pulse in an absorbing medium. The pulse emplo
was a Gaussian-modulated sinusoid with a temporal Ga
ian parameter of 0.25ms. Propagation of this pulse was com
puted for a medium with absorption of 0.5 dB/cm/MHz~pa-
rameterst0 , t1 , k0 , andk1 as given above!, using a spatial
step of Dx50.0833 mm ~4 points per nominal minimum
wavelength!. Waveforms were recorded at virtual measu
ment locations separated by 5 mm along the direction
propagation. The attenuation for the computed propaga
was determined numerically as a function of frequency fr
the ratio of the two-pulse spectra, while the phase speed
determined numerically from the frequency-dependent ph
change between the two pulses. These computed values
then compared with theoretical values, given by formu
available in Ref. 8.

An example computation, illustrating the performance
the presentk-space method for large-scale problems relev
to ultrasonic imaging, was undertaken using a model tiss
mimicking phantom. This phantom is a 48-mm-diameter c
inder ~c51.567 mm/ms, r51.040 g/cm3! with two internal
10-mm diameter cylinders ~c51.465 mm/ms, r
50.0940 g/cm3! and three internal 0.2-mm diameter wire
(c52.600 mm/ms, r51.120 g/cm3! in a background me-
dium with properties of water ~c51.509 mm/ms, r
50.997 g/cm3!. The 48-mm cylinder also contained sim
lated random scatterers, implemented by applying a Ga
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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ian random perturbation with rms amplitude 1% to the co
pressibility. The internal 10-mm cylinders and wires we
not perturbed in this manner. The incident plane wave ha
center frequency of 2.5 MHz, a26-dB bandwidth of 1.7
MHz, and a propagation direction of 37° from thex axis, and
was apodized using the window

A~j!5 $erf@5~j1w1/21w2/2!/w2#

2erf@5~j2w1/22w2/2!/w2#%/2 , ~29!

where erf is the error function andj is an azimuthal distance
along the initial wavefront. This window approximates a sp
tially limited plane wave of the widthw1 with tapered ends
of width w2 . The window parameters employed for this e
ample werew1548 mm ~the diameter of the phantom! and
w256 mm. The grid size employed was 7683768 with a
spatial step of 0.12 mm and a time step of 0.02ms ~CFL
50.25 based on the background sound speed!.

IV. NUMERICAL RESULTS

The previousk-space method based on the second-or
wave equation2,5,6 has been shown in Refs. 6 and 7 to pr
vide high accuracy for weakly scattering media. Spec
evaluation of spatial derivatives provides much higher ac
racy than typical finite-difference methods for compara
spatial steps. Thek– t space iteration scheme of Ref. 2 pr
vides unconditionally stable computations for media w
c(r )<c0 ~Ref. 6! and allows large time steps to be employ
while maintaining accuracy higher than comparable ps
dospectral methods.6,7

Not surprisingly, thek-space method described her
which is based on coupled first-order wave propagat
equations, has numerical properties very similar to those
the originalk-space method. Figures 3 and 4, similar to Fig
2 and 3 of Ref. 6, show the time-domainL2 error as a func-
tion of the spatial and temporal sampling parameters. Fig
3, which shows computations made using the 2.0-mm-rad
‘‘fat’’ cylinder described above and a spatial step size o
points per minimum wavelength, show that the pres
k-space method exhibits temporal accuracy almost ident

FIG. 3. Time-domain comparison of accuracy for thek-space and leapfrog
pseudospectral methods as a function of CFL number. Each test use
‘‘fat’’ cylinder of 2.0 mm radius and a spatial step size of 4 points p
minimum wavelength.
59Tabei et al.: A first-order k-space method
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to the k-space method of Ref. 6. Figure 3 also shows t
both k-space methods provide much higher accuracy tha
comparable pseudospectral method employing a leap
propagator~described in Ref. 6!. Similar gains in accuracy
have been obtained relative to a more sophisticated p
dospectral method incorporating fourth-order Adam
Bashforth iteration.7 All three methods provide equivalen
results for very small time steps~CFL numbers less than
about 0.1!, but thek-space methods maintain high accura
up to a CFL number of about 0.4. In contrast, the leapf
pseudospectral method rapidly increases in error for C
numbers above 0.1.

The spatial accuracy of the presentk-space method is
compared to the previousk-space method6 and to a 2–4
finite-difference method11 in Fig. 4. Time-domainL2 errors
are shown, for the 2.0-mm-radius ‘‘fat’’ cylinder, as a fun
tion of the spatial step size~in points per wavelength, base
on a nominal minimum wavelength of 0.333 mm!. For these
computations, the CFL number of thek-space computation
was held constant at 0.5, consistent with the CFL-accur
relationship shown in Fig. 3, while the CFL number of t
finite-difference computations was held at an optimal va
of 0.25.21,22 Again, the presentk-space method yields accu
racy almost identical to that of the previousk-space method
of Ref. 6. All three methods achieve high accuracy for fin
grid spacings; however, thek-space methods achieve high
accuracy for much larger spatial step sizes. TheL2 error
drops below 0.05 fork-space computations employing on
3 points per minimum wavelength, while achievement of
same accuracy criterion requires 14 points per minim
wavelength for the finite-difference computations.

Although the presentk-space method and that of Ref.
yield nearly equivalent results for the benchmark case ill
trated in Figs. 3 and 4, the use of coupled first-order eq
tions in the presentk-space method can provide greater a
curacy for strongly scattering media. These advantages
illustrated using a benchmark computation for a 2-m
‘‘bone’’ cylinder, introduced in Ref. 6. Since computation
became unstable in this case for CFL numbers above a

FIG. 4. Time-domain comparison of accuracy for thek-space and 2–4
finite-difference time-domain methods as a function of the spatial step
in points per minimum wavelength~PPW!. Each test used the fat cylinder o
2.0-mm radius. CFL numbers were 0.5 for thek-space methods and 0.25 fo
the finite-difference time-domain method.
60 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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0.2 @comparable to the theoretical upper stability limit
0.2833 given by Eq.~12!#, a CFL number of 0.1 was em
ployed for the benchmark. Simulated waveforms obtain
using the presentk-space method and the previousk-space
method of Ref. 6 are presented in Fig. 5~computations car-
ried out using the method of Ref. 6 were identical to tho
described in Ref. 6 except that the CFL number was redu
to 0.1!. Both before and after smoothing of the model m
dium, the presentk-space method achieves much higher a
curacy than the previous method~L2 error, relative to an
exact series solution, was 0.2292 vs 0.3060 before smo
ing, 0.0263 vs 0.2687 after smoothing!. In addition, artifacts
are greatly reduced in the computations employing
presentk-space method. The waveforms obtained using
presentk-space method with smoothing@panel~b!# are visu-
ally identical to those obtained from the exact series soluti
shown in Ref. 6.

Further demonstration of the effectiveness of the pres
k-space algorithm, in conjunction with the smoothing me
ods used here, is given by Fig. 6. This figure illustrates
merical results for scattering from a bone-mimicking cyli
der of sub-grid-resolution size~radius 0.02 mm@20 mm#
compared to a spatial step ofDx50.0833 mm!. The model
medium, obtained by smoothing this subresolution cylind
using the methods described above, results in a scatt
amplitude that is nearly identical to the exact solution. T
corresponding discrete computation, which attempts to r
resent the subresolution scatterer using a single pixel w
adjusted acoustic parameters, accurately obtains the w
form shape and delay, but incorrectly predicts the ang
dependent scattered amplitude. The accurate scattering
puted for the half-band filtered medium indicates that
presentk-space method, with smoothing of the kind us
here, can account for structures with dimensions smaller t

ze
FIG. 5. Computed pressure waveforms at a receiver radius of 2.5 mm
‘‘bone’’ cylinder of radius 2.0 mm and a pulse center frequency of 2.5 MH
The acoustic pressure is shown on a bipolar logarithmic scale with a 60
dynamic range. The horizontal range of each plot is 360°, covering
entire measurement circle starting with angle 0~forward propagation!. The
vertical range of each panel corresponds to a temporal duration of 9ms, with
t50 at the top of each plot.~a! Unsmoothed object; presentk-space method,
L2 error 0.2292.~b! Smoothed object; presentk-space method,L2 error
0.0263.~c! Unsmoothed object; previousk-space method,6 L2 error 0.3060.
~d! Smoothed object; previousk-space method,6 L2 error 0.2687.
Tabei et al.: A first-order k-space method
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the spatial step employed. Given sufficiently fine spa
sampling~4 points per minimum wavelength!, scattering can
be accurately computed from subgrid-sized structures
cated at arbitrary positions.

Results of the numerical test of relaxation absorption
illustrated in Fig. 7. Panel~a! shows theoretical and simu
lated attenuation values, while panel~b! shows theoretica
and simulated values of the phase speed. The simulation
for two sizes of the time step corresponding to CFL50.25
and CFL50.5. The case with a smaller time step (CF
50.25) agrees very well with the theory, while the case w
a larger time step~CFL50.5, as employed in the soft-tissu
benchmark computations described above! shows good
qualitative agreement. These results illustrate that the pre
k-space method with relaxation absorption can realistic
simulate attenuation caused by soft tissues even for relati
coarse time steps.

Numerical results for the tissue-mimicking phantom e
ample, described in the previous section, are illustrated
Fig. 8. This figure shows four snapshots of the spatially li
ited plane wave propagating through the phantom, cau
coherent reflection from boundaries and wires as well as
coherent scattering from the random structure within
background cylinder. Notable is that smoothing of the m
dium has reduced any ringing artifacts to a level far bel
the low-level random scattering within the cylinder. Also n

FIG. 6. Simulated scattering from a point~wire! scatter with radius 20mm
and acoustic properties of human bone. Each plot shows results for an
series solution, ak-space solution using a half-band filtered representa
of the subresolution scatterer~‘‘smoothed’’!, and a single-pixel representa
tion with equal scattering strength.~a! Backscattered signals.~b! The rms
waveform amplitudes.
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
l

-

e

are

nt
y
ly

-
in
-
g
-

e
-

table is that the use of PML absorbing boundary conditio
allows the computation shown to be performed efficien
~4063 CPU s on a 650-MHz Athlon processor for a simu
tion of duration 360ms on a 7683768 grid!. A hypothetical
computation without absorbing boundaries, in which the g
size would be expanded to eliminate wraparound er
within the region shown in Fig. 8, would require a grid si
of approximately 460034600 points, resulting in a 35-fold
increase in storage and computation time requirements.

V. DISCUSSION

The starting point for thek-space method introduce
here is the previousk-space method based on the secon
order wave equation.2,6 Thus, a brief discussion of similari
ties and differences between these two methods is appro
ate.

The two methods show identical accuracy for homog
neous media, since they are mathematically identical in
case. For weakly inhomogeneous media, both methods h
similar performance in accuracy and stability. However,
stronger inhomogeneities such as the bone-mimicking cy
der benchmark described here, the twok-space methods dif-
fer significantly. The present method, based on the coup
first-order wave propagation equations, achieves m
higher accuracy, although numerical evidence suggests
the present method has a lower stability threshold than

act
n

FIG. 7. Attenuation and phase speed for propagation of a pulse in a me
with two relaxation processes. Each panel shows theoretical values~Ref. 8!
and values obtained using the presentk-space method for two values of th
CFL number. ~a! Frequency-dependent attenuation.~b! Frequency-
dependent phase speed.
61Tabei et al.: A first-order k-space method
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FIG. 8. Computed pressure fields for a 48-mm diameter tissue-mimicking phantom. Panels~a!–~d! show the total acoustic pressure at intervals of 12ms,
superimposed on an image of the phantom. The area shown in each panel is 61361 mm. Wave fields are plotted using a bipolar logarithmic scale wit
dynamic range of 60 dB.
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method of Ref. 6. The increased accuracy of the pres
k-space method for high-contrast media, relative to previ
k-space methods based on second-order wave equations6 oc-
curs for several likely reasons. Since thek-space method for
coupled first-order propagation equations can be written
form involving no Fourier transforms of medium properti
@Eq. ~10!#, some aliasing errors may be eliminated. In ad
tion, the coupled first-order equations incorporate the den
directly rather than within a derivative term, so that erro
associated with inaccuracies in discrete derivatives of
density are also reduced.

The two methods also differ somewhat in computat
and storage requirements. The method of Ref. 6 requ
computation and storage of only one acoustic variable~the
acoustic pressure fluctuation!, while the present method re
quires computation of the pressure fluctuation as well as e
vector component of the acoustic particle velocity fluctu
tion. Thus, for a constant grid size, the presentk-space
method requires somewhat greater storage and comput
time than the method of Ref. 6. However, this difference
offset by the capability of the presentk-space method to
incorporate PML absorbing boundary conditions. For la
computations, the high performance of the PML allows
grid size to be substantially reduced without introduction
62 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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wraparound or boundary-reflection errors, so that the pre
k-space method is often more efficient for practical pro
lems. This advantage is potentially even more important
three-dimensional computations.

The presentk-space method can also be compared w
pseudospectral methods for coupled first-order propaga
equations~e.g., Refs. 12, 13, and 17!. Although both meth-
ods use Fourier transforms to accurately evaluate the sp
first-order derivative, the presentk-space method also in
cludes temporal correction terms, which were obtained
factoring the second-orderk-space operator of Eq.~7! into
the first-order operators of Eq.~8!. As a result, the presen
k-space method utilizes two-dimensional Fourier transform
while pseudospectral methods employ one-dimensional F
rier transforms for calculation of spatial derivatives. This d
ference leads to a slight increase in computational requ
ments associated with Fourier transforms. Typica
pseudospectral methods require eight sets of o
dimensional Fourier transforms per time step, while t
presentk-space method requires seven two-dimensional F
rier transforms per time step. However, the temporal corr
tion provided by thek-space method eliminates the need f
higher-order time schemes such as Adams–Bashforth
Adams–Moulton iteration, so that thek-space method may
Tabei et al.: A first-order k-space method
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provide improved overall efficiency. This advantage occ
in part because thek-space method can provide accurate
sults for larger time steps~higher CFL numbers! than pseu-
dospectral methods employing higher-order tempo
iteration.7

Another advantage of the presentk-space method is the
close analogy between this method and the standard fi
difference time-domain method of Ref. 16. The pres
k-space method is algorithmically identical to the method
Ref. 16 except that second-order-accurate spatial deriva
have been replaced by thek-space operator of Eq.~8!, which
provides spectral accuracy in space, exact temporal itera
for homogeneous media, and high accuracy for general
dia. This close analogy has allowed relaxation absorp
and PMLs, previously adapated to the corresponding fin
difference method,9 to be straightforwardly incorporated int
the presentk-space method. The analogy allows great i
provements in the performance and accuracy of exis
finite-difference codes employing algorithms similar to tho
of Refs. 9 and 16 by the straightforward replacement
finite-difference spatial derivatives with thek-space opera-
tors of Eq.~8!.

VI. CONCLUSIONS

The presentk-space method, which numerically solve
the coupled first-order differential equations for wave pro
gation in inhomogeneous fluid media, has been shown
hold a number of advantages for large-scale simulation
ultrasound–tissue interaction.

The method maintains the major advantages of previ
k-space methods;6 like those, the present method is spe
trally accurate in space, temporally exact for homogene
media, and highly accurate for modest medium variatio
Furthermore, the form of the present method has allowe
to be extended with PML absorbing boundary conditio
relaxation absorption, and an effective approach to smo
ing discontinuous scattering media. Since the present me
can be interpreted as a finite-difference method with corr
tion terms, existing finite-difference codes may be eas
modified to take advantage of the accuracy available fr
the k-space method.

Numerical examples presented here have shown tha
presentk-space method has remarkable accuracy and st
ity characteristics, similar to previousk-space methods,6 for
computations involving weakly scattering media. T
method, together with the smoothing approach presen
here, provides higher accuracy for strongly scattering me
Since k-space methods allow highly accurate resu
to be obtained using coarse spatial and temporal samp
the presentk-space method, with the incorporation
PML absorbing boundary conditions and relaxati
absorption, is particularly well-suited to realistic large-sc
simulations for applications including ultrasonic imagin
studies.
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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