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A k-space method for large-scale simulation of ultrasonic pulse propagation is presented. The
present method, which solves the coupled first-order differential equations for wave propagation in
inhomogeneous media, is derived in a simple form analogous to previous finite-difference methods
with staggered spatial and temporal grids. Likespace methods based on second-order wave
equations, the present method is exact for homogeneous media, unconditionally stable for “slow”
[c(r)=<cy] media, and highly accurate for general weakly scattering media. In addition, unlike
previousk-space methods, the form of the method allows straightforward inclusion of relaxation
absorption and perfectly matched layé?ML) nonreflecting boundary conditions. Numerical
examples illustrate the capabilities of the preskygpace method. For weakly inhomogeneous
media, accurate results are obtained using coarser temporal and spatial steps than possible with
comparable finite-difference and pseudospectral methods. The low dispersiorkeffihee method

allows accurate representation of frequency-dependent attenuation and phase velocity associated
with relaxation absorption. A technique for reduction of Gibbs phenomenon artifacts, in which
compressibility and exponentially scaled density functions are smoothed by half-band filtering, is
introduced. When employed together with this smoothing techniquek-tpmce method provides

high accuracy for media including discontinuities, high-contrast inhomogeneities, and scattering
structures smaller than the spatial grid resolution2@2 Acoustical Society of America.
[DOI: [10.1121/1.1421344

PACS numbers: 43.20.Fn, 43.80.Qf, 43.39&pP]

I. INTRODUCTION mation of the pressure variable.g., as in Refs. 5 and 6
. ) However, several desirable extensions to kispace
. This paper prgsepts a method for computatlon of acoUSiethod are not possible using the usual second-order formu-
t'nfetﬁ(r)cépfsgztrllog d;n t;ggﬁn;?gt%l?us medt'ﬁ' dTh? .p“ﬁsenltation. In particular, perfectly matched layé?ML) absorb-
b pace method ofiginally ing boundary conditions are not readily incorporated into

. . 2 —
derived by Bojarski® and extended by several othérSAs current second-ordée-space methods, while PMLs are eas-

shown in Ref. 6, th&-space method has considerable advan- ! . .

. . . . .jly formulated for coupled first-order acoustic propagation
tages for large-scale simulations of ultrasonic propagation in i Additionall derived in Ref. 8. the full
soft tissues. Th&-space method combines accurate spectra‘]aqua 1ons. ionally, as derived In Ret. 5, the ull wave

evaluation of spatial derivatives with a temporal iterationequ":ltion incorporating relaxation absorption effects is of or-

procedure that is exact for homogeneous media. For soft tigler 2+ N, whereN is the number of relaxation processes

sues, in which local medium properties show small varia-employed. Relaxation effects can be incorporated more sim-

tions around nominal background properties, this method!Y into ngmerical methods using coupled first-order acoustic
provides excellent efficiency and accuracy compared to othd¥"oPagation equatiorts. . .
approaches such as finite-difference and pseudospectral Here, ak-space method is derived based on the coupled
method<’ first-order differential equations for linear acoustic propaga-
Previous formulations of thk-space method for acous- tion. The method accounts for spatially varying sound speed,
tic propagation have numerically solved second-order differdensity, and relaxation absorption processes, and includes
ential wave equations. Such formulations have some advar®?ML absorbing boundary conditions. The formulation of this
tages, including conceptual simplicity and computationalmethod shows that the-space method can be regarded as a
efficiency, since the acoustic fields are defined by only ondinite-difference method containing linear correction opera-
independent variable, the acoustic pressure fluctuation, irfors. Use of staggered spatial and temporal grids increases
stead of acoustic pressure and vector patrticle velocity flucthe range of applicability for the method, and facilitates in-
tuations. Propagation in inhomogeneous media includinglusion of relaxation absorption and PML boundary condi-
density variations can be computed using a simple transfotions. The close analogy between the method presented here
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and existing finite-difference methods allows extensions desume sound speed and density are constant,pi(€)=po
veloped for finite-difference methods to be easily applied toand c(r)=c,. A general derivation of the second-order
the k-space method, and also allows current finite-differencex-space method is given in Ref. 6, while the first-order
algorithms to be improved by inclusion of tkespace opera- k-space method is straightforwardly extended to inhomoge-
tors introduced here. neous media, as seen below.

The presenk-space method is, like previousspace For bandlimited signals such as typical ultrasonic pulses,
methods based on second-order wave equatitesiporally  very accurate spatial derivatives can be obtained by Fourier
exact for homogeneous media. For general media, thgansformation of the pressure fieftlThis is the principle
present method also has accuracy and efficiency advantaggehind pseudospectral methods like that described in Ref.
similar to previousk-space methods. Numerical results pre-13, in which the spatial derivatives from E(}) are evalu-
sented here show that thespace method presented here hasated using discrete Fourier transformation and temporal it-
the high accuracy and stability characteristics of the originakration is performed using a fourth-order Adams—Bashforth/
k-space method, including unconditional stability for mediaadams—Moulton scheme. For the case of homogeneous
with ¢(r)=<cq. The low numerical dispersion inherent to the sound speed and density, E8) can be written in the spatial-
k-space method allows the frequency-dependent absorptidfequency domain as
and physical dispersion associated with relaxation-process
absorption to be accurately modeled. *p(k,t) 2120

A method for smoothing of discontinuous scattering me- gz~ — — CoK P(Ki1), C)
dia is also presented here. Together withkkgpace method,
this smoothing method is shown to provide accurate resultgshere p(k,t) is the two-dimensional spatial Fourier trans-
for strongly scattering media and for media with structuresform of the acoustic pressure fluctuatipfr,t).
smaller than the grid resolution. Numerical examples also A discrete form of the left-hand side of E), obtained
demonstrate the efficiency of the preskrgpace method for using a second-order-accurate finite-difference scheme,
large-scale computations of interest in ultrasonic imagingyields a crude pseudospectral method, expressed as
studies.

p(r,t+At)—2p(r,t)+p(r,t—At)

2
II. THEORY (A1)
A. Second-order and first-order  k-space methods =—ciF K*F[p(r,n]], (4)

The k-space method derived below is based on th&yhere F represents the two-dimensional spatial Fourier
coupled first-order linear acoustic propagation equations fofansform. In numerical implementations of E¢), the spa-

a fluid medium of variable sound speed and density. For &4 derivatives from the right-hand side of E@) are accu-

lossless two-dimensional medium, these'&re rately represented using discrete Fourier transformation.
au(r,t) Still, the discrete representation of the temporal derivative on
p()——= —Vp(r,t) the left-hand side is significantly dispersive. Current pseu-
0 dospectral method%*3 typically use higher-order temporal
1 ap(r,t) v integration schemes to decrease dispersion errors. However,

for the homogeneous-medium case, temporal iteration can be

p(r)c(r)? 4t ¥ .
. . ) . ) performed exactly(e.g., without any dispersigorusing the
whereu is the (vecto) acoustic particle velocity fluctuation k—t space scherfie

with componentsi, anduy, p is the acoustic pressure fluc-

tuation, p(r) is the density of the mediung(r) is the sound p(K,t+At)—2 p(k,t)+p(k,t—At)
speed of the medium, and denotes the vector coordinate (AD)ZSINGCATK/2)? = —(cok)2p(k,t),
(x,y). 0 (5)

Many numerical methods for acoustic wave propagation
have been based on E@). For example, in Ref. 11, ultra- where sincf)=sin(u)/(x). The temporal iteration scheme
sonic propagation in an abdominal model was computed usf Eq. (5) is mathematically equivalent to the scheme origi-
ing a finite-difference method applied directly to the couplednally presented in Ref. ZA similar exact discretization for

equations. the linear part of the Korteweg—de Vries equation was pre-
The second-order wave equation corresponding to Ecsented in Ref. 14.
(1) is'® As discussed in Ref. 6, the temporal exactness of this
1 1 Pp(r 1) scheme follows from an exact discrete representation of the
V~(—V rt )— —~=0. 2 harmonic-oscillator differential equation, described in Ref.
A O G @ ‘

15. Temporal iteration can be performed in the spatial-
This equation can be solved numerically by tkespace frequency domain, as done in Ref. 6 using a generalized
method. Below, a brief sketch of thespace solution to Eq. form of Eq.(5). Alternatively, an equivalent iteration method
(2) will be given and this solution will be analyzed to obtain employing the real-space pressure can be obtained by inverse
a correspondingk-space method for coupled first-order spatial Fourier transformation of E(p). The resulting itera-
propagation equations. For simplicity, the derivation will as-tion formula is
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p(r,t+At)—2p(r,t)+p(r,t—At)
(At)*

= —c3F [k?sinacoAt k/2)2 F[p(r,t)]].

(6)

Below, the operation on the right-hand side of E) is

called the second-ordee-space operator. This operator is

defined as

[V(09T2p(r,t)=—F~'[k* sina coAt k/2)?F[p(r,t)]];

@)

the (coAt) superscript is meant to signify that the operators
employed, while similar to the standard gradient operator,

are also functions of the parametgAt.

The form of Eq.(6) suggests that the second-order
k-space method can be considered a corrected finite-
difference method in which the spatial Laplacian is replace
by the k-space operator. However, thespace operator of
Eq. (7) incorporates not only spectral evaluation of the La
placian, but also a temporal correction term associated wit

the k—t space iterator of E(5).

To construct ak-space method for coupled first-order

wave propagation equations, the second-okdgpace opera-

tor can be factored into parts associated with each spati
direction. Below, this procedure is carried out for the two
dimensional case. An appropriate factorization is given b

the first-orderk-space operators

ap(r,t)

IR eear kA2 o
(g(coAtVX_F [iky €' sind oAt k/I2)F[p(r,t)]1],

ap(r,t) _

ey F~ ik, e*v2y2sind coAt k/2)F[ p(r,1)]],
y
t)

ap(r.Y) =F ik, e A2 sind coAt k/2)F[ p(r,t)]],

a(coAt)’X

Py _ —1r; —ikyAy/2 oi
a(com>—y=F [iky e "*v*v2sing(coAt k/2)F[p(r,t)]],
so that

J 1% N J
&(coAt)J'X 9(CoAt) "y &(COAt)+y g(CoAt) ™

p(r,H)
y

=[V(©2917p(r,t). ©)

The spatial-frequency componeitsandk, are defined such
thatk?=kZ+kjJ.
Using the operators of Eq8) within Eq. (1) enables

construction of a first-ordét-space method equivalent to Eq.

(6). Application of the exponential coefficients from E®)
requires the acoustic particle velocity variablgsandu, to
be evaluated on grid points staggered by distanceSx@2
andAy/2, respectively. The resulting algorithm is

ux(r11t+)_ux(rl!t7) _ 1 é’p(rvt)
At =T () Aoy
uy(r21t+)_uy(r21t7) . 1 ap(rv‘t)

(10

At T p(l‘z) ﬁ(COAt)+y,
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p(r,t+At)—p(r,t)
At

AUy(ry,th)
5(CoAD ™y

=—p(r)C(f)2<

Auy(rp,t")
9(c0d) "y '

where

ri=(X+Ax/2y), ro=(x,y+Ay/2),

11
t"=t+At/2, andt™=t—At/2. (9
In Eq. (10), the coefficientg, andp, have been replaced by
the spatially varying sound speed and dens{ty) andp(r).
Spatial staggering in Eq10) is implicitly incorporated into

the spatial derivative operators employed. For example, the
pperatorsy/ 9020 % anda/ ¢V x defined by Eq(8) cor-
respond, by the shift property of Fourier transformation, to

_derivatives evaluated after spatial shiftsAof/2 and— Ax/2,

|[]espectively.

Staggered temporal grids, discussed in the following
section, have also been employed in Ef)). Notable is that
the ordering of €,At) ™ and (C,At) ™ operators is arbitrary
eﬂepending on how the staggered grids are configured; how-
ever, for solution of coupled equations, the operators should
>pe used in pairs such that the spatial shifting operations can-
cel out over any temporal interval of lengit. Rationale for
the use of spatial and temporal staggering is given in the
following section.

The k-space method of Eq(10) is straightforwardly
shown to be equivalent to Ed5) for c(r)=cy and p(r)
=po. Thus, this first-ordek-space scheme is temporally ex-
act for homogeneous media. As shown below, the method
also provides high accuracy for media with properties are
close to the background values, and in conjunction with an
appropriate smoothing algorithm, yields high accuracy even
for media including high-contrast discontinuities.

Theoretical stability limits for the presenk-space
method can be computed as described in Ref. 6; given ne-
glect of density variations and assumption of a worst-case
sound-speed variatioz(r) = .y, the results are identical to
those for the second-ordde-space method. The resulting
theoretical stability boundary is

Co

7 CFL
s [
2 Crmax.

sin (12
where CFL denotes the Courant—Friedrichs—Lewy number
CoAt/Ax. Thus, like the originalk-space methof, the
k-space method derived above is also expected to be uncon-
ditionally stable for media witle(r)=<c, everywhere.

As with the second-ordée-space method, the first-order
method of Eq.(10) can be regarded as a finite-difference
method with correction factors that appear within the spatial
derivative terms. Th&-space algorithm of Eq10) is analo-
gous to standard second-order-accurate finite-difference
methods for computation of acoustic wave propagdtn
except that second-order-accurate spatial derivatives have
been replaced by the-space operators of E€B) that incor-
porate spectral spatial accuracy as well as corrected temporal
iteration.
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I
p(x,y) © (i) | h
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—e> @ g T~ Uyt + Ar/2) Tme
u, (x—Ax/2,y) u (x+Ax/2,y) —é_ | A
3 0 : Time
$uy(x,y—Ay/2) I /// (a) (b)
0 Frequency 1/2Ax) FIG. 2. Characteristics of discrete time derivative operatéas. Time-
@ ®) staggered sampling for acoustic pressure and particle velgbjtyeriva-

tives estimated using a staggered time scheme and true derivatives evaluated
at the center of the time step.

FIG. 1. Characteristics of discrete spatial derivative operatar§ampling

locations for spatially staggered gridh) Spatial-frequency response of first- | | . . . .
derivative operatorsi) nonstaggered gridii) staggered grid(iii ) ideal. rivative. Finite-difference schemes with higher-order accu-

racy show improved high-spatial-frequency response. Spec-
tral computation of the first derivative on a staggered spatial
grid, performed implicitly within the presenk-space
The temporal and spatial sampling configuration em-method, achieves this ideal frequency response up to the spa-
ployed in thek-space method of Eq10) is directly analo- tial Nyquist frequencyr/Ax.
gous to staggered-space, staggered-time schemes employed Figure 2 illustrates the characteristics of the temporal
in previous finite-difference methods® Such staggered scheme employed. In pané), the temporal iteration pro-
configurations are known to increase accuracy and stabilitgess is shown for the staggered-time marching scheme. Be-
for discrete representations of odd-order spatial and temporghuse the time step is interleaved, time derivatives are evalu-
derivatives> For example, because the discrete Fourierated based on values of spatial derivatives at the center of
transform is implicitly periodic, Gibbs phenomen@inging) each time step. This staggering minimizes error when a crude
artifacts result if the coefficients on the right-hand side of Eqtime integration (Euler) scheme is employed. Pané¢h)
(8) have different values at the maximum spatial frequencyshows the difference between true derivatiy@spes of the
7/ Ax and the minimum negative spatial frequeneyr/Ax. tangential lines and staggered finite differencéslopes of
The coefficientik (which would correspond to a nonstag- the straight lines between A, B, and &t the center of each
gered spatial gridhas a jump discontinuity of magnitude time step. Although time staggering reduces the error be-
2w/Ax at the transition betweenk=m/Ax and k  tween the finite difference and the actual derivative, stag-
= —a/AX. Coefficients of the form used in Eq®) remove gered finite-difference schemes still incur significant error
this discontinuity and, thus, can substantially reduce numeriwith large time steps. This error is compensated in the
cal artifacts in some cases, such as when the wave field lsspace method by introducing a correction factor that leads
spatially undersampled. Accuracy and stability are particuto a temporally exact solution for a medium with constant
larly increased for media containing large discontinuities. sound speed. Although a temporally exact discrete solution
Although staggering slightly increases the complexity ofcan also be obtained using a nonstaggered ‘gridaggered
thek-space algorithm, the benefit from spatial staggering cagrids allow the necessary compensation to be performed us-
be easily understood by examining the physical relationshifng a single multiplicative factor. Use of a staggered time
between sound pressure and particle velocity. Figus 1 scheme also facilitates modeling of absorption, as shown in
represents the spatial sampling locations for sound pressutike next section. Thus, temporal staggering is important to
and particle velocity in the present staggered grid. The arrowhe first-orderk-space method.
at each sampling location indicates the direction of particle
motion represented by each parameter. In this configuration ) .
a local change in sound pressuynx,y) immediately affects C. Relaxation absorption and perfectly matched
the adjacent particle velocities. On the contrary, in a nonstagf—a Yers
gered grid configuration, in whiclp, u,, andu, are all The close analogy between tlkespace method of Eq.
sampled at the same grid points, symmetry prohibits a local10) and standard finite-difference technigtfeallows easy
change in sound pressure from immediately affecting theddition of features such as perfectly matched lay&vL)
particle velocity components sampled at the same positiorabsorbing boundary conditions and relaxation-process ab-
This effect limits the accuracy of computations for high- sorption to the preserkt-space method.
spatial-frequency components of the wave field. In the following, the acoustic pressure fluctuatofr,t)
Figure 1b) shows the spatial-frequency response of theis split intox andy componentsp(r,t) = py(r,t) +py(r,t).
second-order-accurate discrete finite-difference operators fdrhis splitting allows definition of direction-dependent ab-
the first-order spatial derivative. Curv@) shows the re- sorption, which is necessary for incorporation of the PML.
sponse for a nonstaggered center difference configuratiofollowing the procedure applied to the finite-difference
curve(ii) shows the corresponding response for the staggeremiethod in Ref. 9, the field equations are then written as a
grid center difference configuration, and cufiie) shows the  group of coupled first-order equations, with decay terms cor-
ideal frequency response for the continuous first-order deresponding to relaxation absorbtion and to the PML. Discrete

B. Properties of staggered spatial and temporal grids
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forms of these field equations are defined in a manner that Using the state variables defined by E#8), the con-

provides high accuracy in the presence of large absorptiontinuous field equations are rewritten as the coupled first-
The (continuous field equations for a PML medium order differential equations

with relaxation absorption can be written as

Auy(r,t) 1 a(pu(r,t) +py(r, t))
(1,0 Ap(r.0)+py(1.1) T ) x
p(r) ot +ay(r) uy(r,t) |=— axX )
t) 1 a(py(r,t)+py(r,t))
1y MUY (r) uy(r,t)=— . s
at Yy e p(r) ay ’
duy(r,t) A(Px(r,1) +py(r,t))
(r)( Lt ay(n) uy<r,t))=— o apdny
y (14) at + px(1) Px(r,t)
Apy(r,t Auy(r,t 1 |du (rt
K(r,t)®( Dx;t )+ax(r) px(r,t)) =- Xa(x ), (15 T k(D ; _2 vi(r) Si(r, t)}
apy(r,t auy(r,t apy(r,t)
K(f,t)@( py;t )+ay(r) py(r,t))z—%, (16) yat + py(1) py(r,t)
(19
wherea,(r) anda,(r) are dispersionless absorption param-— — i M _2 w(r)Sr, t)}
eters employed only within the PML and the operator Ko(T) y i=1
denotes temporal convolution. Equatidid$) and(16) con- e
tain a generalized compressibilftgefined as Si(r.b LS"( t= px(r,t)
dJt 7i(r) mi(r) '
( ) _
k(1,1 = k(1) 5(t)+|2 B e tn 1), ST/ (GUIN J(r )= py(r.)
ot ’7'i(r)S ' Ti(r) ’
where «..(r) is the usual compressibility [d(r)c(r)?],
. . . . . where
7i(r) is the relaxation time for théth relaxation process,
k;(r) is the relaxation modulus for thigh-order relaxation Ki(T)
process, with units of compressibility, aht{t) is the Heavi- mH(1=— (r 2 Y0) +ay(r), (20
side step function. The integratiofgonvolution terms in ”
Egs. (15 and (16) make these equations equivalent toand
second-order differential equations in time. The convolution
terms can be simplified using properties of the Diédcinc- ( )(r)= Ki(r) —ki(r) a((r). (21)
tion and Heaviside step function that appear in the general- |(r)
i_zed ;ompr_essi_bility(l?)_ as well as identities for convolu- Each of Eqs(19) has the form
tions involving time derivative$ Thus, for example, the left-
hand side of Eq(15) can be written as aR( t)
q +BR(1,D=Q(1.1), (22
apx(r,t) Ki(T) , . .
KD = F 1) (1 1) +21 0 Px(r,t) where g is a constant that controls the decay of a field vari-
a able R. Following Ref. 9, the field equations can be trans-
N K (1) formed into a form that allows larger attenuations without
+ > T e Vn H(t)( - T+ax(r)) numerical instability. This form is
i=1 7 Ti
J(eP'R(r,t
@p«(r,t). (—())=emQ(r,t)- (23)

ot
The last term in this latter expression is still a convolution of
two time-dependent functions, and this form presents diffi-
culties for numerical implementation. The difficulties can be
resolved by introducing a state variable, which allows Eqsef"ADR(r,t+ At) — eP'R(r,t)
(13)—(16) to be rewritten as a set of simultaneous first-order At

Equations of this form can be discretized using the time-
staggered scheme

= A AI2Q(r t+At/2),

differential equations. The state variable employed here is a (24)
filtered version of the acoustic pressure fluctuation, defined
as and the equivalent form
RV R(r,t+At)=e A2 BAZR(r t)+ AtQ(r,t+At/2)).
SF')(r,t)E( e H(t))®p<.)<r,t>, (18 @9
i

where(-) denotesx ory.
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relaxation absorption, Eq25) is applied directly to Egs.
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(19). The spatial derivatives are replaced by Kaspace op-

erators(8), and the particle velocity variableg andu, are

Initial conditions were chosen to specify a pulsatile in-
cident plane wave with sinusoidal time variation and a

evaluated on staggered spatial and temporal grids, as in tHgaussian envelope. Boundary conditions were given by the

lossless algorithm of Eq10). The state variableS!” are

perfectly matched layefPML) on all sides of the grid. The

evaluated using a staggered-time scheme. The final discretdsorption parameters, and «, were tapered within the
field equations, written in a form suitable for direct numeri- PMLs using formulas of the fort

cal implementation, are

ux(r]_ ,t+) =g ay(rq)At/2 e~ ay(rq)At/2 ux(rl ,t—)

At (a(px(r,t)+py(r,t))”

p(ry) (0 x

Uy(rz ,t+) —e" ay(rp)At/2

e ay(rz)AI/Z Uy(rz ,t_)

At [fa(py(rH+ py(r,t)))
p(r2) PICIONY ’

Px(r,t Aty =e DAt emmDAt2p, (1 1) —

Ko(T)
uy(ry,t™) N § o
(Wi%wwm 1
At (26)
— o iy(NAL2] o= uy(r)At/2 .
py(r,t+At) e My e My py(r,t) )
N
auy(ry,t™) , o
X(m—igl HOE{(ASINT
Si‘(r,t+)=e‘“’[2”(’)] e At/[27(n)] Six(rat_)‘f'At px(r,t)},
7i(r)
S/(r,t")=e A7 g AVE2R(] §Y(r £ )+ At pi((rr.;t) ,
i

where the quantitieg and v are defined by Eq920) and
(21), respectively.

4

, (27)

co( X—Xg
Ay = -~ |
AX\ Xmax— Xo

wherex, is the coordinate at the inner edge of the PML,ax
is the coordinate at the outer edge of the grid, &anid the
maximum absorption per cell, in nepers, within the PML. A
PML thickness of 9 grid points, together with a maximum
PML absorptionA of 4 nepers per cell, were found to be
sufficient to reduce boundary reflection and transmission co-
efficients below—90 dB for normally incident waves.
Relaxation-process absorption was implemented using
two relaxation processes. The parameigrandr; were cho-
sen to approximate a linear dependence of absorption on fre-
quency over the pulse bandwidth, using the formula for
frequency-dependent absorption given in Ref. 8. The relax-
ation times chosen were

1 2

T 5fma 2

: (28)

m e
where f 2 IS the nominal maximum frequency of interest.
For a maximum frequency of 5 MHz, these arg=40ns

and 7,=400ns. Given this choice of relaxation times, an
absorption frequency dependence of 0.5 dB/cm/MHz is best
approximated(in a least-squares senstr the frequency
range G<f<5 MHz by the compressibility coefficients;
=0.004 74%., and x,=0.004 562, .

Benchmark computations analogous to those described
in Ref. 6 were carried out to test the accuracy and stability of
the presenk-space method. As in Ref. 6, time-domain scat-
tered fields for cylindrical test objects were computed and
quantitatively compared to an exact solufibasing anL?
error metric?* The primary test object was, as in Ref. 6, a
cylinder with radius 2.0 mm and acoustic properties of hu-
man fat (c=1.478 mmus, p=0.950g/cm)*! in a back-

This scheme provides spatial derivatives with spectralyround medium with acoustic properties of water at body

accuracy, temporal iteration that is exact for a homogeneousemperature(c=1.524 mmjs, p=0.993 g/cm). The inci-
lossless medium, and additional corrections that allow stablgent pulse was a plane-wave with Gaussian temporal char-
computations to be made in the presence of large absorpticitteristics, a center frequency of 2.5 MHz, a temporal Gauss-
coefficients. The incorporation of relaxation processes allowsan parameter=0.25us, which corresponds to a 6-dB
simulation of realistic absorption in tissue, while use of thepandwidth of 1.5 MHz, and a central starting positionxof
PML allows accurate computations to be carried out using= —4.5 mm at time zero. Time histories of the total pressure
small grid sizes. As shown below, the combination of theSQie|d were recorded, at 128 equa”y Spaced “measurement”
characteristics results in a powerful and flexible method fOfpoints Spanning a circle of radius 2.5 mm concentric to the
computation of ultrasonic propagation over long distances irtylinder, using the interpolation method described in Ref. 6.
inhomogeneous media such as soft tissues. Another benchmark employed the same configuration except
that the cylinder had the density and sound speed of human
bone(c=3.540 mmps, p=1.990 g/cm).!

In some cases, model media were smoothed before the

Numerical implementation of the preserkk-space computation to reduce errors associated with aliasing caused
method was accomplished using E@®6) directly. The by discontinuities. Smoothing was applied by filtering ana-
k-space operators of Eq$8) were evaluated using two- lytic Fourier transforms of the inhomogeneities considered
dimensional discrete Fourier transforms, implemented usingsing the half-band spatial-frequency filter described in Ref.
a fast Fourier transfornFFT) method*® 6. This filter was found to give the most satisfactory results

IIl. NUMERICAL METHODS
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when applied to the quantities,(r) andp(r) #, wheregis 1 I T T T T i T
a small coefficient. The accuracy of computations was found presekr]tsg;%%afﬁ _______
not to depend strongly on the value @employed; the value 08 | leapfrog ------- .
B=1/6 was used in the computations reported here.

A specific test of the smoothing method was imple- _ 06 L |
mented by computing scattering from a padiwire) scatterer g
with dimensions less than the grid resolution. The test object L&,J
employed in this case was a point-like scatterer with acoustic — 04 r T
properties of human boné=3540m/s, p=1.990 g/cr)
and a radius of 2@um. Computations were performed with a 02 |
spatial step ofAx=0.0833 mm (four points per nominal
minimum wavelength of 0.333 mmand a Courant- o L=
Friedrichs—Lewy number (CFecoAt/Ax) of 0.1. For a 0O 02 04 06 08 1 12 14
k-space computation with smoothing, the model medium CFL Number

was obtained by the spatial-frequency filtering procedure de- _ _ _
ibed above applied to the analvtic Fourier transform of th FIG. 3. Time-domain comparison of_ accuracy for thepace and leapfrog

scn ) pp y - . _%seudospectral methods as a function of CFL number. Each test used the

subresolution scatterer. For comparison, a computation usingat” cylinder of 2.0 mm radius and a spatial step size of 4 points per

a discrete single-grid-point scatterer was also carried out. Iminimum wavelength.

this case, the scatterer sound speed and density were de-

creased so that the compressibility contrgstand the den- ian random perturbation with rms amplitude 1% to the com-

sity contrasty, decreased in proportion to the relative in- pressibility. The internal 10-mm cylinders and wires were

crease in area, which correspondfr a scatterer of not perturbed in this manner. The incident plane wave had a

dimensions much smaller than the wavelength constant center frequency of 2.5 MHz, & 6-dB bandwidth of 1.7

scattering strengtf?. For a scatterer area of 0.0833 MHz, and a propagation direction of 37° from thexis, and

% 0.0833mm (one grid point, this corresponds to a sound was apodized using the window

speeq of 1.589_7 mm_é and a density of 1.0921 g/énmCom- A(E) = {erl5(&+wy/2+W,/2)/ws]

putational configurations were the same as for the 2.0-mm

radius cylinder benchmarks, except that scattered figlds —erf[ 5(&—wq/2—w,/2)/w, ]} 2, (29

termined by subtractmg.the computed m_mdent field in thewhere erf is the error function arglis an azimuthal distance
absence of the scatteyenstead of total fields were com-

dto th di ¢ soluti along the initial wavefront. This window approximates a spa-
pared o the corresponding exact Solutions. . tially limited plane wave of the widthv, with tapered ends

Implementation of relaxation absorption was tested NGt width W,. The window parameters employed for this ex-

the k-space method by computing propagation of a plane:,j1rnp|e werew, = 48 mm (the diameter of the phantonand

wave pulse in an absorbing medium. The pulse employe%zz6 mm. The grid size employed was 76868 with a
was a Gaussian-modulated sinusoid with a temporal Gaus§'patial step of 0.12 mm and a time step of 062 (CFL

ian parameter of 0.2as. Propagation of this pulse was com- —0.25 based on the backaround sound sheed
puted for a medium with absorption of 0.5 dB/cm/Mkma- ' g P

rametersry, 71, kg, andx, as given above using a spatial
step of Ax=0.0833mm (4 points per nominal minimum
wavelength. Waveforms were recorded at virtual measure-  The previouk-space method based on the second-order
ment locations separated by 5 mm along the direction ofvave equatioh®® has been shown in Refs. 6 and 7 to pro-
propagation. The attenuation for the computed propagatiomide high accuracy for weakly scattering media. Spectral
was determined numerically as a function of frequency fromevaluation of spatial derivatives provides much higher accu-
the ratio of the two-pulse spectra, while the phase speed wasacy than typical finite-difference methods for comparable
determined numerically from the frequency-dependent phasspatial steps. Th&—t space iteration scheme of Ref. 2 pro-
change between the two pulses. These computed values wergles unconditionally stable computations for media with
then compared with theoretical values, given by formulasc(r)<c, (Ref. 6 and allows large time steps to be employed
available in Ref. 8. while maintaining accuracy higher than comparable pseu-
An example computation, illustrating the performance ofdospectral methods’

the presenk-space method for large-scale problems relevant  Not surprisingly, thek-space method described here,
to ultrasonic imaging, was undertaken using a model tissueahich is based on coupled first-order wave propagation
mimicking phantom. This phantom is a 48-mm-diameter cyl-equations, has numerical properties very similar to those of
inder (c=1.567 mmps, p=1.040 g/cm) with two internal  the originalk-space method. Figures 3 and 4, similar to Figs.
10-mm  diameter cylinders (c=1.465mmus, p 2 and 3 of Ref. 6, show the time-domdir error as a func-
=0.0940g/cm) and three internal 0.2-mm diameter wires tion of the spatial and temporal sampling parameters. Figure
(c=2.600mmzs, p=1.120¢g/cm) in a background me- 3, which shows computations made using the 2.0-mm-radius
dium with properties of water(c=1.509 mmus, p “fat” cylinder described above and a spatial step size of 4
=0.997 g/cmi). The 48-mm cylinder also contained simu- points per minimum wavelength, show that the present
lated random scatterers, implemented by applying a Gaus&-space method exhibits temporal accuracy almost identical

IV. NUMERICAL RESULTS
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FIG 43 Tlme-do_mam comparison of accuracy _for thespace a_nd 2-4 ._FIG. 5. Computed pressure waveforms at a receiver radius of 2.5 mm for a
finite-difference time-domain methods as a function of the spatial step Siz@p o hen cylinder of radius 2.0 mm and a pulse center frequency of 2.5 MHz

in points per minimum wavelengtPW. Each test used the fat cylinder of The acoustic pressure is shown on a bipolar logarithmic scale with a 60-dB
2.0-mm radius. CFL numbers were 0.5 for thepace methods and 0.25 for dynamic range. The horizontal range of each plot is 360°, covering the

the finite-difference time-domain method. entire measurement circle starting with angléd@ward propagation The
vertical range of each panel corresponds to a temporal duratiopsf ®@ith

_ : =0 at the top of each plota) Unsmoothed object; presekitspace method,
to thek space method of Ref. 6. Figure 3 also shows thatz error 0.2292.(b) Smoothed object; presekispace methodl.? error

both k-space methods provide much higher accuracy than @.0263.((:) Unsmoothed object; previoisspace methofiL? error 0.3060.
comparable pseudospectral method employing a leapfro@) smoothed object; previolsspace methofiL? error 0.2687.
propagator(described in Ref. 6 Similar gains in accuracy
have been obtained relative to a more sophisticated pseu-
dospectral method incorporating fourth-order Adams—0.2 [comparable to the theoretical upper stability limit of
Bashforth iteratior. All three methods provide equivalent 0.2833 given by Eq(12)], a CFL number of 0.1 was em-
results for very small time step&CFL numbers less than ployed for the benchmark. Simulated waveforms obtained
about 0.1, but thek-space methods maintain high accuracyusing the preserk-space method and the previokispace
up to a CFL number of about 0.4. In contrast, the leapfrognethod of Ref. 6 are presented in Fig(®mputations car-
pseudospectral method rapidly increases in error for CFlied out using the method of Ref. 6 were identical to those
numbers above 0.1. described in Ref. 6 except that the CFL number was reduced
The spatial accuracy of the presdaspace method is to 0.1). Both before and after smoothing of the model me-
compared to the previouk-space methddand to a 2—4 dium, the preserk-space method achieves much higher ac-
finite-difference method in Fig. 4. Time-domainL? errors  curacy than the previous methdt? error, relative to an
are shown, for the 2.0-mme-radius “fat” cylinder, as a func- exact series solution, was 0.2292 vs 0.3060 before smooth-
tion of the spatial step siz@n points per wavelength, based ing, 0.0263 vs 0.2687 after smoothjngn addition, artifacts
on a nominal minimum wavelength of 0.333 mriror these are greatly reduced in the computations employing the
computations, the CFL number of tlkespace computations presentk-space method. The waveforms obtained using the
was held constant at 0.5, consistent with the CFL-accuracpresentk-space method with smoothiriganel(b)] are visu-
relationship shown in Fig. 3, while the CFL number of the ally identical to those obtained from the exact series solution,
finite-difference computations was held at an optimal valueshown in Ref. 6.
of 0.252122 Again, the presenk-space method yields accu- Further demonstration of the effectiveness of the present
racy almost identical to that of the previoksspace method k-space algorithm, in conjunction with the smoothing meth-
of Ref. 6. All three methods achieve high accuracy for finerods used here, is given by Fig. 6. This figure illustrates nu-
grid spacings; however, tHespace methods achieve higher merical results for scattering from a bone-mimicking cylin-
accuracy for much larger spatial step sizes. THeerror  der of sub-grid-resolution sizéadius 0.02 mm[20 um]
drops below 0.05 fok-space computations employing only compared to a spatial step afx=0.0833 mm. The model
3 points per minimum wavelength, while achievement of themedium, obtained by smoothing this subresolution cylinder
same accuracy criterion requires 14 points per minimunusing the methods described above, results in a scattered
wavelength for the finite-difference computations. amplitude that is nearly identical to the exact solution. The
Although the preserit-space method and that of Ref. 6 corresponding discrete computation, which attempts to rep-
yield nearly equivalent results for the benchmark case illusfesent the subresolution scatterer using a single pixel with
trated in Figs. 3 and 4, the use of coupled first-order equaadjusted acoustic parameters, accurately obtains the wave-
tions in the preserit-space method can provide greater ac-form shape and delay, but incorrectly predicts the angle-
curacy for strongly scattering media. These advantages adependent scattered amplitude. The accurate scattering com-
illustrated using a benchmark computation for a 2-mmputed for the half-band filtered medium indicates that the
“bone” cylinder, introduced in Ref. 6. Since computations presentk-space method, with smoothing of the kind used
became unstable in this case for CFL numbers above abotbere, can account for structures with dimensions smaller than
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FIG. 6. Simulated scattering from a poifwire) scatter with radius 2@m FIG. 7. Attenuation and phase speed for propagation of a pulse in a medium

and acoustic properties of human bone. Each plot shows results for an exagith two relaxation processes. Each panel shows theoretical veRefs8
series solution, &-space solution using a half-band filtered representationand values obtained using the preslersipace method for two values of the
of the subresolution scatteréismoothed”), and a single-pixel representa- CFL number. (a) Frequency-dependent attenuatiob) Frequency-
tion with equal scattering strengtfe) Backscattered signaléb) The rms dependent phase speed.

waveform amplitudes.

table is that the use of PML absorbing boundary conditions

the spatial step employed. Given sufficiently fine spatialallows the computation shown to be performed efficiently
sampling(4 points per minimum wavelengthscattering can (4063 CPU s on a 650-MHz Athlon processor for a simula-
be accurately computed from subgrid-sized structures lotion of duration 360us on a 76& 768 grid. A hypothetical
cated at arbitrary positions. computation without absorbing boundaries, in which the grid

Results of the numerical test of relaxation absorption aresize would be expanded to eliminate wraparound error
illustrated in Fig. 7. Panela) shows theoretical and simu- within the region shown in Fig. 8, would require a grid size
lated attenuation values, while pan@l) shows theoretical of approximately 4608 4600 points, resulting in a 35-fold
and simulated values of the phase speed. The simulations arecrease in storage and computation time requirements.
for two sizes of the time step corresponding to GHRL25
and CFL=0.5. The case with a smaller time step (CFL
=0.25) agrees very well with the theory, while the case with
a larger time stefCFL=0.5, as employed in the soft-tissue The starting point for thek-space method introduced
benchmark computations described abowhows good here is the previouk-space method based on the second-
qualitative agreement. These results illustrate that the preseatder wave equatiof® Thus, a brief discussion of similari-
k-space method with relaxation absorption can realisticallities and differences between these two methods is appropri-
simulate attenuation caused by soft tissues even for relativelgte.
coarse time steps. The two methods show identical accuracy for homoge-

Numerical results for the tissue-mimicking phantom ex-neous media, since they are mathematically identical in this
ample, described in the previous section, are illustrated iwase. For weakly inhomogeneous media, both methods have
Fig. 8. This figure shows four snapshots of the spatially lim-similar performance in accuracy and stability. However, for
ited plane wave propagating through the phantom, causingtronger inhomogeneities such as the bone-mimicking cylin-
coherent reflection from boundaries and wires as well as inder benchmark described here, the tkvepace methods dif-
coherent scattering from the random structure within thefer significantly. The present method, based on the coupled
background cylinder. Notable is that smoothing of the me-irst-order wave propagation equations, achieves much
dium has reduced any ringing artifacts to a level far belowhigher accuracy, although numerical evidence suggests that
the low-level random scattering within the cylinder. Also no- the present method has a lower stability threshold than the

V. DISCUSSION
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(a)

(c) (d)

FIG. 8. Computed pressure fields for a 48-mm diameter tissue-mimicking phantom. Rawnéds show the total acoustic pressure at intervals ofus2
superimposed on an image of the phantom. The area shown in each pangl64 Bin. Wave fields are plotted using a bipolar logarithmic scale with a
dynamic range of 60 dB.

method of Ref. 6. The increased accuracy of the presemtraparound or boundary-reflection errors, so that the present
k-space method for high-contrast media, relative to previoug-space method is often more efficient for practical prob-
k-space methods based on second-order wave equiiimas, lems. This advantage is potentially even more important for
curs for several likely reasons. Since thepace method for three-dimensional computations.
coupled first-order propagation equations can be written in a  The presenk-space method can also be compared with
form involving no Fourier transforms of medium properties pseudospectral methods for coupled first-order propagation
[Eq. (10)], some aliasing errors may be eliminated. In addi-equations(e.g., Refs. 12, 13, and L7Although both meth-
tion, the coupled first-order equations incorporate the densitpds use Fourier transforms to accurately evaluate the spatial
directly rather than within a derivative term, so that errorsfirst-order derivative, the presektspace method also in-
associated with inaccuracies in discrete derivatives of theludes temporal correction terms, which were obtained by
density are also reduced. factoring the second-ordde-space operator of Ed7) into

The two methods also differ somewhat in computationthe first-order operators of E@8). As a result, the present
and storage requirements. The method of Ref. 6 requirek-space method utilizes two-dimensional Fourier transforms,
computation and storage of only one acoustic varidtiie  while pseudospectral methods employ one-dimensional Fou-
acoustic pressure fluctuatiprwhile the present method re- rier transforms for calculation of spatial derivatives. This dif-
quires computation of the pressure fluctuation as well as eadierence leads to a slight increase in computational require-
vector component of the acoustic particle velocity fluctua-ments associated with Fourier transforms. Typically,
tion. Thus, for a constant grid size, the presérspace pseudospectral methods require eight sets of one-
method requires somewhat greater storage and computatiaimensional Fourier transforms per time step, while the
time than the method of Ref. 6. However, this difference ispresenk-space method requires seven two-dimensional Fou-
offset by the capability of the presektspace method to rier transforms per time step. However, the temporal correc-
incorporate PML absorbing boundary conditions. For largetion provided by thek-space method eliminates the need for
computations, the high performance of the PML allows thehigher-order time schemes such as Adams—Bashforth and
grid size to be substantially reduced without introduction ofAdams—Moulton iteration, so that tHespace method may
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