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ABSTRACT 

Ablation therapy is used as an alternative to surgical resection of hepatic tumors.  In ablation, tumors are 
destroyed through heating by RF current, high intensity focused ultrasound (HIFU), or other energy sources. 
Ablation can be performed with a linear array transducer delivering unfocused intense ultrasound (>10 
W/cm2). This allows simultaneous treatment and imaging, a feature uncommon in RF ablation. Unfocused 
ultrasound can also enable faster bulk tissue ablation than HIFU. 

In the experiments reported here, a 32-element linear array transducer with a 49 mm aperture delivers 3.1 
MHz continuous wave unfocused ultrasound at amplitudes 0.7–1.4 MPa during the therapy cycle. It also 
operates in pulse-echo mode to capture B-scan images. Ex-vivo fresh bovine liver tissue placed in degassed 
saline is exposed to continuous wave ultrasound interleaved with brief pulsed ultrasound imaging cycles. 
Tissue exposures range between 5 to 20 minutes. The following measurements are made at intervals of 1 to 3 
seconds: tissue temperature with a needle thermocouple, acoustic emissions with a 1 MHz passive unfocused 
detector, and tissue echogenicity from image brightness. 

Passively detected acoustic emissions are used to quantify cavitation activity in the ablation experiments 
presented here. As severity and extent of tissue ablation are related to temperature, this paper will statistically 
model temperature as a function of tissue echogenicity and cavitation. The latter two quantities can 
potentially be monitored noninvasively and used as a surrogate for temperature, enabling improved image 
guidance and control of ultrasound ablation. 

KEYWORDS: Ultrasound ablation, Cavitation, Logistic regression, Temperature, Monitoring, Statistical 
Modeling 

1. INTRODUCTION 
Thermal ablation is widely used for treatment of nonresectable tumors of the liver and other soft tissue. Radiofrequency 
ablation (RFA) is most common, but other energy modalities including ultrasound are used too.1,2 The use of intense 
ultrasound for tissue ablation described in this paper is derived from Makin et al. (2005), where a miniaturized 
ultrasound array performs interleaved tissue ablation and imaging. This is a minimally invasive treatment modality 
which can be used for bulk ablation of large tumors and can achieve performance comparable to RFA.3 The ability to 
control energy delivery and estimate the corresponding bioeffects are key aspects of an effective ablation treatment. 
Ability to monitor tissue temperature noninvasively can assist in treatment control. Cavitation activity resulting from 
ultrasound exposures may play a role in heat deposition and lesion formation.4 This, along with tissue echogenicity can 
be recorded noninvasively. An ad hoc mathematical model which can estimate tissue temperature, given the cavitation 
activity and tissue echogenicity may enable noninvasive temperature monitoring.  

 Passive cavitation detection in high–intensity focused ultrasound (HIFU) exposures and the role of cavitation in 
ablative lesion formation has been studied experimentally in recent years. It has been reported that subharmonic and 
broadband acoustic emissions were indicative of stable bubble oscillations and inertial bubble collapse respectively.5  
Low frequency acoustic emissions (in kHz range) have been used to detect tissue boiling during HIFU exposures by 
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Anand et al.6 Changes in tissue echogenicity as result of cavitation have been studied for HIFU exposures by Rabkin et 
al.7 Physical dynamics of cavitation activity in relation to tissue temperature have been studied under HIFU conditions 
by Thomas et al.8  Analytical methods which model the physical phenomenon of heat deposition during ultrasound 
ablation have been presented by Mast et al. for unfocused ultrasound ablation.9  

The objective of the work reported here was to explore the correlation of cavitation and tissue echogenicity with 
ablative efficacy (or temperature), with the intent of exploiting cavitation activity for treatment monitoring and control 
by employing a statistical framework. Passive cavitation detection was performed during tissue ablation experiments 
using intense unfocused ultrasound in MHz range at the University of Cincinnati.10 Acoustic emissions were recorded 
and tissue echogenicity was calculated from B-scan images. In this paper, statistical input/output models are derived 
based on the logistic regression framework to predict tissue temperature from measured acoustic emissions and tissue 
echogenicity.  

2. ABLATION EXPERIMENTS AND DATA COLLECTION 
2.1 Experimental Setup  

The schematic of the experimental set up can be seen in Fig. 1. The primary component in this set up is a 32-element 
miniaturized image-ablate array (THX-3N) manufactured by Guided Therapy Systems in Mesa, AZ. This array can 
perform both thermal ablation and B-scan imaging with an active surface area of 2.3×49 mm2 using the Iris imaging and 
ablation software provided by the same manufacturer.  Ex-vivo bovine liver tissue was used for ablation. The tissue 
sample preparation was carried out according to a strict protocol. Bovine liver used was always less than 12 hours post 
mortem. For every ablation experiment a piece was freshly cut from the bovine liver tissue. Each piece was 7 
(length)×3.5 (width)×3 (depth) cm3. The tissue face directly exposed to the ultrasound beam hence had an area of 7×3.5 
cm2. It was ensured that the liver capsule was intact for this surface. The tissue sample was then placed in a latex 
condom (Probe Guard, Carter-Williams) which was partially filled with phosphate buffered saline (PBS). The saline 
used was degassed for a minimum of 90 minutes before use. After inserting the tissue inside the condom, it was 
carefully massaged to ensure minimum entrapment of bubbles inside the tissue.  This tissue sample was then suspended 
in a tank of deionized water. The outer surface of the condom was then brushed to minimize the number of gas bubbles 
sticking to the same. The tissue sample and image-ablate array are suspended in the water tank such that the active 
surface of the array is parallel to and facing the liver capsule at a distance of 10-15 mm. A needle thermocouple (Ella 
CS type B) is inserted in the tissue sample parallel to the liver capsule 8-10 mm deep in the tissue from the liver 
capsule. Alignment and positioning of the thermocouple is done using real-time B-scan images captured by the image-
ablate array operating in pulse-echo mode. The thermocouple is positioned such that the needle tip is at the center of the 
array aperture. This ensures that the thermocouple will measure the temperature in a region of the tissue incurring large 
heat deposition and hence a large increase in temperature during ablation procedure. Fig. 2 shows a B-scan image of the 
liver tissue with the thermocouple inserted. A C302 transducer manufactured by Panametrics is used as a passive 
cavitation detector (PCD). It is a 1 MHz, 25 mm diameter circular, unfocused transducer and is placed perpendicular to 
the direction in which the intense ultrasound beam is delivered by the image-ablate array. It is placed at a distance of 
about 10-15 mm from the tissue sample. 

 2.2 Data Collection Scheme 

The Iris software enables control of tissue ablation. An experiment consists of exposing the tissue sample to several 
cycles of ablation and imaging actions. In each cycle the Iris system operates the miniaturized array in ablation 
(treatment or therapy) mode for 97-99% of time, after which it switches to the imaging mode. The Iris software was 
programmed to employ the center 16 elements of the 32-element, miniaturized array to produce a 3.1 MHz unfocused, 
continuous wave ultrasound beam in the ablation mode. When operating in the imaging mode, all 32 elements of the 
miniaturized array are used to form B-scan images using pulse-echo imaging. Acoustic emissions from the tissue are 
recorded using the 1 MHz PCD. The PCD is connected to a LeCroy WaveRunner digital oscilloscope which records 
signals at a sampling rate of 10 MHz. When the Iris software switches to imaging mode it generates a frame trigger 
causing the digital oscilloscope to record 1 million data samples from the PCD following a 100 ms delay. This delay 
ensures that acoustic emissions are recorded when the miniaturized array is delivering continuous wave ultrasound in a 
steady state. The same frame trigger also initializes a PC-based CompuScope CS 14200 A/D card (Gage Applied), 
which acquires RF echo traces at a sampling frequency of 33 MHz. This happens with the image-ablate array operating 
in the pulse-echo mode. These RF echo traces are used to reconstruct and post process B-scan images similar to Fig. 2. 
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Hence the acoustic emissions measured by PCD and the RF echo traces from the image-ablate array are captured 
synchronously. The tissue temperature is recorded asynchronously using an Omegaette HH206 digital data logger (by 
Omega Inc.). Temperature is sampled at approximately 1 Hz.  

   
 

 
 
Figure 1: Schematic of experimental setup is presented in front and top views. Image-ablate array, PCD, tissue sample and 

thermocouple positions are indicated along with their DAQ hardware connections. 

Results for a total number of 18 ex-vivo liver tissue experiments are reported in this paper. Six experiments each were 
conducted at three acoustic power levels of 16.2, 28.8 and 45.0 W. These power levels translate to 0.83, 1.10 and 1.38 
MPa acoustic pressure amplitudes at a distance of 15 mm from the image-ablate array. Exposure time at 0.83 MPa was 
20 minutes with the PCD data and RF echo traces recorded at a frame rate of 0.3 Hz. At 1.10 MPa the exposure time 
was 10 minutes and the frame rate was 0.6 Hz. Finally, at 1.1 MPa the exposure time was 10 minutes and the frame rate 
was 1.1 Hz. With increasing acoustic pressure (and power levels) the rate of heat deposition is increased. Hence 
exposure time is decreased and the frame rate is increased accordingly. Temperature, recorded asynchronously at 1 Hz, 
is interpolated to the frame rate for data analysis. 

2.3 Data Analysis 

Quantities measured during these experiments are acoustic emissions (recorded by PCD), B-scan images (reconstructed 
from RF echoes captured by CompuScope A/D card) and tissue temperature (measured by thermocouple). The acoustic 
emissions contain information which enables the monitoring of cavitation activity by generating a periodogram. At each 
frame trigger the WaveRunner Oscilloscope records 1 million data points from the PCD at 10 MHz and stores it in a 
binary file (.trc extension). During the course of each experiment 330 to 360 such files are saved. Data contained in each 
file is hence a snapshot of 100 ms of acoustic emissions at a given point of time during the experiment. A rectangular 
window 1000 points long, with zero overlap is applied to each file yielding 1000 “snippets” of the data. For each 
“snippet” a 1000–point Fast Fourier Transform (FFT) is computed. A periodogram is then ascertained by averaging the 
FFT squared values for these “snippets,” and the spectrum energy is converted to dB, relative to the measured noise 
floor in each frequency band.  This procedure when repeated for each binary file reveals energy content of various 
frequency components during at different time instants through an experiment. Change in energy content in three 
frequency ranges is calculated over time. Presence of stable cavitation presents as energy in the subharmonic frequency 
which is 1.55 MHz in these experiments.10 Inertial cavitation gives rise to broadband activity.10 The PCD response rolls 
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off after 1 MHz and hence the total energy contained between 0.3–1.1 MHz is calculated over entire experiment time. 
As tissue boiling is characterized by low frequency acoustic emissions, energy content between 20–40 kHz is calculated 
to monitor tissue boiling.10 Fig. 3 shows changes in acoustic emissions in the above mentioned frequency ranges with 
respect to time.  

At each frame trigger, RF echoes are captured and stored using the CompuScope A/D card. At each frame trigger, 32 
2048-point RF echo traces (A-lines) are stored at 33 MHz which are converted into a B-scan image. First a Hilbert 
transform operation is performed and then the data is rearranged into 32×2048 pixels corresponding to an image width 
of about 25 mm and a depth of about 45 mm. One such image is generated per frame trigger. Changes in B-scan images 
during the experiment are of interest. For the region marked by the dotted box in Fig. 2 the grayscale values of the 
pixels are squared and then averaged. This average value is then converted to dB. This yields one mean grayscale value 
per frame trigger. This region of interest is about 25 (width)×22 (depth) mm2 and is approximately centered on the 
thermocouple tip (see Fig. 2).   
 

 
 
Figure 2: B-scan image of tissue captured buy image-ablate array. The dotted rectangular box is the region of interest for which 

change in mean grayscale value is computed over time. The bright line at the center of the dotted rectangle is the 
thermocouple.  The bright line in the top portion of the dotted box is the tissue boundary. 

3. DATA ANALYSIS 

3.1 Correlation analysis for acoustic emissions and B-scan grayscale time-series 

Linear correlation coefficients between temperature, broadband, subharmonic, low frequency and mean grayscale value 
are presented in Table 1. Correlation between temperature and subharmonic activity is statistically insignificant. All 
other correlations are statistically significant (p–value <0.01) though the correlation coefficients are not high. 

Fig. 4 consists of scatter plots for temperature against broadband, subharmonic, low frequency and mean grayscale 
value. It is evident that there is no linear relation between temperature and these measured quantities. However, the data 
suggest a thresholding effect. A significant increase can be seen in the level of broadband and low frequency emissions 
and mean grayscale values when the temperature increases beyond 80oC at the thermocouple. This is most pronounced 
in case of the highest acoustic pressure amplitude (1.4 MPa marked by red triangles). This makes sense intuitively, for 
the low frequency emissions are believed to be a consequence of tissue boiling. 

The relationship between temperature and measured quantities also appears to be a function of the acoustic pressure 
amplitude. This is can be seen clearly in the scatter plot of subharmonic activity and temperature. For the lowest 
acoustic pressure amplitude (0.8 MPa) it can be seen that subharmonic activity is more pronounced for temperatures 
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between 45 and 60°C. However, for the highest acoustic pressure amplitude (1.4 MPa) high subharmonic activity 
occurs within a higher temperature range (75 to 110°C). As seen previously, the correlation between temperature and 
subharmonic activity is statistically insignificant. However, the thresholding nature of their relation seen in Fig. 4 can be 
exploited in a statistical model. 

 Broadband Subharmonic Low Frequency MGSV 
Temperature 0.419 -0.00065 0.527 0.455 

 
Table 1: Temporal correlation coefficient s between temperature, broadband activity, subharmonic activity, low frequency emissions 

and mean grayscale value. The statistically significant correlation coefficients are in bold. Their p-values are << 0.01 for a 
total of N = 6179 data points.  

3.2 Logistic Regression Overview 

Control of ablation treatment will be facilitated if tissue temperature can be predicted using noninvasively measurable 
quantities like acoustic emissions and B-scan grayscale values. An input/output model between these quantities is 
desired. The inputs to such a model could be broadband, subharmonic and low frequency activity, and mean grayscale 
values. These input variables (or covariates) are measured during the experiments. The acoustic pressure amplitude and 
treatment times are covariates which are known a priori. The model output (dependent variable or response) would be 
the predicted temperature. All the variables are continuous. The model most often used in such a scenario is multiple 
regression. Fig. 4 reveals the lack of a linear relation between temperature and measured variables. Hence a multiple 
regression model will not provide an acceptable representation of the input/output relation. One possible option is to use 
nonlinear curve-fitting to model the data. A less rigorous statistical model can be used to predict whether the tissue 
temperature has exceeded a certain stipulated value during the experiment. This can be achieved by use of logistic 
regression to model the data set. 

Logistic regression can be used when the response variable is binary. Let Y be the binary response variable and X1, X2 
and X3 be the covariates. They can be continuous or categorical (take values like 0, 1, 2 etc. or good, better, best, etc). 
Logistic regression will model the probability of Y=1 or 0 as a function of the covariates: 

P(Y = 1) = exp(β0 + β1*X1 + β2*X2 + β3*X3)/(1 + exp(β 0 + β 1*X1 + β 2*X2 + β 3*X3 )). 

Here β’s are called the model parameters. These parameters can be estimated for a given data set using the method of 
maximum likelihood. 

3.3 Input/Output Models using Logistic Regression 

For the experiments presented here, the output variable is temperature, which is continuous. In order to use logistic 
regression it is converted to binary. Since tissue ablation and necrosis set in when the tissue temperature exceeds 
approximately 60°C,9 this can be used as a temperature threshold. If the temperature exceeds 60°C the response variable 
is considered equal to 1, else 0. As seen in Fig. 4, for temperatures above 80°C we see an increase in low frequency 
emissions. This would imply that there may be boiling in some regions of the tissue. Hence 80°C may also be a useful 
threshold.  Logistic regression is used to here compute the probability that the temperature is above or below either of 
these thresholds for a given set of input variables. 

Several input/output models using logistic regression are employed in this paper using different covariates. As 
mentioned earlier, some of the covariates are measured, while some are known a priori. It would be worthwhile to 
compare temperature prediction based on measured quantities and a priori variables. It will help appraise the usefulness 
of information yielded through the measured quantities. The models developed in this paper have the following 
covariates: 

Model 1: Broadband, subharmonic, low frequency, mean grayscale value (measured quantities only) 

Model 2: Acoustic pressure amplitude, time elapsed during experiment (quantities known a priori) 

Model 3: Broadband, subharmonic, low frequency, mean grayscale value, acoustic pressure amplitude, time elapsed 
during experiment 

Model 4: Broadband, subharmonic, low frequency, mean grayscale value, acoustic pressure amplitude (categorical 
variable) 
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Figure 3: Tissue temperature, broadband, subharmonic, low frequency and MGSV values varying with time during an exposure. 

Representative graphs for each acoustic pressure level (1.4 MPa on left, 1.1 MPa on center and 0.8 MPa on right). 

Four models each are fitted for temperature thresholds at 60°C and 80°C. The total number of experiments included in 
this paper are 18. This amounts to 6179 data points. 15 experiments, 5 at each of the three acoustic pressure amplitudes 
are used here to build the statistical models. The total number of data points used to build the models is 5149. 
Broadband, subharmonic and low frequency activity, and mean grayscale value are expressed in decibels (dB) relative 
to measured background levels. Estimated acoustic pressure amplitude is expressed in MPa and elapsed treatment time 
is expressed in minutes. When pressure is treated as a categorical variable with three distinct levels, the pressure 
covariate is replaced by three dummy variables. Let the dummy variables be P1, P2 and P3 and parameters associated 
with them be βP1, βP2 and βP3:  

Pressure = P1* βP1 + P2* βP2 + P3* βP3. 

When pressure amplitude is 0.8 MPa, P1 = 1 while P2, P3 = 0. When pressure amplitude is 1.1 MPa, P2 = 1and P1, P3 = 
0. Similarly P3 = 1 when pressure amplitude is 1.4 MPa while P1, P2 = 0. The logistic regression model presented here 
has βP3 = 0.    

All the logistic regression models presented here are estimated using SAS 9.1.3. When a covariate was found to be 
statistically insignificant, it was dropped and the model was rebuilt using the remaining covariates. Statistical models 
are then tested on the 5149 data points used to build them. They are also tested on the remaining 3 experiments (not 
used in model building), which is a total of 1030 data points.  Tables 2 and 3 list the parameters for each of the above 
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four models. Tables 4 and 5 indicate model performance on the data included and excluded in parameter estimation, 
respectively. 

The model performance is gauged as follows: 
• If probability value generated by the model is greater than 0.5, tissue temperature is assumed to be greater than 

threshold value 
• Correct Prediction: P > 0.5 and Temp > Threshold OR P < 0.5 and Temp < Threshold 
• False Negative: P < 0.5 and Temp > Threshold 
• False Positive: P > 0.5 and Temp < Threshold 

 
Figure 4: Scatter plots of temperature against broadband, subharmonic, low frequency and MGSV for 18 experiments. 1.4 MPa in 

red, 1.1 MPa in green and 0.8 MPa in blue. 

4. DISCUSSION 
Performance of a model is evaluated by the number of correct predictions it makes on the model building and testing 
data sets. Model 1 uses only the measured variables. For the data set used in model estimation, its prediction accuracy is 
75% for the 60°C threshold and 83% for the 80°C threshold. The broadband activity, low frequency emissions and 
MGSV increase significantly when temperature at the thermocouple is above 80°C. However for a temperature range of 
30-70°C, these quantities do not vary as significantly (see Fig. 4). There is some variation with respect to acoustic 
pressure (scatter plots of three different colors do not completely overlap in 30-70°C range in Fig. 4). However Model 1 
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does not contain pressure information. This could be the reason for its greater accuracy at the higher temperature 
threshold. 

Model 2 uses only the variables known a priori. It performs slightly better at the lower temperature threshold (79%) 
than the higher threshold (77%). The thermocouple temperature changes monotonically. Higher temperatures are 
observed for higher acoustic pressures. Also higher temperatures are recorded when tissue is exposed for longer 
duration. Model 2 contains information for both the pressure and treatment time. This may be the reason for its 
comparable performance at both thresholds. Model 3 uses both the measured variables and the variables known a priori. 
For the data set used in model building, prediction accuracy of Model 3 is higher than Models 1 and 2 (82% at 60°C and 
85% at 80°C), as its parameters were estimated using greater information than Models 1 and 2. 

 Intercept Broadband Subharm. Low Freq. MGSV Pressure Time 
Model 1 -3.319 0.2295 -0.0349 0.3109 0.8866 -- -- 
Model 2 -11.5001 -- -- --  8.9971 0.3633 
Model 3 -13.4105 Insignificant -0.029 Insignificant 0.9823 9.7106 0.2591 
Model 4 -2.0049       Insignificant -0.0292      0.1001       1.3253       -1.7882 

0.0253 
-- 

Table 2: Parameters of logistic regression models for the 60oC threshold (N = 5149), shown with one model per row and one 
covariate per column. Covariates not used in building a model are denoted by “--”. “Insignificant” implies that the covariate 
was found to be statistically insignificant.  

 
 Intercept Broadband Subharm. Low Freq. MGSV Pressure Time 
Model 1 -4.3071 Insignificant -0.012 0.7917 0.8192 -- -- 
Model 2 -19.7575 -- -- -- -- 14.0237 0.4671 
Model 3 -24.1502 -0.2161 0.024 0.3306 1.3416 16.6187 0.3727 
Model 4 -3.5075       -0.215       Insignificant   0.4946       1.3663      -2.5621       

 0.2644  
-- 

  Table 3: Parameters of logistic regression models for the 80oC threshold (N = 5149), shown as in Table 2.  
 

 Temp > 60 Temp > 80 
 Correct False Positive False Negative Correct False Positive False Negative 
Model 1 3844 671 634 4260 202 687 
Model 2 4056 660 433 3967 627 555 
Model 3 4203 589 357 4395 299 455 
Model 4 4004 572 573 4372 234 543 

Table 4: Performance of fitted models on data used during model parameter estimation (N = 5149). 
 

 Temp > 60 Temp > 80 
 Correct False Positive False Negative Correct False Positive False Negative 
Model 1 697 88 245 978 11 41 
Model 2 715 315 0 793 237 0 
Model 3 784 162 84 989 2 39 
Model 4 713 114 203 979 8 43 

Table 5: Performance of fitted models on test data set of 1030 points. 

 Models using information from only the measured covariates may be better suited for ablation control. The covariates 
known a priori are assumed to take certain values over each experiment (for example acoustic pressure is assumed to be 
0.8, 1.1 or 1.4 MPa). However, the in situ pressure amplitude will vary due to tissue structure and acoustic properties. 
Fig. 3 shows representative plots for acoustic emissions, tissue echogenicity and tissue temperature when ex vivo bovine 
liver is exposed to the three estimated acoustic pressure amplitudes from the image-ablate array. Behavior for each of 
these measured quantities was found to depend strongly on the acoustic amplitude.10 Hence the estimated acoustic 
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pressure level could be used as a categorical covariate. Two parameters can be seen associated with the pressure 
covariate for Model 4 in Tables 2 and 3. On the data used in model construction, Model 4 performs better than Model 1 
as only the former contains information about pressure level. The performance of Model 4 (78% at 60°C and 85% at 
80°C) is comparable to Model 3, especially at the higher threshold.  

On the test data set (1030 data points not used in model building), Model 1 fares better than Model 2 for the 60°C 
threshold and worse for the 80°C threshold. For the test data set, Model 2 predicts no false negatives. This implies that 
Model 2 never underestimates the temperature in the test data set. Model 3 performs better than both Models 1 and 2. 
Performance of Model 4 is comparable to Model 3 and better than Model 2 for the 80°C threshold. 

A false negative implies that the probability value which the model outputs is less than 0.5, however the actual tissue 
temperature is below threshold level. This erroneous prediction may however prevent undertreatment, especially in case 
of the 60°C threshold. If false negatives are also considered to be an acceptable output, prediction success for Model 4 
is 89% for the 60°C threshold and 99% for 80°C threshold in the test data set. Corresponding numbers for the model 
building data set are 89% and 95%. Models 1 and 3 show similar success rates, but Model 2, which employed only a 
priori information, is much less successful, with 30% false positive predictions for the test data set at the 60°C threshold 
and 23% false positive predictions for the 80°C threshold. 

MGSV is a dominant covariate for both thresholds, especially at higher pressures. This agrees with the observation that 
tissue echogenicity increases significantly during high pressure exposures. The parameter associated with low frequency 
emissions is more dominant for the 80°C threshold than for the 60°C threshold  in all cases. This is consistent with the 
observation that the low frequency emissions are indicative of tissue boiling. For the 60°C threshold, the broadband 
activity becomes statistically insignificant for Models 3 and 4. This can be attributed to the fact that significant change 
in broadband emissions is not seen at lower temperatures.  

Model 4 Intercept Broadband Subharm. Low Freq. MGSV Pressure 
Mean  -2.0054 Insignificant     -0.0292 0.1001 1.3256 -1.7885 

0.0254 
Std Dev 0.029 -- 0.002 0.008 0.013 0.016 

0.011 

Table 6: Mean and standard deviation of parameter values during cross validation (Temp > 60oC). 
 

Model 4 Intercept Broadband Subharm. Low Freq. MGSV Pressure 
Mean  -3.5084 -0.2151 Insignificant 0.4947 1.3668 -2.5629 

0.2644 
Std Dev 0.063 0.007 -- 0.013 0.014 0.039 

0.018 

Table 7: Mean and standard deviation of parameter values during cross validation (Temp > 80oC). 

To further test the validity of this logistic regression approach, performance of Model 4 is investigated in greater detail. 
Goodness–of–fit for logistic regression is ascertained by the Hosmer and Lemeshow statistic which gives a p–value 
based on the Chi–Square distribution.11 In case of a good fit this value has to be less than 0.05. In case of Model 4, the 
corresponding p–value was less than 0.0001 for both thresholds, consistent with the high percentage of correct 
prediction. Robustness of Model 4 is tested through cross-validation. The entire data set used for building the model 
(N=5149) is randomly divided into 10 equal parts. Nine parts are used to build a model. This procedure is performed 10 
times, leaving out 1/10th of the data during each iteration. The model parameters calculated during each iteration are 
then pooled together to evaluate their mean value and standard deviations. A robust model would imply that the 
standard deviations are small. In case of Model 4 for both thresholds the standard deviations are a minimum of one 
order of magnitude below that mean parameter values (see Tables 6 and 7). 

Successful implementation of logistic regression involves converting the continuous response variables (tissue 
temperature) to a binary form, causing loss of information.  Other input/output models with nonlinear curve fitting 
techniques could be employed without this information loss. Time series models which involve a “system 
identification” approach may also prove useful. 
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5. CONCLUSIONS 
Tissue temperature may be predicted from measured acoustic emissions and ultrasound B-scans using a statistical input 
/output model. Temporal correlation between tissue temperature, acoustic emissions and tissue echogenicity, measured 
during unfocused ultrasound ablation experiments, is statistically significant but weak. Relations between temperature 
and the measured quantities are nonlinear. Hence a logistic regression model is appropriate to predict whether the tissue 
temperature exceeds a certain threshold during an experiment. The measured acoustic emissions and tissue echogenicity 
can be used as inputs to this model. Models based only on measured quantities, only on a priori known variables, and 
on both measured and a priori known variables have been presented for two temperature thresholds. Models which use 
all the variables exhibit the best prediction accuracy.  However comparable prediction accuracy is observed if the a 
priori estimated acoustic pressure is used as a categorical variable along with the measured quantities.  Models using 
only measured quantities also performed well, with a small number of false positive predictions for each temperature 
threshold. 
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