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A general approach is presented for determining the acoustic fields of rectangularly symmetric,
baffled, time-harmonic sources under the Fresnel approximation. This approach is applicable to a
variety of separable source configurations, including uniform, exponential, Gaussian, sinusoidal,
and error function surface velocity distributions, with and without focusing in either surface
dimension. In each case, the radiated field is given by a formula similar to that for a uniform
rectangular source, except for additional scaling of wave number and azimuthal distance parameters.
The expressions presented are generalized to three different Fresnel approximations that correspond,
respectively, to diffracted plane waves, diffracted spherical waves, or diffracted cylindrical waves.
Numerical results, for several source geometries relevant to ultrasonic applications, show that these
expressions accurately depict the radiated pressure fields, except for points very near the radiating
aperture. Highest accuracy near the source is obtained by choice of the Fresnel approximation most
suited to the source geometry, while the highest accuracy far from the source is obtained by the
approximation corresponding to diffracted spherical waves. The methods are suitable for volumetric
computations of acoustic fields including focusing, apodization, and attenuation effects. © 2007
Acoustical Society of America. �DOI: 10.1121/1.2726252�
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I. INTRODUCTION

Radiated fields from rectangularly symmetric apertures,
and from arrays of rectangularly symmetric elements, are
important to many acoustic applications. In particular, certain
ultrasound applications require computation of diffracted
pressure fields over a large number of spatial points in two or
three dimensions. These include modeling of ultrasound-
induced heating for simulation of ultrasound therapy,1–3

simulation of ultrasound imaging systems,4–7 and compensa-
tion for diffraction effects in quantitative scattering
measurements.8–10 In such problems, individual elements of
ultrasonic linear arrays, phased arrays, or two-dimensional
arrays can be modeled as baffled rectangular sources, each of
which may be unfocused, or focused in one or both dimen-
sions, with possibly different focal lengths in each direction.
The position-dependent surface velocity of such an array el-
ement may be approximately uniform over the entire rectan-
gular aperture, or may be spatially varying �e.g., apodized to
reduce beam sidelobes�.11

A number of numerical methods are available for com-
putation of ultrasonic fields from rectangular sources. Fields
can be computed accurately using the angular spectrum
method,12,13 in which the Rayleigh integral is numerically
evaluated by fast Fourier transform operations. Several nu-
merically exact methods have been based on numerical inte-
gration of the aperture’s space-time impulse response14 for
uniform, flat15–18 or spherically focused19 rectangular
sources. A more general and computationally intensive
method employs numerical evaluation of the two-
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dimensional Rayleigh integral20 or the impulse response
integral6,21 by dividing a radiating surface into many small
canonical elements. Recent work using the impulse-response
method has included a method for rapid computation of the
exact time-harmonic field for flat rectangular sources18 and
an approximate method for cylindrically focused sources.22

Approximate methods for computation of ultrasonic
fields include several based on the Fresnel approximation, in
which the phase of a wave front emanating from the radiat-
ing surface is replaced within the Rayleigh integral by a
binomial-series expansion, truncated at second �quadratic�
order.23 In contrast to available numerical methods, the
Fresnel approximation allows simple, analytic solutions for
diffracted pressure fields to be obtained for rectangularly
symmetric sources,24 including apodized radiators for which
“exact” numerical methods such as the impulse response ap-
proach may not be tractable.25 In addition, the Fresnel ap-
proximation forms the basis for efficient numerical methods
such as Gaussian beam expansions.26–28 Analytic solutions
obtained from the Fresnel approximation are desirable be-
cause they are amenable to further analysis, and can provide
physical insight.

Analytic solutions for rectangularly symmetric aper-
tures, under the Fresnel approximation, have previously been
presented for a uniform, flat rectangular aperture24 as well as
for unfocused rectangularly symmetric apertures with several
apodization patterns.25 Szabo has pointed out that under the
Fresnel approximation, the effect of focusing is similar to a
scaling of the field of unfocused transducers.11 Still, several
investigators have implied that simple analytic solutions for
Fresnel diffraction from focused rectangular transducers are

4,8,29,30
not tractable outside the focal plane.
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In this paper, analytic solutions are derived for the
acoustic fields of a large class of rectangularly symmetric
apertures under the Fresnel approximation. The general ap-
proach derived here for solution of the Rayleigh integral is
valid for separable surface velocity distributions under three
variations of the Fresnel approximation, respectively repre-
senting diffracted plane, spherical, and cylindrical waves.
The result of this approach is a single, compact analytic for-
mula for the fields of several focused and unfocused rectan-
gularly symmetric apertures with various apodizations, all of
which take a similar functional form except for shifting and
scaling of wave number and azimuthal coordinates. Numeri-
cal results obtained from this simple approach indicate that
each of the Fresnel approximations considered provides dif-
ferent numerical accuracy, dependent on the region of inter-
est. An appropriate choice of Fresnel approximation, based
on the aperture geometry, allows accurate field computations
to be made over a wide region including the geometric near
field. In addition, the simple form of the derived solutions,
written in terms of the complex error function or Fresnel
integral, facilitates further mathematical analysis of radiated
acoustic fields. Thus, the methods introduced here should be
useful for a wide variety of ultrasound applications that re-
quire detailed knowledge of the ultrasound field structure.

II. THEORY

In the following, an analytic approach is given that pro-
vides closed-form solutions of the Rayleigh integral for a
variety of rectangularly symmetric apertures, under the
Fresnel approximation. Four related variants of the Fresnel
approximation are presented, which represent the radiated
acoustic field respectively as a diffracted plane wave, a dif-
fracted spherical wave, or diffracted cylindrical waves cen-
tered on either axis of symmetry. These four Fresnel approxi-
mations are generalized into a common form. Compact
analytic solutions for this generalized Fresnel approximation
are then derived for rectangularly symmetric apertures with
uniform, exponential, sinusoidal, Gaussian, or error-function
apodization, both for unfocused and focused apertures. In all
cases, the pressure field is specified by a formula similar to
that for a uniform, unfocused rectangular aperture,24 but with
complex, position-dependent shifting and scaling of the
acoustic wave number and azimuthal distance coordinates.

A. General solution

The problem geometry considered here is the classic
baffled piston, sketched in Fig. 1. A planar source at z=0,
placed within an infinite rigid baffle, oscillates with time-
harmonic surface velocity u�x0 ,y0�=u0A�x0 ,y0�e−i�t. For
such a source, the resulting linear acoustic field pressure at
any point in a homogeneous medium is given exactly by the

31
Rayleigh integral:
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p�r,t� = −
ik

2�
�cu0e−i�t�

−�

� �
−�

�

A�x0,y0�
eik�r−r0�

�r − r0�
dx0dy0,

�1�

where � is the medium mass density, c is the speed of sound,
k is the wave number � /c, and the distance between a field
point �x ,y ,z� and a surface point �x0 ,y0� is

�r − r0� = ��x − x0�2 + �y − y0�2 + z2. �2�

This expression for the pressure field is also valid for attenu-
ating media, in which case k is complex with Im�k��0. In
the derivations given here, the time-dependent factor e−i�t

will be suppressed and the nominal surface pressure p0

=�cu0 will be assumed equal to unity.
The usual Fresnel approximation23,24 starts with the as-

sumption that

�x − x0�2 + �y − y0�2 � z2

for the surface points that contribute significantly to the pres-
sure at a field point. This assumption, which is not required
to hold for all points on the radiating surface, is consistent
with the principle of stationary phase.23 In this case, the dis-
tance �r−r0� can be approximated by the leading terms of its
binomial expansion,

�r − r0� � z + ��x − x0�2 + �y − y0�2�/�2z� , �3�

so that the exponential term of Eq. �1� can be approximated
as

eik�r−r0�

�r − r0�
�

eikz

z
eik��x − x0�2+�y − y0�2�/�2z�. �4�

The pressure field given by the Rayleigh integral �1� is thus
approximated as a plane wave multiplied by an integral dif-
fraction term. For this reason, the Fresnel approximation of
Eq. �4� is particularly useful for large sources in their acous-

FIG. 1. Problem geometry. A rectangularly symmetric source with dimen-
sions 2a in the x direction and 2b in the y direction oscillates within an
infinite rigid baffle. The origin o of the coordinate system is at the aperture
center. The pressure field at a field point r= �x ,y ,z� is given by the Rayleigh
integral over the surface coordinate r0= �x0 ,y0�, with an integrand dependent
on the distance R= �r−r0�.
tic near field and within the paraxial region.
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Other implementations of the Fresnel approximation re-
sult from alternate binomial expansions of the distance
�r−r0� into a position-independent distance plus a quadratic,
position-dependent perturbation term, similar to Eq. �3�. The
result in each case is an expression of the radiated field as a
simple geometric wave field �e.g., a plane, spherical, or cy-
lindrical wave� multiplied by an integral diffraction term. In
a given problem, optimal choice for the form of this expan-
sion depends on the source geometry as well as the field
position, as demonstrated by the numerical results presented
later in this paper.

One alternate Fresnel approximation is more appropriate
for small acoustic sources, such as rectangular elements of a
two-dimensional ultrasonic array. For such sources, an ap-
propriate scaling is based on the assumption

x0
2 + y0

2 − 2xx0 − 2yy0 � r2,

where r=�x2+y2+z2. This assumption is valid wherever the
distance from the source center to the field point is much
larger than any source dimension, so that it also applies in
the geometric far field of any acoustic source. The most ap-
propriate Fresnel approximation for this case represents a
diffracted spherically spreading wave, so that the integrand
of the Rayleigh integral �1� is approximated as

eik�r−r0�

�r − r0�
�

eikr

r
eik�x0

2+y0
2−2xx0−2yy0�/�2r�. �5�

A third approximation is useful for the common source
configuration where an acoustic source is small in one di-
mension and large in the other dimension, such as an element
of a typical linear or phased ultrasonic array. In the acoustic
near field of such a transducer, one may assume that

�x − x0�2 + y0
2 − 2yy0 � y2 + z2

for source points that significantly contribute to the pressure
field, where x is the direction of the longer element dimen-
sion �elevation or height� and y is the direction of the shorter
element dimension �azimuth or pitch�. In this case, an ap-
proximation analogous to Eqs. �4� and �5� is

eik�r−r0�

�r − r0�
�

eikwy

wy
eik��x − x0�2+y0

2−2yy0�/�2wy�, �6�

where wy 	�y2+z2. This represents a diffracted yz-plane cy-
lindrically spreading wave, centered on the long axis of the
source.

Similarly, for a source that is much larger in the y di-
mension than the x dimension, one may make the approxi-
mation

eik�r−r0�

�r − r0�
�

eikwx

wx
eik��y − y0�2+x0

2−2xx0�/�2wx�, �7�

where wx	�x2+z2. This represents a diffracted wave cylin-
drically spreading in the xz plane, centered on the long axis
of the radiating aperture.

The Rayleigh integral can be solved in a similar manner
for any of these Fresnel approximations. For convenience,
the four approximations are generalized here so that analytic

expressions derived for the pressure field are valid under any
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of these approximations. To achieve this, a distance � is de-
fined as the position-independent portion of any binomial
expansion for �r−r0�, e.g., �=z for Eq. �4�. Given this defi-
nition, Eqs. �4�–�7� can be summarized by the compact ex-
pression

eik�r−r0�

�r − r0�
�

eik�r2+�2�/�2��

�
eik�x0

2+y0
2−2xx0−2yy0�/�2��, �8�

where one may choose �=z to represent the field as a dif-
fracted plane wave �4�, �=r for a spherically spreading wave
�5�, or �=wy �6� or �=wx �7� for cylindrically spreading
waves. In each case, the coordinate � can be regarded as the
nominal propagation distance from the source to a field
point.

For sources with a separable surface velocity distribu-
tion such that A�x0 ,y0�=Ax�x0�Ay�y0�, the Rayleigh integral
�1� can be written for any of the Fresnel approximations
represented by Eq. �8� as

p�r� = −
ikeik�r2+�2�/�2��

2��
�

−�

�

Ax�x0�eik�x0
2−2xx0�/�2��dx0

��
−�

�

Ay�y0�eik�y0
2−2yy0�/�2��dy0, �9�

where the harmonic time dependence has been suppressed
and the surface pressure �cu0 is taken without loss of gener-
ality to be unity. Thus, the Fresnel approximation can allow
the pressure field to be represented by two multiplicative
integral terms, one depending on each of the azimuthal co-
ordinates x and y.

Many surface velocity distributions of practical interest
can be represented by simple exponential functions that are
conveniently expressed in the form

Ax�x0� = e	2x0
2+	1x0, �x� 
 a ,

Ay�y0� = e�2y0
2+�1y0, �y� 
 b , �10�

where 	1, 	2, �1, and �2 may have both real parts, represent-
ing amplitude weightings such as apodization, and imaginary
parts, representing phase weightings such as used for focus-
ing. Source velocity distributions that can be represented in
this form include focused and unfocused uniform, exponen-
tially apodized, Gaussian, and sinusoidally varying apertures,
all of which are specifically considered in the following sec-
tion.

For surface velocity profiles of the form described by
Eq. �10�, the pressure field defined by Eq. �9� can be then
written as

p�r� = −
ikeik�r2+�2�/�2��

2��
�

−a

a

ei�k̃xx0
2−2kx̃x0�/�2��dx0

��
−b

b

ei�k̃yy0
2−2kỹy0�/�2��dy0, �11�

where

˜ ˜
kx 	 k − 2i	2�, ky 	 k − 2i�2� ,
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˜

x̃ 	 x + i
	1�

k
, ỹ 	 y + i

�1�

k
. �12�

Comparison with Eq. �9� indicates that Eq. �11� represents
the pressure fields for a wide variety of rectangularly sym-
metric sources in terms of the field of an unfocused, un-
apodized rectangular source, with the introduction of scaled

and shifted wave numbers k̃x, k̃y and distances x̃, ỹ. In gen-
eral, these scaled and shifted parameters are complex and
position-dependent.

For any source velocity distribution represented by Eq.
�10�, the resulting pressure field under any of the approxima-
tions �4�–�7� is given by Eq. �11�. Solutions to the integrals
appearing in Eq. �11� are obtained by completing the square
in each exponent and applying definitions of the complex
error function or the complex Fresnel integral. This results in
closed-form expressions for the pressure field under the
Fresnel approximation:

p�r� =
k��r,��

4�k̃x
�k̃y


erf� kx̃ + k̃xa

�2i�k̃x�
� − erf� kx̃ − k̃xa

�2i�k̃x�
�


�
erf� kỹ + k̃yb

�2i�k̃y�
� − erf� kỹ − k̃yb

�2i�k̃y�
�


= −
ik��r,��

2�k̃x
�k̃y


F� kx̃ + k̃xa

���k̃x�
� − F� kx̃ − k̃xa

���k̃x�
�


�
F� kỹ + k̃yb

���k̃y�
� − F� kỹ − k̃yb

���k̃y�
�
 , �13�

where the multiplicative term ��r ,�� is defined as

��r,�� = ei�k�r2+�2�−k2�x̃2/k̃x+ỹ2/k̃y��/�2��. �14�

In Eq. �13�, erf denotes the error function32 and F de-
notes the complex Fresnel integral

F��� = C��� + iS��� 	 �
0

�

ei�u2/2du . �15�

32

TABLE I. Summary of the four instances of the Fres
coordinates �, regions of greatest applicability, and f

Approximation M

�=z
�diffracted plane wave�

�=r
�diffracted spherical wave�

�=wy =�y2+z2

�diffracted yz-plane cylindrical wave�

�=wx=�x2+z2

�diffracted xz-plane cylindrical wave�
These two functions are related by the identity
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F��� =� i

2
erf
��

2i
�
 . �16�

Both of these functions have been analyzed in depth32 and
can be computed efficiently using series expansions, rational
approximations, or other available numerical methods, simi-
lar to other tabulated special functions.33,34

Specific expressions for the factor ��r ,�� are given in
Table I for the cases �=z, �=r, �=wx, and �=wy correspond-
ing to the four Fresnel approximations described earlier.
Table I also lists the regions where each approximation is
most likely to be valid, based on simple geometric consider-
ations borne out by the numerical results presented in Sec.
III. Notable is that, although ��r ,�� takes the form of a
complex exponential function, this factor does not have unity
magnitude except in special cases �e.g., an unapodized rect-
angular aperture in a lossless medium�.

The general expressions given by Eq. �13� for the pres-
sure field have functional form equivalent to previous results
for the field of uniform rectangular sources under the Fresnel
approximation,24,25 but with scaled and shifted variables ac-
cording to Eq. �12�. Thus, the same computational and ana-
lytic formulas can be applied, with modification only to the
independent variables, to any unfocused or focused radiator
described by Eq. �10�. Solutions for specific apertures are
detailed in the following section.

B. Pressure fields for specific apertures

Pressure fields for a number of practically important am-
plitude distributions can be obtained directly from the gen-

eral result of Eq. �13�, using scaled wave numbers k̃x, k̃y and
scaled coordinates x̃, ỹ defined by Eq. �12�. Table II lists

values of the scaled wave number k̃x and the scaled distance
x for several apertures of the form given by Eq. �10�, includ-
ing unfocused and focused rectangular, sinusoidal, and
Gaussian distributions, as well as the general quadratic ex-
ponential function that encompasses all these cases.

The scaled wave number and distance parameters listed
in Table II are in general complex. In the case of a Gaussian

aperture, the scaled wave number k̃x has a positive imaginary

proximation considered here, including the defining
of the multiplicative term ��r ,��.

seful region ��r ,��

�x�
a,
�y�
b

eikzeik�x2+y2−k�x̃2/k̃x+ȳ2/k̃y��/�2z�

�a2+b2 eikre−ik2�x̃2/k̃x+ỹ2/k̄y�/�2r�

�x�
a eikwyeik�x2−k�x̃2/k̃x+ỹ2/k̃y��/�2wy�

�y�
b eikwxeik�y2−k�x̃2/k̃x+ỹ2/k̃y��/�2wx�
nel ap
orms

ost u

r�
part, similar to the positive imaginary part of the physical
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wave number k in an attenuating medium. This is consistent
with the spatial smoothing of the diffraction pattern caused
by amplitude apodization, which is qualitatively similar to
the smoothing observed for uniform apertures in an attenu-
ating medium.35 Similarly, an exponential amplitude term of
the form Ax�x0�=e�1x0 results in a positive imaginary part for
the scaled azimuthal coordinate x̃, suggesting a corollary
with inhomogeneous plane waves, in which the pressure am-
plitude varies exponentially with the azimuthal position.36

However, the general solution of Eq. �13� also depends on
the unscaled wave number k and unscaled azimuthal coordi-
nates x and y, so that precise physical interpretation of the

scaled wave numbers k̃x, k̃y and coordinates x̃, ỹ is not
straightforward.

Focusing at a distance Fx is represented in Table II by
phase factors of the form

Ax�x0� = e−ikFx�1−�1−x0
2/Fx

2� � e−ikx0
2/�2Fx�,

Ay�y0� = e−ikFy�1−�1−y0
2/Fy

2� � e−iky0
2/�2Fy�, �17�

where Fx and Fy are focal lengths for the elevation and azi-
muth directions, respectively. Thus, the phasing associated
with geometric focusing at radii Fx or Fy is approximated
quadratically, consistent with the quadratic truncation of the
binomial series that results in the Fresnel approximations

TABLE II. Complex apodization functions Ax�x0�, scaled wave numbers k̃x;
and scaled azimuthal distances x̃ for four unfocused and focused apertures.

Aperture type Ax�x0� k̃x x̃

Quadratic exponential e�2x0
2
+�1x0 k−2i�2�

x+ i
�1�

k

Rectangular 1 k x

Sinusoidal ei�x0 k
x−

��

k

Gaussian e−x0
2
/�2�x

2�
k+ i

�

�x
2

x

Focused quadratic
exponential

e�2x0
2
+�1x0e−ikx0

2
/�2Fx�

k�1−
�

Fx
�−2i�2� x+ i

�1�

k

Focused rectangular e−ikx0
2
/�2Fx�

k�1−
�

Fx
� x

Focused sinusoidal ei�x0e−ikx0
2
/�2Fx�

k�1−
�

Fx
� x−

��

k

Focused Gaussian e−x0
2
/�2�x

2�e−ikx0
2
/�2Fx�

k�1−
�

Fx
�+

i�

�x
2

x

�4�–�7�.
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To obtain the time-harmonic pressure field for any fo-
cused or unfocused aperture of a form listed in Table II, the

coordinates �, k̃x, k̃y, x̃, and ỹ are specified based on Tables I
and II, and the pressure field is then given in terms of the
complex error function or the complex Fresnel integral by
Eq. �13�. For the special case of unfocused rectangular aper-
tures, pressure fields obtained by this method are analogous
to results previously reported in the literature,24,25 but are
more general because they are applicable to any of the
Fresnel approximations �4�–�7�. In Sec. III, it is shown that
an appropriate choice of � can substantially improve the ac-
curacy of pressure computations in the nearfield.

The definitions given in Table II for the sinusoidal aper-
ture can be employed with Eq. �13� to compute pressure
fields for a number of apodizations of interest. For example,
fields due to truncated-cosine, Hanning, or Hamming-
apodized sources can be obtained by appropriately superpos-
ing the fields from sinusoidal apertures with spatial frequen-
cies �, −�, and 0. As a specific example, the radiated field
can be computed for a velocity distribution

A�x0,y0� = Ax�x0�Ay�y0�

with

Ax�x0� = cos
 �

2a
x0
, �x� 
 a ,

Ay�y0� = cos
 �

2b
y0
, �y� 
 b , �18�

which corresponds to the lowest-order vibration mode of a
rectangular membrane and is similar to the “simply-
supported piston” distribution used by Greenspan.37 Using
the complex representation of the cosine, the radiated pres-
sure for this velocity distribution under the Fresnel approxi-
mation is found to be

p�r� =
1

4
�ps
r,

�

2a
,

�

2b

 + ps
r,

�

2a
,−

�

2b



+ ps
r,−
�

2a
,

�

2b

 + ps
r,−

�

2a
,−

�

2b

� , �19�

where ps�r ,�x ,�y� is the pressure field defined by Eq. �13�
and Table II for a sinusoidal velocity distribution with spatial
frequencies �x and �y.

Similarly, fields of more complex, general asymmetric
apertures can be obtained by representing their surface ve-
locity distribution as a spatial-frequency Fourier series and
superposing the fields computed for each Fourier component.
In the resulting summation, the superposed field for each
spatial-frequency component would be weighted by the com-
plex Fourier coefficient of the surface velocity distribution
for that spatial frequency.

For the source velocity distributions listed in Table II,
the pressure field defined by Eq. �11� simplifies further in
several limiting cases. One such case occurs when the qua-
dratic terms in the exponential arguments of Eq. �11� can be

neglected. This requires either that �� k̃xx0
2 and �� k̃yy0

2 �the
˜ ˜
far field or Fraunhofer approximation�, or kx=ky =0, as for
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certain focused apertures when the coordinate � is equal to
the focal distance. For the Fresnel approximation obtained by
setting �=z, the latter case results in a pressure distribution in
the focal plane that is equivalent to a scaled far-field pattern
of the same source distribution.11,23 For either of these con-
ditions, the pressure field resulting from Eq. �9� becomes

p�r� → −
2ikab

�

eik�r2+�2�/�2��

�
sinc
 kax̃

�

sinc
 kbỹ

�

 , �20�

where sinc���	sin��� /�. Thus, the far-field pressure �or
similarly, the focal-plane pressure� obtained for any rectan-
gularly symmetric aperture of the form given by Eq. �10� can
be written in terms of the far-field pattern of a uniform, un-
focused rectangular aperture, given appropriate scaling and
shifting of wave number and azimuthal coordinates accord-
ing to Eq. �12�.

In a second limiting case, the pressure field due to an
unfocused or focused Gaussian amplitude distribution takes
the form of a Gaussian beam in the limit of an infinite aper-
ture, so that a→� and b→�. In this limit, the pressure field
becomes the Gaussian beam

p�r� →
k

�k̃x
�k̃y

��r,��

= −
i�

k�̃x�̃y

eik�r2+�2�/�2��e−x2/�2�̃x
2�e−y2/�2�̃y

2�, �21�

where

�̃x 	
��1 − ik�x

2�1/� − 1/Fx�
k�x

,

�22�

�̃y 	
��1 − ik�y

2�1/� − 1/Fy�
k�y

,

and the scaled parameters k̃x, k̃y, x̃, and ỹ are those defined in
Table II for the truncated Gaussian aperture. This is consis-
tent with previous results showing that beams from Gaussian
sources remain Gaussian in shape at all ranges.25,38

C. Error function aperture

One potential apodization design uses an essentially
rectangular amplitude distribution, with tapered edges to re-
duce sidelobes.11 A simple mathematical representation for
such apertures is a Gaussian function convolved with a rect-
angle, resulting in an error function amplitude distribution.
This representation has been successfully employed in mod-
eling the nonuniform amplitude distribution of conventional,
nominally nonapodized transducers, and can provide better
agreement with experiment than uniform amplitude
distributions.39 The resulting apodization has an effect simi-
lar to the piecewise-continuous “step function with ‘smooth’
edge” introduced by Tjøtta and Tjøtta.40 For the general case
including focusing, the error-function velocity distribution

can be written for the approximations considered here as
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Ax�x0� =
e−ikx0

2/�2Fx�

�2��x
�

−a

a

e−�x1 − x0�2/�2�x
2�dx1

=
e−ikx0

2/�2Fx�

2 
erf� x0 + a
�2�x

� − erf� x0 − a
�2�x

�
 �23�

for the x direction, and similarly for the y direction in terms
of Fy and �y, where �x and �y are nonzero real parameters
that determine the sharpness of the aperture taper.

The pressure field defined by Eq. �9� can thus be written
for the error function aperture as a product of double inte-
grals,

p�r� = −
ikeik�r2+�2�/�2��

4�2�x�y�
�

−�

� �
−a

a

e−�x1 − x0�2/�2�x
2�

�e−ikx0
2/�2Fx�eik�x0

2−2xx0�/�2��dx1dx0

� �
−�

� �
−b

b

e−�y1 − y0�2/�2�y
2�

�e−iky0
2/�2Fy�eik�y0

2−2yy0�/�2��dy1dy0. �24�

After some algebraic manipulation and exchanging the
order of integration, this can be rewritten as

p�r� = −
ikeik�r2+�2�/�2��e−k2��x

2x̃x+�y
2ỹy�/�2�2�

4�2�x�y�

� �
−a

a ��
−�

�

e−�x0 − �x�2/�2�x
2x̃/x�dx0�ei�k̃xx1

2−2kx̃x1�/�2��dx1

� �
−b

b ��
−�

�

e−�y0 − �y�2/�2�y
2ỹ/y�dy0�ei�k̃yy1

2−2kỹy1�/�2��dy1,

�25�

where

k̃x 	
k�1 − �/Fx�

1 + ik�x
2�1/Fx − 1/��

,

x̃ 	
x

1 + ik�x
2�1/Fx − 1/��

,

�x 	
x + ix1�/�k�x

2�
1 − �/Fx + i�/�k�x

2�
, �26�

and k̃y, ỹ, and �̃y are similarly defined in terms of y, y1, Fy,
and �y.

The integral over x0 from Eq. �25� has the value
�2��x /�x / x̃, while the integral over y0 similarly has the
value �2��y /�y / ỹ. Equation �25� thus takes a form that is
similar, except for multiplicative terms outside the integrals,
to the integral pressure field expression of Eq. �9�. Thus, the
field pressure for the focused error-function aperture is

given, in analogy to Eq. �13�, by
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p�r� =
k�e�r,��

4�k̃x
�k̃y


erf� kx̃ + k̃xa

�2i�k̃x�
� − erf� kx̃ − k̃xa

�2i�k̃x�
�


�
erf� kỹ + k̃yb

�2i�k̃y�
� − erf� kỹ − k̃yb

�2i�k̃y�
�


= −
ik�e�r,��

2�k̃x
�k̃y


F� kx̃ + k̃xa

���k̃x�
� − F� kx̃ − k̃xa

���k̃x�
�


�
F� kỹ + k̃yb

���k̃y�
� − F� kỹ − k̃yb

���k̃y�
�
 , �27�

where the multiplicative term �e�r ,�� is defined as

�e�r,�� =
ei�k�r2+�2�−k2�x̃2/k̃x+ỹ2/k̃y�+ik2��x

2x̃x+�y
2ỹy�/��/�2��

�x/x̃�y/ỹ
�28�

and k̃x, k̃y, x̃, and ỹ are defined by Eq. �26�. For an error
function aperture that is unfocused in one or both dimen-
sions, the field pressure under the Fresnel approximation is
given by Eqs. �27� and �28� with either or both of the focal
lengths set to infinity, so that Fx→� or Fy→� in the defi-
nitions from Eq. �26�.

Thus, the pressure field of a focused or unfocused error-
function aperture is functionally similar to that for other rect-
angularly symmetric sources, except for different scaled
wave number and azimuthal distance parameters and a
position-dependent multiplicative term. In the limit �x→0,
�y→0, Eq. �27� reduces to the pressure field of a similarly
focused or unfocused, uniform rectangular source.

III. NUMERICAL RESULTS

Since the general field expressions described earlier are
exact, closed-form solutions of the Rayleigh integral under
the Fresnel approximation, their accuracy depends mainly on
the validity of the Fresnel approximations employed. To
characterize the accuracy of the Fresnel approximations de-
rived here, the field expressions derived earlier were com-
pared with the impulse response method for three unfocused,
uniform rectangular sources with dimensions relevant to ul-
trasonic applications. Accuracy of these field expressions, as
a function of the source geometry and field position, should
be comparable in the case of more complicated, apodized
and focused apertures, for which the impulse response
method is not applicable in general.

The computations reported here employed a wave num-
ber k=20 rad/mm, corresponding to a wavelength of
0.31 mm and a frequency of 5 MHz for radiation into water.
The three sources examined included a small element with
half-widths a=0.5 mm and b=0.25 mm �surface area
3.2��1.6��, a linear array element with a=5.0 mm and
b=0.15 mm �area 32��1��, and a rectangular source with
a=5.0 mm and b=2.5 mm �area 32��16��. In each case,
fields for unfocused rectangular apertures were computed us-

ing Eq. �13� with x̃=x, ỹ=y, and k̃x= k̃y =k for each for the

four Fresnel approximations �4�–�7�.
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For comparison, fields were computed at the same points
using direct numerical evaluation of the impulse-response
integral for time-harmonic excitation. The form used was the
pressure impulse response derived by McGough, in which
numerical conditioning is improved by subtraction of singu-
larities that appear in the usual impulse-response integral,
resulting in greater accuracy at lower computational cost.18

The resulting field can be written for any point in space as

p�r� = I��x + a�, �y + b�� + sgn��a� − �x��I��x − a�, �y + b��

+ sgn��b� − �y��I��x + a�, �y − b��

+ sgn��a� − �x��sgn��b� − �y��I��x − a�, �y − b�� , �29�

where sign is the signum function and I is an integral term
computed numerically, defined as

I�s,l� = −
1

2�

s�

0

l eik�z2+�2+s2
− eikx

�2 + s2 d�

+ l�
0

s eik�z2+�2+l2 − eikx

�2 + l2 d�
 . �30�

Both the Fresnel approximation of Eq. �13� and the nu-
merical solution of Eqs. �29� and �30� were implemented
directly on a commercial software package �MATHEMATICA

5.2, Wolfram Research�, using complex error function and
numerical integration routines provided in that package. The
computation time required, for MATHEMATICA 5.2 under
Linux on an AMD Athlon 64 3000+ processor running at
1.8 GHz, averaged 1.7�10−3 s per point for the Fresnel ap-
proximations and 1.2�10−2 s per point for direct numerical
evaluation of the impulse response integral. Since these com-
putation times were obtained using direct implementation of
the respective formulas in a high-level, interpreted software
language designed for high numerical precision, either
method can achieve significantly greater performance when
optimized for speed. With the Fresnel approximations de-
rived here, comparable computational efficiency will also be
obtained for any aperture with apodization and focusing
characteristics described by Eq. �10�, including cases for
which the impulse response method may not be tractable.

Validity of the Fresnel approximations considered here
can be qualitatively depicted, as a function of spatial position
and transducer geometry, by representative computed fields.
Figure 2 shows fields computed with the impulse-response
integral and the four Fresnel approximations over a plane
spanning 30�30 mm2 at a range of 10 mm, displayed with a
40 dB dynamic range. These field plots illustrate the nature
of each Fresnel approximation, with patterns corresponding
to diffracted spherically spreading waves ��=r�, diffracted
plane waves ��=z�, or diffracted cylindrically spreading
waves ��=wx and �=wy�.

In Fig. 2�a�, illustrating the field of a small element, the
Fresnel approximation based on diffracted spherical waves
��=r� captures the detailed field features accurately, while
the other Fresnel approximations poorly represent the field in
this case. In Fig. 2�b�, showing the field of a linear array
element, the field is accurately depicted by the Fresnel ap-

proximations associated with diffracted spherically spreading
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waves ��=r� and with diffracted cylindrically spreading
waves around the element’s long axis ��=wx�, while the
other Fresnel approximations are inaccurate for this source
geometry. It may be noted that at this range, the �=r approxi-
mation more closely resembles the low-level detail of the
linear-array element field, even though the �=wx approxima-
tion achieves better overall quantitative accuracy, as shown
in Fig. 3. Figure 2�c�, which shows fields computed for a

FIG. 2. Aperture velocity distributions and computed pressure fields at a
range of 10 mm for three apertures with wave number k=20 rad/mm. Com-
puted pressure magnitudes are shown on a logarithmic grayscale with 40 dB
dynamic range. Each plot shows a region of size 30�30 mm2. Top left:
Aperture velocity distribution. Bottom left: Reference field from numerical
solution of the impulse-response integral. Computed fields from the four
Fresnel approximations considered are arranged with �=r �diffracted spheri-
cal wave� at top middle, �=z �diffracted plane wave� at top right, �=wx

�diffracted yz-plane cylindrical wave� at bottom middle, and �=wy �dif-
fracted xz-plane cylindrical wave� at bottom right. �a� a=0.5 mm,
b=0.25 mm. �b� a=5.0 mm, b=0.15 mm. �c� a=5.0 mm, b=2.5 mm.
large rectangular element, shows that all four Fresnel ap-
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proximations properly depict the collimated main beam. The
low-level field details in this case are captured partially by
each of the four Fresnel approximations. In all cases, the
regions of greatest computational accuracy are consistent
with those listed in Table I for each Fresnel approximation.

The quantitative accuracy achieved by each of the four
Fresnel approximations is illustrated in Fig. 3 for the three
source configurations shown in Fig. 2. In each case, fields
were computed using the four Fresnel approximations over a
three-dimensional region spanning from 0.2 to 50 mm in
range �z� and 0–10 mm in the elevation and azimuthal di-

FIG. 3. Computed rms error for four Fresnel approximations and three
aperture configurations, plotted as a function of range z for a wave number
k=20 rad/mm. In each panel, logarithmic plots are shown for both the rms
complex pressure error, ��p− pref�� / ��pref��, and the rms pressure magnitude
error, ��p�− �pref����pref��, as defined in Eqs. �31� and �32�. �a� a=0.5 mm,
b=0.25 mm. �b� a=5.0 mm, b=0.15 mm. �c� a=5.0 mm, b=2.5 mm.
T. Douglas Mast: Fresnel approximations for rectangular sources



rections �x and y�, with a spatial step size of 0.2 mm in each
direction. The rms error for the complex pressure field in
each z plane was defined as

��p − pref��
��pref��

=��
x

�
y

�p�r� − pref�r��2

�
x

�
y

�pref�r��2
, �31�

where p�r� is the complex pressure wave field computed
using a Fresnel approximation and pref�r� is the complex
pressure wave field computed using direct numerical solution
of the impulse-response integral. Similarly, the rms error for
the pressure magnitude was defined as

��p� − �pref��
��pref��

=��
x

�
y

��p�r�� − �pref�r���2

�
x

�
y

�pref�r��2
. �32�

The error results shown in Fig. 3 illustrate how the ap-
plicability of each approximation varies depending on the
source configuration as well as the range of interest. For the
small source �a�, the Fresnel approximation based on spheri-
cal spreading ��=r� is the most accurate at all ranges. For the
linear array element �b� and the larger rectangular source �c�,
the �=r approximation provides the most accurate results at
larger ranges, but near the source more accurate results are
obtained by the Fresnel approximation corresponding to the
source geometry. For the linear array element �b�, the dif-
fracted cylindrical-wave approximation ��=wx� is the most
accurate near the source, while for the rectangular source �c�
the diffracted plane-wave approximation ��=z� is the most
accurate near the source.

In all cases, choice of the most appropriate approxima-
tion yields pressure fields with complex pressure errors on
the order of 10% or less and magnitude errors of several
percent, except for points very near the transducer surface.
This performance is consistent with previous results demon-
strating amplitude and phase errors of 1% to 2% for the
Fresnel approximation applied to collimated beam propaga-
tion within the near field.41 This level of accuracy is suffi-
cient for many practical ultrasound applications. Comparable
accuracy can be expected for other, more general source dis-
tributions of the form given by Eq. �10�.

The Fresnel approximation methods described here pro-
vide simple analytic expressions for pressure fields from
many aperture configurations, including various amplitude
distributions and independent azimuthal and elevation focus-
ing. These features are illustrated in Figs. 4–6, which illus-
trate the fields of 10�10 mm2 rectangular apertures with
uniform and error-function apodizations, focused at a dis-
tance of 20 mm in an attenuating medium. The wave number
employed was k=20+0.0288i rad/mm, corresponding to a
5 MHz frequency for radiation into a water-like medium
with a tissue-mimicking attenuation of 2.5 dB/cm. Figure 4
shows the on-axis pressure magnitude for the uniform, fo-
cused rectangular aperture case ��=0�, computed both by the

Fresnel approximation ��=r� and by direct numerical evalu-
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ation of the Rayleigh integral �Eq. �1��, both with the qua-
dratic focusing phase specified by Eq. �17�. In the software
package employed �MATHEMATICA 5.2, with the above-
described computer configuration�, the required computation
time for this plot was 0.63 s for the Fresnel approximation
and 3.7�103 s for direct evaluation of the Rayleigh integral.
The Fresnel approximation predicts the peak position in this
case with less than 3% error and the peak pressure magnitude
with less than 2% error. Positions of local, diffraction-
induced peaks and nulls are less accurate for small axial
distances where the Fresnel approximation is less valid.

To illustrate use of the solutions presented here for com-
putation of source apodization effects, the focused aper-
ture configuration used for Fig. 4 can be compared to
error-function apodized sources of the same dimensions.
The four error function apodizations employed, ranging
from no apodization ��=0 mm� to significant smoothing

FIG. 4. On-axis pressure magnitudes, computed using the Fresnel approxi-
mation and numerical evaluation of the Rayleigh integral, for a 10
�10 mm2 aperture with a focal length of 20 mm in both the x and y direc-
tions and a wave number of 20+0.0288i rad/mm.

FIG. 5. Error function apodizations used in the test computation for a fo-
cused aperture. The parameter �=0 mm corresponds to a rectangular aper-
ture while increasing � results in greater smoothing of the source amplitude

distribution.

ouglas Mast: Fresnel approximations for rectangular sources 3319



ally s
��=0.75 mm�, are plotted in Fig. 5. Isosurface renderings
and xz-plane cross sections of pressure magnitudes for the
four apodization conditions, computed using Eq. �27� with
�=z, are displayed in Fig. 6. As the parameter � increases,
the rectangular aperture is increasingly smoothed, causing
the sidelobes to fall markedly while the width of the main
lobe remains essentially constant.

IV. DISCUSSION

The approximations described here should be useful for
large-scale computations of radiated acoustic fields, as well
as for further analytic studies. Several aspects concerning the
practical application of these methods are discussed here.

A. Accuracy and efficiency of computations

As illustrated by Figs. 2 and 3, accuracy of computations
can be affected by the choice of Fresnel approximation em-
ployed. The numerical results reported here suggest that the
Fresnel approximation based on diffracted spherically
spreading waves ��=r� provides the most accurate results for
a variety of source configurations, if the distance of interest
is more than several source diameters from the center of the

FIG. 6. Three-dimensional pressure fields for the four error function apodiz
in both the x and y directions and a wave number of 20+0.0288i rad/mm. Ea
below the peak �left� as well as the xz-plane pressure magnitude, logarithmic
aperture. For distances less than several source diameters, the
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appropriate choice of approximation depends on the source
configuration. For sources that are much longer in one di-
mension, the most appropriate Fresnel approximation near
the source is based on diffracted cylindrical waves centered
on the long axis of the source, e.g., �=wx for the source
configuration shown in Fig. 2�b�. For sources that are large
compared to the wavelength in two dimensions, the most
appropriate Fresnel approximation near the source represents
the field as a diffracted plane wave ��=z�.

The absolute accuracy achievable using the Fresnel ap-
proximations is good, with relative errors on the order of
10% near the source, and errors of less than 1% at distances
large compared to the source dimensions. Thus, these ap-
proximations should be suitable for many ultrasound appli-
cations, including characterization of beam patterns for dif-
fraction correction in scattering and attenuation
measurements and simulation of ultrasound imaging meth-
ods. For simulation of ultrasound imaging methods,4–7 accu-
rate depiction of low-level detail in ultrasound beams may be
particularly important, in which case the Fresnel approxima-
tion describing diffracted spherical waves ��=r� may be
most appropriate throughout the region of interest. The meth-

of Fig. 5, applied to a 10�10 mm2 aperture with a focal length of 20 mm
nel shows a rendering of the pressure magnitude isosurface at a level 36 dB

caled and superimposed on a half-space −36 dB isosurface rendering �right�.
ations
ch pa
ods provide increased accuracy when only the pressure mag-
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nitude is of interest, as is the case for many applications such
as simulation of heating caused by therapeutic ultrasound
arrays.1–3

The numerical efficiency of the Fresnel approximations
shown here is excellent, although definitive optimization of
computation speed is beyond the scope of the present paper.
Since pressure fields for all the apertures considered have
been expressed in closed form in terms of the error function
and Fresnel integral, available methods for optimizing com-
putation of these special functions42,43 would further improve
the efficiency of the pressure computations. For example,
both the Fresnel integral and the complex error function can
be evaluated accurately using rational approximations,32,43

which can be used to compute these special functions using
only a few arithmetic operations at each point.

B. Extension to other configurations

The methods described here provide explicit analytic
formulas for the time-harmonic fields of rectangularly sym-
metric, unfocused or focused apertures with a variety of sur-
face velocity distributions. These formulas can be employed
to compute fields for more complex configurations including
radiation from arrays of rectangularly symmetric elements
and from pulsed sources.

Radiation from transducer arrays composed of rectangu-
larly symmetric elements can be simulated by computing the
field from each individual element in a coordinate system
originating from the element center, and superposing the
fields with the desired amplitude and phase weighting. This
process has been described elsewhere3,10 and has been shown
to result in good agreement between computed and measured
array fields.44

The Fresnel approximations described here are based on
the frequency-domain Rayleigh integral, so that they are di-
rectly applicable to continuous-wave sources. Many ultra-
sound applications, such as modeling of ultrasound
ablation,1–3 continuous-wave imaging systems,5 and analysis
of scattering measurements,8–10 require only computation of
continuous-wave radiated fields. Fields of narrow-band �e.g.,
tone burst� sources can also be closely approximated by
these single-frequency fields, using amplitude envelopes
specified by the source wave form and the acoustic travel
time to the field point.45 Thus, for a source wave form

u�t� = w�t�e−iwt,

the time-domain pressure field is given approximately by

p�r,t� = Re�p�r�w�t − �/c�e−i�t� , �33�

where p�r� is a single-frequency pressure field as given by
Eqs. �9�, �13�, or Eq. �27�, and � is the nominal propagation
distance for the Fresnel approximation employed �e.g., �=z
for a diffracted plane wave, �=r for a diffracted spherical
wave, and �=wy or �=wx for a diffracted cylindrical wave�.

For wideband sources such as ultrasonic array elements
excited by short pulses, time-domain pressure fields can be
obtained from the approximations derived here by computing
separate frequency components and performing an inverse

temporal Fourier transform of the field at each spatial point.
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This process is most efficient for relatively narrow-band sig-
nals, for which the field can be accurately characterized us-
ing a small number of temporal frequency components.

V. CONCLUSION

This work has provided analytic expressions for the
acoustic fields of a wide variety of baffled, rectangularly
symmetric sources, including focused and unfocused aper-
tures with various forms of amplitude apodization. All of
these analytic expressions can be expressed in a form similar
to the previously derived field of an unfocused rectangular
piston, and are valid for several different instances of the
Fresnel approximation. Given the choice of the Fresnel ap-
proximation most suited to the source geometry and field
region of interest, the analytically determined fields accu-
rately approximate the true radiated fields, allowing both
field computations and further analytic study of radiation
from rectangularly symmetric sources.
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