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Computation of acoustic radiation from a baffled circular piston continues be an active area of
investigation, both as a canonical problem and because of numerous practical applications. For
time-harmonic radiation, exact series expansions are an attractive approach because they do not
require numerical integration or limiting approximations. Here, series expansions due to Hasegawa,
Inoue, and Matsuzawa �J. Acoust. Soc. Am. 74, 1044–1047 �1983�; 75, 1048–1051 �1984�� are
shown to reduce to simpler expressions suitable for numerical computations of piston fields in
lossless and attenuative fluid media. For the region r�a, where a is the piston radius and r is the
distance from the piston center, an exact solution is given by an series of spherical Hankel functions
and Legendre polynomials with explicit, closed-form, position-independent coefficients. For the
paraxial region w�a, where w is the distance from the piston axis, a second exact series expansion
is valid for all axial distances z and reduces to the known analytic solution for w=0. These two
expansions allow the radiated field to be computed at any point, with rapid convergence except for
points near the circle bounding the piston. Example numerical results illustrate application of this
method to ultrasonic sources. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2108997�
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I. INTRODUCTION

Acoustic radiation from a circular piston is a canonical
acoustics problem investigated by Rayleigh and many subse-
quent researchers. In this problem, a circular piston with ra-
dius a, within an infinite rigid baffle, vibrates uniformly at a
radial frequency � with a normal velocity v0e−i�t into a ho-
mogeneous fluid medium with speed of sound c and density
�. The resulting radiated pressure is given by the Rayleigh
integral1

p�r,t� = −
ik

2�
p0� eikR

R
dSe−i�t, �1�

where p0=�cv0, R= �r−rs� is the distance from a field point r
to a point on the piston surface rs, k is the wave number � /c
�which is complex in the case of a sound-absorbing me-
dium�, and S covers all points on the piston surface, rs�a.

The Rayleigh integral is not directly solvable in a simple
form, except for certain special cases, including the on-axis
field and the asymptotic far field.2 Piston fields have often
been computed using numerical integration, including meth-
ods that transform the Rayleigh integral into single line
integrals3–6 and methods involving numerical integration of
the space- and time-dependent piston impulse response.7–9

Because of the problem’s practical importance in ultrasonics
and other areas of acoustics, the efficient computation of
such numerical integrals,10–12 as well as approximations to
the piston field,13–17 remain active areas of research.

a�
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An alternate approach to exact computation of piston
fields involves expansion of the field in series of orthogonal
functions. Series solutions have advantages including exact-
ness, easily analyzed convergence properties, and amenabil-
ity to analysis. Series of this form were derived by
Backhaus18 and Stenzel,19 who presented equivalent expan-
sions valid for the region r�a, where r is the distance from
the piston center. These expansions are slow to converge for
r�a, while an additional solution by Stenzel for the region
r�a is slow to converge over the entire region r�a.19,20

More recently, Wittmann and Yaghjian20 presented an alter-
nate derivation of the Backhaus-Stenzel series for r�a and a
different expansion for r�a, which incurs similar conver-
gence problems for r�a. Other available series expansions
include an expression in oblate spheroidal coordinates by
Spence21 that is slow to converge for large ka, an expansion
derived by Carter and Williams22,23 and improved by Elrod24

that is invalid for z�a and is slow to converge outside the
paraxial region, and a slowly-converging series derived by
New as a limiting case of a radially vibrating polar cap on a
rigid sphere.25

More general series expansions were derived by Hase-
gawa, Inoue, and Matsuzawa.26,27 These series contain coef-
ficients that depend on the spatial position and on the choice
of an origin for the coordinate system employed. For a given
field position, choice of an appropriate origin location pro-
vides a series with favorable local convergence properties.
However, simpler expressions that do not depend on spatial
position or choice of origin would be desirable for numerical

computation of piston radiator fields.
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Here, simplified series, which also result from special
cases of the Hasegawa, Inoue, and Matsuzawa expansions,
are derived. An expansion valid for r�a is equivalent to
previous series solutions,18–20 but is presented here with ex-
plicit, closed-form coefficients. A second expansion is valid
for w��z2+a2, where w is the distance from the piston axis,
and converges within a few terms for field points near
the axis. Computational examples show that these two
methods provide accurate solutions for the piston field,
with favorable convergence properties except near the
velocity discontinuity at the piston boundary, where z�0
and w�a.

II. THEORY

A. General expansions

For simplicity, the following derivations will set p0	1
in Eq. �1� and suppress the e−i�t time dependence. An exact
series solution of the Rayleigh integral by Hasegawa et al. is
then given for the notation of Eq. �1� as27

p�r,�� = 

n=0

�

�− 1�n�2n + 1�fn�kr0,kra�Pn�cos ��jn�kr� ,

�2�

fn�kr0,kra� = �
kr0

kra

Pn� kr0

�
�hn

�1�����d� .

Here, r0 is distance from the piston center to the origin of the
spherical coordinate system �r ,� ,	�, which is placed arbi-
trarily along the piston’s axis of symmetry �r0
0�,
ra=�r0

2+a2, jn and hn
�1� are the spherical Bessel function and

Hankel function of the first kind, and Pn is the Legendre
polynomial. The integral fn�kr0 ,kra� can be evaluated for
successive indices n using a recurrence relation given in Ref.
26. According to Hasegawa et al., the solution of Eq. �2� is
appropriate for r�ra, while for r�ra an appropriate series
solution is27

p�r,�� = 

n=0

�

�− 1�n�2n + 1�Re�fn�kr0,kra��Pn�cos ��hn
�1��kr� .

�3�

Although exact and fairly general, computations em-
ploying Eqs. �2� and �3� are complicated by the requirement
to choose an origin position r0. The solution of Eq. �2�
is slow to converge for large values of kr, and the
convergence properties of Eq. �3� also depend on kr, so
that the useful region for each of these expansions depends
on the choice of the origin r0. Two special cases of
the above solutions can reduce these difficulties;
a simplified derivation encompassing these special cases
follows.

B. Simplified expansions

Below, simplified series expansions for the Rayleigh in-

tegral are derived directly from a series expansion of the
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integrand, As a starting point, the distance R from a field
point r to a point on the piston surface rs in Eq. �1� can be
written in cylindrical coordinates as

R = �z2 + w2 + ws
2 − 2wws cos 	s, �4�

where z and w are the axial and azimuthal coordinates of the
field point, while ws and 	s are the azimuthal coordinate and
angle of a point on the piston surface. This coordinate
system, in which the origin is placed at the piston
center, is sketched in Fig. 1. Without loss of generality, the
azimuthal angle 	 of the field point is taken here to be
zero.

The distance defined by Eq. �4� can be rewritten as

R = �r1
2 + r2

2 − 2r1r2 cos 	s sin � , �5�

where the distances r1 and r2 must satisfy the relation
r1

2+r2
2=z2+w2+ws

2 and sin �= �wws� / �r1r2� may not exceed
unity.

Several different series expansions of the Rayleigh inte-
gral can then be obtained using the identity28

eik�r1
2+r2

2−2r1r2 cos 	s sin �

�r1
2 + r2

2 − 2r1r2 cos 	s sin �

= ik

n=0

�

�2n + 1�Pn�cos 	s sin ��jn�kr1�hn
�1��kr2� , �6�

which converges for r1�r2. Here, Pn is the Legendre poly-
nomial, jn is the spherical Bessel function, and hn is
the spherical Hankel function. Variants of this identity
were employed in Refs. 19, 26, and 27. Inserting Eq. �6�
into the Rayleigh integral �1�, one obtains the series expan-

FIG. 1. Sketch of the problem geometry and notation. A piston of radius a,
centered at the origin, radiates from within an infinite baffle into a
semi-infinite space. The vector r= �w ,z ,	� is the position of a field
point in cylindrical coordinates, where w is the azimuthal distance from
the piston axis, z is the distance along the piston axis, and 	 is the
azimuthal angle. The vector rs= �ws ,	s� denotes a position on the piston
surface. The angle between the z axis and the position vector r is denoted
by �.
sion
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p�r� =
k2

2�


n=0

�

�2n + 1��
0

a 
�
0

2�

Pn�cos 	s sin ��d	s�
�jn�kr1�hn

�1��kr2�wsdws

= k2

n=0

�

�2n + 1�Pn�0��
0

a

Pn�cos ��jn�kr1�hn
�1��kr2�wsdws

=
k2

��


n=0

�

�− 1�n�4n + 1�

�n + 1

2�

�n + 1�

��
0

a

P2n�cos ��j2n�kr1�h2n
�1��kr2�wsdws. �7�

Here, the integral over 	s has been evaluated using
the addition theorem for Legendre polynomials as
in Refs. 19 and 26. The Legendre polynomial Pn�0� has
value zero for odd n, so that the series expansion
of Eq. �7� contains only Legendre polynomials
and spherical Bessel and Hankel functions of even
order.

Given a choice of appropriate distances r1 and r2, con-
struction of a series expansion solving the Rayleigh integral
�1� in the region r1�r2 requires only evaluation of the inte-
gral term in the last of Eqs. �7�. One useful case is obtained
by setting r1=ws, r2=�z2+w2=r, which results in a valid
series expansion if r�a. In this case, sin �=w /r=sin � and
Eq. �7� becomes

p�r� =
k2

��


n=0

�

�− 1�n�4n + 1�

�n + 1

2�

�n + 1� 
�0

a

j2n�kws�wsdws�
�P2n�cos ��h2n

�1��kr�

= 

n=0

�

�− 1�n� ka

2
��2n+2� �4n + 1�
�n + 1

2�

�n + 2�
�2n + 3

2�

�1F2
n + 1;n + 2,2n +
3

2
;− � ka

2
�2�

�P2n�cos ��h2n
�1��kr� . �8�

Here, evaluation of the integral term29 has yielded explicit
coefficients in terms of the generalized hypergeometric func-
tion 1F2. Taken as a function of �	ka /2, this function is
well-behaved for all orders n, with value unity for �→0,
positive for all ��0, and zero for �→�. For large order n,
this hypergeometric function approaches a Gaussian distribu-
tion

lim
n→�

1F2�n + 1;n + 2,2n + 3
2 ;− �2� = e−�2/2n, �9�

which can be verified by expanding the hypergeometric and
exponential functions from Eq. �9� in powers of � and evalu-
ating the limit n→� term by term. The general function

1F2�a1 ;b1 ,b2 ;−�2� has been analyzed previously30 and can
be computed numerically with available algorithms.31,32

Equivalently, the integral appearing in Eq. �8� can be
evaluated in terms of Bessel functions and Lommel

29
functions.
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The series expansion of Eq. �8� is equivalent to series
derived in Refs. 18–20 for the region r�a, although none of
these references presented explicit series coefficients. This
expansion, which is valid for r�a and converges smoothly
except for the region r�a, can also be obtained by setting
r0=0 in Eq. �3�. Numerical computations suggest that out-
side the region r�a, the number of terms required for con-
vergence is of the order N�ka. Below, the solution of Eq.
�8� will be referred to as an “outer” expansion, since it is
valid for the region exterior to the hemisphere r=a.

A second useful series expansion is obtained from the
choices r1=w, r2=�z2+ws

2. In this case, cos �=z /�z2+ws
2

and Eq. �7� reduces to

p�r� =
1

��


n=0

�

�− 1�n�4n + 1�

�n + 1

2�

�n + 1�

�
�
kz

kra

P2n� z

�
�h2n

�1�����d�� j2n�kw�

=
1

��


n=0

�

�− 1�n�4n + 1�

�n + 1

2�

�n + 1�

f2n�kz,kra�j2n�kw� ,

�10�

where f2n is the integral function from Eq. �2�, which can be
evaluated using the recurrence relation26

f0 = eikz − eikra,

�11�

f2n = − f2n−2 − kra
P2n� z

ra
� − P2n−2� z

ra
��h2n−1

�1� �kra� ,

where ra=�z2+a2. This solution corresponds to the special
case r0=z in Eq. �2�. The series converges for the region
w��z2+a2, with fastest convergence near the piston axis
w=0 and slowest convergence for w��z2+a2. Numerical
experience suggests that, within the region of validity for this
expansion, N�kw terms are required for convergence at an
azimuthal distance w. Because the solution of Eq. �10� con-
verges fastest within the cylinder defined by w�a, this se-
ries will be referred to below as a paraxial expansion.

Notable is that the terms f2n in Eq. �10� depend spatially
only on the axial coordinate z. Thus, computations of the
piston field at multiple spatial points �e.g., on a rectangular
grid in the axial and azimuthal directions� can be performed
more efficiently by computing these terms only once for each
axial distance required.

Compared to the previous series expansions cited above,
the expansion of Eq. �10� particularly simplifies computation
of pressure fields near the piston axis. On the axis �w=0�,
only the leading term from Eq. �10� is nonzero and the solu-
tion reduces identically to the known exact solution2

p�0,z� = eikz − eikra = − 2ieik�z+ra�/2 sin� kra − kz

2
� , �12�

where, as above, ra=�z2+a2.
Similarly, for points close to the piston axis, the paraxial

expansion of Eq. �10� converges within a few terms, since
2n
each term of Eq. �10� is of order �kw� . Thus, for example,
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an expression valid to fourth order in the normalized azi-
muthal coordinate kw can be obtained from Taylor series for
the first three terms of the paraxial expansion �10�. The result
is

p�w,z� = eikz − eikra
1 −
a2�kra + i�

4kra
3 �kw�2 + ��k,a,ra��kw�4�

+ O��kw�6� , �13�

where the fourth-order term � is given by

��k,a,ra� =
a4

64k3ra
7�
12� ra

a
�2

− 15��kra + i�

− i
4� ra

a
�2

− 6��kra�2 + �kra�3� . �14�

The truncated series of Eq. �13� is accurate for points near
the piston axis, relative to the acoustic wavelength. For
kw�1, this expression is more accurate than the approxi-
mate paraxial expression derived by Schoch,2,4 and agrees to
second order in kw with an improved approximation derived
in Ref. 13. The fourth-order correction of Eq. �14� provides
greater accuracy for small kw than either of these previous
approximations.

The pressure field given by the paraxial expansion of
Eq. �10� can also be used to derive a simplified expression
for the output of an ideal coaxial receiver, which is given by
the average pressure over a circular surface Sb with radius b,
centered at w=0 and parallel to the piston at a distance z.
This is a configuration of interest in ultrasonic measurements
of attenuation33,34 as well as hydrophone measurements of
acoustic fields.35 Acoustic reciprocity allows the spatially av-
eraged pressure to be obtained in a similar manner for the
cases b�a and b
a. The results can compactly be written
as

p̄b�z� =
1

�b2 � p�r�dSb

=
�1

2

2b2 

n=0

�

�− 1�n� k�1

2
�2n

�
�4n + 1�
�n + 1

2�

�n + 2�
�2n + 3

2� f2n�kz,k�z2 + �2
2�

�1F2
n + 1;n + 2,2n +
3

2
;− � k�1

2
�2� , �15�

where �1=b, �2=a if b�a, and �1=a, �2=b if b
a. Due to
acoustic reciprocity, interchange of source and receiver
causes the spatially-averaged pressure to vary only by a mul-
tiplicative factor due to the change in relative source and
receiver area.34,35

C. Recurrence relations for numerical evaluation

Because gamma functions of large order can take on
exceedingly large values �e.g., 
�171��7.3�10306 is the
largest integer-order gamma function that can be computed
as a double-precision real variable�, it is helpful to define

recurrence relations for the coefficients in the expansions of
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Eqs. �8� and �10�. Using the recurrence and duplication for-
mulas for the gamma function,36 the outer expansion of Eq.
�8�, valid for r�a, is written as

p�r� = 

n=0

�

An1F2
n + 1;n + 2,2n +
3

2
;− � ka

2
�2�

�P2n�cos ��h2n
�1��kr� ,

A0 =
�ka�2

2
, �16�

An = −
2n − 1

32n3 − 26n + 6
�ka�2An−1, n 
 0,

while the paraxial expansion of Eq. �8�, valid for
w��z2+a2, is written as

p�r� = 

n=0

�

Bnf2n�kz,kra�j2n�kw� ,

B0 = 1, �17�

Bn = −
8n2 − 2n − 1

8n2 − 6n
Bn−1, n 
 0,

with f2n�kz ,kra� defined by the recurrence relation of Eq.
�11�.

Similarly, the expansion of Eq. �15� for the pressure av-
eraged over a coaxial circular surface of radius b can be
written

p̄b�z� = 

n=0

�

Cnf2n�kz,k�z2 + �2
2�

�1F2
n + 1;n + 2,2n +
3

2
;− � k�1

2
�2� ,

C0 = ��1

b
�2

, �18�

Cn = −
2n − 1

32n3 − 26n + 6
�k�1�2Cn−1, n 
 0,

where �1=b, �2=a if b�a, and �1=a, �2=b if b
a.

III. COMPUTATIONS

Example computations were performed by directly ap-
plying the outer series expansion of Eq. �16�, the paraxial
series expansion of Eq. �17�, and the expansion of Eq. �18�
for computations of averaged pressure over a circular aper-
ture. In each case, series were truncated after the conver-
gence criterion

�pn − pn−1�
�pn−1�

� � �19�

was met for two successive terms, where pn is the pressure
estimate obtained by truncation of an exact series expansion

after the nth term. Given this convergence criterion, a
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minimum of three terms is required to compute the piston
field at any point. The small parameter � was taken in
these computations to be 10−6. If a series computation
diverged or caused a floating-point overflow before meet-
ing the convergence criterion, as can occur near the
boundaries of convergence for each series type, the sum
was taken to be the value obtained by truncating the series
at the term of minimum error �.

Results from the exact series expansions derived above
can be compared with known analytic solutions for special
cases of the piston field. For the on-axis case w=0, the
paraxial series expansion given by Eq. �10� is mathemati-
cally equivalent to the analytic solution of Eq. �12�. In Fig. 2,
the exact on-axis field for ka=20+0.1i is plotted against the
expansions of Eqs. �8� and �10�, where the former solution is
only valid for z�a. Also shown is the logarithmically scaled
relative error log10��p− pexact� / �pexact��, where pexact is the ana-
lytic on-axis solution of Eq. �12�. The corresponding plot of
error relative to the analytic solution shows that the outer
expansion of Eqs. �8� has a numerical error comparable to
the truncation error expected for �=10−6, except for the re-
gion z�a. The paraxial expansion of Eq. �10� shows error
comparable to the precision limit for double-precision nu-
merical computations.

The solutions can also be compared to the asymptotic far
field for the piston radiator, given by

p�r,�� → − ika2J1�ka sin ��
ka sin �

eikr

r
, �20�

where J1 is the Bessel function of order 1. Figure 3 shows
plots of the far-field pattern p�r ,�� ·re−ikr for the asymptotic
�r→�� solution and the present series solutions, computed
for a piston with normalized radius ka=20, a normalized
axial distance of kz=20�107, and azimuthal distances of
w�2z, corresponding to ����1.11 radians or an angular
span of 127°. The second panel of the plot shows the
logarithmically scaled relative error log10��p− pfar� / �pfar��,
where pfar is the asymptotic far-field solution of Eq. �20�.

FIG. 2. Computed pressure amplitudes and base-10 logarithm of relative
error for paraxial and outer series expansions of the on-axis field of a baffled
piston in a lossy medium, computed for ka=20+0.1i.
Agreement is good, with error exceeding the series trun-
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cation precision only near nulls of the asymptotic far-field
pattern.

Convergence of the outer and paraxial series expansions
is illustrated in Fig. 4. Here, the number of terms required to
meet the convergence criteria described above are plotted as
a function of position for a piston with normalized radius
ka=50. The outer expansion from Eqs. �8� and �16� con-
verges uniformly outside the vicinity r�a, requiring 35 to
38 terms for most of the field. The paraxial expansion from
Eqs. �10� and �17� converges immediately on-axis, with the
number of required terms increasing approximately linearly
�N�kw� as the azimuthal distance w approaches �z2+a2.
For the case illustrated here, convergence occurs in less than
38 terms throughout the cylinder w�a, except for the vicin-
ity where z�0 and w�a. Although the number of terms
required for convergence depends on ka, the spatial regions
of convergence for each expansion are determined only by
the piston geometry, as seen from the conditions for validity
of Eq. �6�.

The two expansions derived above have overlapping re-
gions of validity that enable accurate computation of the ra-
diated pressure field for the entire half-plane z�0. An effec-
tive use of these series employs Eqs. �8� or �16� for the
region w�a and Eqs. �10� or �17� for the region w�a. The
number of terms required for convergence using this combi-
nation of series is illustrated in Fig. 4�c�. The region of va-
lidity for each solution results in rapid convergence every-
where �number of terms �ka� except for points near the
piston boundary, where z�0 and w�a.

An example simulation shows the application of these
methods to computation of fields induced by high-frequency
sources in lossless and absorbing media. This computation
employed the outer expansion of Eq. �16� for the region
w�a and the paraxial expansion of Eq. �17� for the region
w�a. The parameters employed correspond to a transducer
of frequency 4 MHz and diameter 6.1 cm radiating into a
tissue-like fluid medium with sound speed 1.54 mm/�s. Fig-
ure 5 shows pressure amplitudes for the lossless case, with a

FIG. 3. Computed far-field pattern and base-10 logarithm of error relative to
the asymptotic far-field solution for the outer series expansion, computed for
ka=20, kz=20�107.
normalized wave number ka=500, and for a case with ab-
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sorption of 2 dB per piston radius, or 0.16 dB/ �cm MHz�,
corresponding to a normalized complex wave number
ka=500+0.2303i.

The accuracy and computational efficiency of the exact
series expansion approach can be compared with numerical
integration using the impulse response method. For the
straightforward implementation of the impulse response
method employed here, the single-frequency field was ob-
tained here as a single Fourier component of the analytic
piston impulse response9 The Fourier integral defined in Ref.
9 was evaluated analytically for the constant portion of the
impulse response, and using midpoint integration for the du-
ration over which the impulse response is not constant. The
number of summation points used for the numerical integra-
tion was adjusted so that the time step employed was an
integer fraction of the time span integrated.

The impulse response method was used to compute the
lossless field of a piston with ka=500 described above and
plotted in Fig. 5. For accuracy comparable to the series

FIG. 4. Number of terms required for convergence, ka=50, �=10−6. The
number of required terms is shown using a linear gray scale where black
represents three terms �the minimum possible for the convergence criteria
employed� and white represents 200 terms. To show detail, points requiring
more than 200 terms are plotted with a value of 200. �a� Outer expansion.
�b� Paraxial expansion. �c� Combined solution, requiring �40 terms in most
of the half-space. The solid white regions in panels �a� and �b� represent the
spatial regions where the respective expansions do not converge.
method, a sampling rate of about 1000 points per period, or
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4 GHz for the present example, is required for the impulse
response method. This fine sampling is consistent with pre-
vious findings that gigahertz �GHz�-range sampling rates are
required for accurate impulse-response computations of
megahertz �MHz�-range ultrasound fields.37 To compute one
field point, the impulse response method as implemented
here thus required summation of up to 1.59�105 terms for
each field point. This may be compared to the �300 summa-
tion terms required for the series solution with comparable
accuracy in this case. Also notable is that the impulse re-
sponse must be recomputed for each spatial position, while
the series solutions of Eqs. �16� and �17� contain coefficients
that need only to be evaluated once for multiple spatial po-
sitions. The result is that the impulse-response method re-
quired 1.8�10−2 CPU s per field point for the computation
shown, while the series expansion method required
1.6�10−4 CPU s per field point. Thus, for the implementa-
tions employed here, the series method can improve compu-
tational speed by two orders of magnitude compared to nu-
merical integration. Both computations were implemented
here in GNU Fortran 77 �g77�, running under Linux on an
AMD Athlon 64 3000+ processor with clock speed 1.8 GHz.

Use of the series expansion method to model a pitch-
catch measurement is illustrated in Fig. 6. In the modeled
configuration, the acoustic pressure radiated by a baffled pis-
ton is detected by an idealized coaxial receiver that averages
the free-field pressure over a circle of radius a. The averaged
pressure was computed using Eqs. �18� for normalized wave
numbers ka=1, 4, 10, and 100 and axial distances
0�z /a�10. The results show the expected axial variations
in the measured pressure due to near-field diffraction effects,
as well as amplitude changes due to beam spreading. The

FIG. 5. Pressure amplitude computed using simplified series expansions.
Left: field in a lossless medium, ka=500. Right: field in an absorbing me-
dium, ka=500+0.2303i. Both fields are shown using a linear gray scale in
which black represents �p�=0 and white represents �p�=2p0.
accuracy of these results can be gauged by numerical com-
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parisons with the exact solution for a=b, z=0 given by
Rayleigh1,2 and with the numerical integration approach
from Ref. 34 for arbitrary a, b, and z. The series method
from Eqs. �18� is thus found to provide acceptable accuracy
�relative error magnitude �10−4–10−5� for z=0 and high ac-
curacy �relative error magnitude �10−6, limited by the series
truncation error� for z greater than about 0.1a.

IV. DISCUSSION

The work presented here provides accurate solutions for
the fields of piston radiators, with favorable analytic and
computational simplicity as well as convergence properties
compared to previous exact solutions. The outer and paraxial
series expansions presented here can be regarded as special
cases of those given in Refs. 26 and 27, but consideration of
these special cases has resulted in simpler analytic forms for
the expansions. Compared to the general expansions given in
Refs. 26 and 27, those presented here have one-half the num-
ber of terms, take simpler forms including closed-form coef-
ficients for the outer expansion of Eq. �8�, and do not require
choice of an arbitrary origin position.

The series methods presented here can be considered a
complementary alternative to numerical integration ap-
proaches. Methods for computing exact piston fields by nu-
merical integration include transformations of the Rayleigh
integral into single line integrals3–6 as well as approaches to
integration of the space- and time-dependent piston impulse
response.7–9 Recent progress has been made in efficient nu-
merical computation of such integrals.10–12 Several ap-
proaches are reviewed in Ref. 12, where application of a
grid-sectoring method to a modified impulse-response inte-
gral is shown to significantly improve computational effi-
ciency for single-frequency computations of the piston
nearfield. Compared to the present series approaches, nu-
merical integration approaches based on the piston impulse

FIG. 6. Acoustic pressure field of a baffled piston averaged over a coaxial
circle of equal radius, plotted as a function of normalized axial distance z /a
for four values of the normalized wave number ka.
response may incur greater computational difficulties in the
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acoustic far field,10,12 but may provide more accurate results
for points near the velocity discontinuity at the piston bound-
ary, where z�0 and w�a.

The series solutions presented here are expected to be
useful for computations of single-frequency piston fields at
multiple spatial positions. This is the configuration of inter-
est, for example, in ultrasonic heating of tissue, where the
acoustic heat deposition in an absorbing medium needs to be
known with high spatial resolution.13 In highly absorbing
media, such as soft tissue at sufficiently high ultrasonic fre-
quencies, acoustic absorption may substantially affect dif-
fraction of ultrasound beams. Thus, the series methods pre-
sented here, which treat attenuation effects exactly by
incorporation of a complex wave number, may have advan-
tages over other approaches that treat attenuation
approximately.13,17,38

Another application for the series solutions presented
here is benchmarking of numerical methods for radiation
from arbitrary sources, as has been previously done using
numerical integration methods.16,39 The easily-characterized
accuracy of the series solutions allows numerical evaluation
of piston radiator fields with accuracy limited only by the
floating-point resolution employed in the computations.
Thus, this method is expected to be useful for computing
reference solutions in both lossless and absorbing media. Us-
ing Fourier synthesis of piston fields computed for multiple
frequencies, time-domain reference solutions can also be
computed. However, the series methods considered here are
not expected to be as efficient as time-domain integration
methods for computation of transient radiation.

The capability of the series solutions for exact nearfield
computations of spatially-averaged piston fields in absorbing
media should also be useful for measurements of attenuation
in transmission mode.33,34 In highly absorbing media, the
presence of large attenuation may measurably affect the spa-
tial distribution of acoustic pressure in the near field. For this
reason, rigorously accounting for the effects of absorption
may provide increased accuracy in diffraction correction for
attenuation measurements.
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