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Extensions of a time-domain diffraction tomography method, which reconstructs spatially
dependent sound speed variations from far-field time-domain acoustic scattering measurements, are
presented and analyzed. The resulting reconstructions are quantitative images with applications
including ultrasonic mammography, and can also be considered candidate solutions to the
time-domain inverse scattering problem. Here, the linearized time-domain inverse scattering
problem is shown to have no general solution for finite signal bandwidth. However, an approximate
solution to the linearized problem is constructed using a simple delay-and-sum method analogous to
‘‘gold standard’’ ultrasonic beamforming. The form of this solution suggests that the full nonlinear
inverse scattering problem can be approximated by applying appropriate angle- and
space-dependent time shifts to the time-domain scattering data; this analogy leads to a general
approach to aberration correction. Two related methods for aberration correction are presented: one
in which delays are computed from estimates of the medium using an efficient straight-ray
approximation, and one in which delays are applied directly to a time-dependent linearized
reconstruction. Numerical results indicate that these correction methods achieve substantial quality
improvements for imaging of large scatterers. The parametric range of applicability for the
time-domain diffraction tomography method is increased by about a factor of 2 by aberration
correction. © 2002 Acoustical Society of America.@DOI: 10.1121/1.1481063#

PACS numbers: 43.20.Fn, 43.80.Qf, 43.60.Pt@LLT #
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I. INTRODUCTION

This paper concerns time-domain diffraction tomog
phy methods for solution of the time-domain inverse scat
ing problem, in which an unknown inhomogeneous medi
is determined from its far-field acoustic scattering. This pro
lem is of interest for medical ultrasonic imaging, since
verse scattering methods such as diffraction tomography
provide quantitative reconstruction of tissue properties
cluding sound speed, density, and absorption.

Most practical inverse scattering methods to date h
been based on linearization of the inverse problem using
Born or Rytov approximation.1,2 These are weak scatterin
approximations, in which the variation of medium propert
is assumed to be a small perturbation from a uniform ba
ground. Nonlinear inverse scattering methods,3,4 which con-
sider contributions of strong and multiple scattering, a
much more complex and computationally intensive. Ho
ever, since large-scale tissue structures cannot be consid
weak scatterers at diagnostic ultrasound imag
frequencies,5,6 linearized inverse scattering methods are
limited use for medical ultrasonic imaging.

A similar problem arises in conventional B-scan a
synthetic-aperture imaging,7,8 which form the basis for cur-
rent diagnostic ultrasound scanners. Current scanners
synthetic images based on the assumption of a uniform b
ground sound speed, which is essentially the Born appr
mation. The invalidity of this assumption is associated w

a!Current address: Ethicon Endo-Surgery, 4545 Creek Rd., ML 40, Cin
nati, OH 45242. Electronic mail: dmast@eesus.jnj.com
J. Acoust. Soc. Am. 112 (1), July 2002 0001-4966/2002/112(1)/
-
r-

-
-
an
-

e
e

s
-

e
-
red
g
f

rm
k-
i-

image artifacts and focus aberration.5,9 Considerable effort
has been devoted to methods for aberration-corrected im
ing, which is analogous to nonlinear inverse scattering. A
proaches to aberration correction for pulse-echo imag
have been designed to correct distortion associated with
eral simplified propagation models, including refraction
homogeneous layers,10,11 phase aberration close to the tran
ducer aperture,12–14 and aberration caused by a hypothetic
phase screen away from the aperture.15–17All of these aber-
ration correction methods require indirect estimation of
medium-induced distortion based on the received scatte
data.

A time-domain diffraction tomography method has be
introduced recently.18,19 This method provides tomographi
reconstructions of unknown scattering media from scatter
data measured on a surface surrounding the region of in
est, using the entire available bandwidth of the signals e
ployed. The reconstruction algorithm is derived as a sim
delay-and-sum formula similar to synthetic-aperture alg
rithms employed in conventional clinical scanners.7,8 How-
ever, unlike current clinical scanners, the present met
provides quantitative images of the spatially dependent tis
sound speed. These quantitative sound speed maps offer
siderable potential for aberration correction, since
medium-induced distortion can be estimated directly fro
the image data.

The image reconstruction algorithm of Ref. 18 was d
rived from the frequency-domain exact solution to the line
ized inverse scattering problem, i.e., diffraction tomograp
employing the Born approximation. Inverse scattering a
proaches based on the Born approximation form adeq
-
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images only for relatively small, weakly scatterin
objects,18,20 so that this approximation has limited utility fo
large-scale imaging problems such as ultrasonic mammo
phy. In the present paper, an aberration correction appro
which significantly extends the range of validity of the tim
domain diffraction tomography method, is introduced. T
reconstruction method of Ref. 18 is shown to result in
approximate solution to the time-domain linearized inve
scattering problem; application of aberration correction
sults in reconstructions that better approximate the solu
to the full nonlinear time-domain inverse problem.

Two related methods for aberration correction are p
sented here. The first, suggested by the synthetic-ape
nature of the reconstruction algorithm, employs a focus c
rection approach in which delays are computed from e
mates of the medium using an efficient straight-ray appro
mation. The second approach is suggested by examinatio
the reconstruction itself in the time domain, as in Ref. 21.
this approach, delays are applied directly to a time-depen
linearized reconstruction. Numerical results show that b
methods increase the parameter range for which valid ima
can be obtained and illustrate differences in performance
tween the two.

II. THEORY

The imaging problem considered here concerns rec
struction of an unknown medium from far-field, time-doma
scattering measurements. Solutions of this inverse prob
are quantitative images of scattering media such as biol
cal tissue. Below, the linearized inverse scattering prob
~e.g., quantitative ultrasonic imaging without aberration c
rection! is considered and shown to have no general solut
However, approximate solutions to the nonlinear inve
problem result in useful aberration correction methods
quantitative imaging.

A. The linearized time-domain inverse scattering
problem

The time-domain inverse scattering problem analyz
below is defined as follows. A quiescent, inhomogeneo
fluid medium is subjected to an incident plane wave pu
propagating in the directiona,

pi~r ,t !5u~ t2r•a/c0!, ~1!

wherec0 is a reference or ‘‘background’’ sound speed. T
medium is assumed to have spatially varying sound sp
constant density, and no absorption, and to be comple
characterized by a contrast functiong(r ), defined as

g~r !5
c0

2

c~r !221, ~2!

wherec(r ) is the local sound speed at positionr . The inverse
scattering problem is the determination of the medium c
trast g(r ) from time-domain measurements of the scatte
field ps(u,a,t) for all measurement directionsu, incident-
wave directionsa, and timest. The implicit neglect of den-
sity variations is not severely limiting, since the contra
given by Eq.~2! typically dominates reconstructed imag
even in the presence of density variations.18
56 J. Acoust. Soc. Am., Vol. 112, No. 1, July 2002
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A general time-domain solution for the scattered aco
tic pressure at a far-field measurement radiusR, valid for
two-dimensional~2D! or three-dimensional~3D! scattering,
is then

ps~u,a,t !5F21@ p̂s~u,a, f !#[E
2`

`

p̂s~u,a, f !e2 i2p f t d f ,

~3!

where p̂s(u,a, f ) is a single frequency component of th
scattered wavefield, given in the far field by

p̂s~u,a, f !5F@ps~u,a,t !#d

[E
2`

`

ps~u,a,t !ei2p f t dt

5k2G~R, f !E
V0

e2 iku•rg~r0! p̂u~r ,a,v! dV0 .

~4!

In Eq. ~4!, k is the wave numberv/c0 andp̂u(r0 ,a,v) is the
total frequency-domain acoustic pressure associated wit
incident plane waveû( f )eika•r0 @i.e., one frequency compo
nent of the plane wave pulseu(t2a•r /c0)#. The integral in
Eq. ~4! is taken over the entire support ofg in R2 for 2D
scattering or inR3 for 3D scattering. The termG(R, f ), as-
sociated with the far-field forms of the free-space Gree
functions for the Helmholtz equation,22 is

G~R, f !52A i

8pkR
for 2D scattering,

~5!

G~R, f !5
1

4pr
for 3D scattering.

The time-domain inverse scattering problem is given
the Fourier inverse of Eq.~4!:

ps~u,a,t !5E
V
L FpuS r ,a,t2

R

c0
1

u•r

c0
D Gg~r ! dV, ~6!

where pu(r ,a,t) is the total time-domain acoustic pressu
associated with the incident plane waveu(t2r•a/c0) and
the linear operatorL is defined as

L @p~r ,a,t !#

5
1

c0
2 F21FA i

8pkR
F@ p̈~r ,a,t !#G for 2D scattering,

~7!

L @p~r ,a,t !#52
1

4pc0
2R

p̈~r ,a,t ! for 3D scattering.

Equation~6! defines a nonlinear inverse problem for the co
trastg(r ); the nonlinearity is associated with the dependen
of p(r ,a,t) on g(r ).

The nonlinear time-domain inverse scattering probl
defined by Eq.~6! can be linearized by invoking the Bor
approximation, in which the total acoustic pressure is
proximated by the incident wave. The resulting lineariz
equation is
T. Douglas Mast: Abberation correction for diffraction tomography



n

ed
l
y

tte
l
e

l

c

F

w
u

-
xa

ig

in
th
r
p
e

io
io

ea-

e

a-
d

ial

nt

he

ing
i-
ps~u,a,t !5E
V
L @u„t2t~u,a,r !…#gL~r ! dV, ~8!

where the true potentialg(r ) has been replaced bygL(r ), a
hypothetical solution to the linearized inverse problem, a
the propagation delay termt(u,a,r ) is defined

t~u,a,r ![
R

c0
2

~u2a!•r

c0
. ~9!

The delay specified by Eq.~9! is precisely that required to
refocus scattered waves through a homogeneous (c5c0)
medium onto each image point.

In the asymptotic weak scattering limit, the lineariz
inverse scattering problem~8! is equivalent to the origina
nonlinear problem~6!, so that an exact solution for an
waveformu(t) is given bygL(r )→g(r ) asg(r )→0. How-
ever, unlike the frequency-domain linearized inverse sca
ing problem, the inverse problem of Eq.~8! has no genera
solution for nonzerog(r ). To prove this, one may examin
the Fourier transform of Eq.~8!, which is simply the linear-
ization of Eq.~4!:

p̂s~u,a, f !5G~R, f !û~ f !E
V
e2 ik~u2a!•rgL~r ! dV, ~10!

where k is the wave number 2p f /c0 . Thus, any genera
time-independent solution of Eq.~8! must also be a
frequency-independent solution to the linearized frequen
domain inverse scattering problem~10!.

For u5a ~the forward scattering case!, Eq. ~10! leads to
the condition

p̂s~u,u, f !e2 ikR

k2û~ f !
5

1

4pR E
V
gL~r !dV5const~; f ! ~11!

for existence of a general solution to Eq.~8!. This require-
ment is easily seen by counterexample to be impossible.
example, Eq.~11! requires that, for all frequenciesf, the
magnitude of the forward scattered pressure should~for a
unit-amplitude incident wave! be proportional tof 2. A coun-
terexample is given by any high-contrast scatterer~e.g., g
;1!, for which this f 2 dependence occurs only at very lo
frequencies, such that the scatterer’s dimensions are m
smaller than the wavelengthc0 / f .23 Thus, although the non
linear time-domain inverse scattering problem has an e
solution @equal to the true contrastg(r )#, the corresponding
linearized problem has no general solution for arbitrary s
nal bandwidth except in the limiting caseg→0.

B. Approximate linearized solutions by Fourier
synthesis

Although no solutiongL(r ) to the quantitative imaging
problem of Eq.~8! exists in general, one can still obta
approximate solutions by applying Fourier synthesis to
well-known exact solution of the frequency-domain linea
ized inverse scattering problem. For any frequency com
nent of ps(u,a,t), the frequency-domain linearized invers
problem ~10! has an exact, frequency-dependent solut
given by the frequency-domain filtered backpropagat
formula.2,24
J. Acoust. Soc. Am., Vol. 112, No. 1, July 2002 T. D
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gB~r , f !5
m̂~ f !e2 ikR

û~ f !
E E F~u,a! p̂s~u,a, f !

3eik~u2a!•r dSa dSu , ~12!

where

m̂~ f !5A kR

8ip3, F~u,a!5usin~u2a!u in 2D,

~13!

m̂~ f !5
kR

4p3 , F~u,a!5uu2au in 3D.

Each surface integral in Eq.~12! is performed over the entire
measurement circle for the 2D case and over the entire m
surement sphere for the 3D case.

Fourier inversion of Eq.~10! into the time domain can
be performed using the convolution theorem.25 The result,
with the hypothetical linearized solutiongL(r ) replaced by
the Born reconstructionĝB(r , f ), is

ps~u,a,t !52
1

4pc0
2R

E
V
ü~ t2t~u,a,r !! ^ gB~r ,t ! dV,

~14!

where gB(r ,t) is the inverse Fourier transform of th
frequency-domain solutionĝB(r , f ). The time-domain re-
constructiongB(r ,t) is an exact solution of the integral equ
tion ~14!, which is similar but not equivalent to the linearize
time-domain inverse scattering problem of Eq.~8!. Because
ĝB(r , f ) is conjugate symmetric, the time-domain potent
gB(r ,t) is purely real.21

Comparison of Eqs.~8! and~14! shows that, in the weak
scattering limit,

gB~r ,t !→g~r !d~ t !1c~r ,t !, ~15!

wherec(r ,t) is a ‘‘nonradiating source’’26 that satisfies the
constraint

E
V
ü„t2t~u,a,r !…^ c~r ,t ! dV50. ~16!

The presence of the nonradiating source termc(r ,t) is con-
sistent with the nonuniqueness of solutions to Eq.~14!.27 For
example, additional solutions to Eq.~14! include the class of
functionsgB(r ,t)1f(r ), wheref(r ) is the inverse Fourier
transform of any functionf̂(k) that is zero inside the Ewald
sphere,1 defined for the upper frequency limit of the incide
pulse ask<4p f h /c0 , where f h is the upper limit of the
pulse frequency content.

A straightforward approach to estimategB(r ,t) @and
thusg~r !# is to perform inverse Fourier transformation on t
frequency-domain Born inversionĝB(r , f ). A natural esti-
mate of the medium contrast is a reconstruction employ
information from multiple frequencies contained in the inc
dent pulse, e.g.,
57ouglas Mast: Abberation correction for diffraction tomography
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gv~r ,t !5E
2`

`

ĝB~r , f !v̂~ f !e22p i f t d fY E
2`

`

v̂~ f ! d f

~17!

5gB~r ,t ! ^ v~ t !/v~0! ~18!

'g~r !v~ t !/v~0!, ~19!

where the final expression results from Eq.~15!. The fre-
quency weightv̂( f ) must be integrable and have no supp
outside the support ofû( f ), but is otherwise arbitrary. The
time dependence of the reconstructed contrast can be
moved from Eq.~19! by settingt50 ~called the ‘‘imaging
condition’’ in Ref. 28!.

If the incident waveform is sinusoidal, so that, for i
stance,û( f )5d( f 2 f 0)1d( f 1 f 0), the reconstructed poten
tial gv(r ,0) is equal to the real part of the frequency-doma
solution ĝB(r , f 0). Thus,gv(r ,0) is an exact solution of the
linearized inverse problem in the single-frequency lim
However, as proven above, no time-independent recons
tion can solve the general linearized time-domain inve
scattering problem, so thatgv(r ,0) is only anapproximate
solution for any nonzero-bandwidth incident waveformu(t).

The Fourier inversion of Eq.~17! can be performed ei
ther numerically or analytically. Numerical inversion, usin
frequency-domain reconstructions at a number of disc
frequencies within the bandwidth of the incident pulse, w
the approach employed by Lin, Nachman, and Waa21

~However, the frequency-domain inversions of Ref. 21 w
performed using eigenfunctions of the far-field scatter
operator29 instead of filtered backpropagation.! Alternatively,
particular choices of the weightv̂( f ) allow analytic inver-
sion of the frequency-domain reconstructiongB(r , f ) into
the time domain, resulting in a simple delay-and-sum f
mula. For the weightv̂( f )5û( f )/m̂( f )H( f ), whereH( f )
is the Heaviside step function, the resulting formula is

gv~r ,t !5ReF 1

N E E F~u,a!„ps~u,a,t!

1 iH21@ps~u,a,t!#… dSa dSuG , ~20!

where

N52E
0

` m̂~ f !

m̂~ f !
d f , ~21!

t is given by Eq.~9!, andH21 is the inverse Hilbert trans
form operator~quadrature filter!, which results from limiting
frequency integration to the interval~0, `!.18

The reconstruction formula of Eq.~20! is identical to
that derived in Ref. 18 and similar to that derived in Ref. 3
In view of the present derivation, these previous methods
understood to provide approximate solutions to the lineari
time-domain inverse scattering problem~8!.

C. Aberration-corrected solutions

The form of the approximate linearized solution deriv
above suggests possible approaches to improvement o
ages beyond the limits of the Born approximation.
58 J. Acoust. Soc. Am., Vol. 112, No. 1, July 2002
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First, one may observe that the reconstruction formula
Eq. ~20! synthetically focuses the time-domain scattered fi
back onto each point in the medium.18 This observation leads
to the idea of aberration correction by iterative refinemen
the focus quality. Since the reconstruction provides an e
mate of the medium itself, this refinement is fairly straigh
forward. One simple implementation employs an assump
that background inhomogeneities result only in cumulat
delays ~or advances! of the incident and scattered wave
fronts, so that the total delay for an anglef and a point
position r is given by

dt~f,r !5E
j
c~j!21dj2

R

c0
, ~22!

where the integral is performed along the line that joins
spatial pointsr and Rf, Aberration-corrected reconstruc
tions can then be performed using Eq.~20! with t replaced
by the corrected delay term

t→R/c01
~a2u!•r

c0
1dr ~a,r !1dt~u,r ! ~23!

and by then computinggv(r ,0) using Eq.~20!.
An alternative approach to aberration correction is m

tivated by the observation, made in Ref. 21, that tempo
delays from wave propagation in the inhomogeneous m
dium result in corresponding delays to the time-domain
construction of Eq.~17!. That is, the reconstructed wave
forms gv(r ,t) may be delayed or advanced relative to t
waveformv(t). In Ref. 21, correction for this temporal ab
erration was implemented by adaptive demodulation
gv(r ,t) from the weighting waveformv(t). Here, envelope
detection is applied togv(r ,t) and the time of maximum
envelope amplitudetmax is found for each pointr , resulting
in the aberration-corrected reconstruction

g~r !'gv„r ,tmax~r !…. ~24!

Envelope detection can also be applied to iterative rec
structions obtained using the focus correction given by
~22!.

III. COMPUTATIONAL METHODS

The present aberration correction methods have b
tested using simulated scattering data for a number of t
dimensional test objects. The computational configurat
was chosen to mimic the characteristics of an available 20
element ring transducer.31 The time-domain waveform em
ployed for all the computations reported here was

u~ t !5cos~v0t !e2t2/~2s2!, ~25!

wherev052p f 0 for a center frequency off 0 , taken here to
be 2.5 MHz, ands is the temporal Gaussian parameter. T
value of s chosen here was 0.25, which corresponds t
26-dB bandwidth of 1.5 MHz.

For 2D cylindrical inhomogeneities, the frequenc
domain scattered fieldp̂s(u,a,v) was computed using an
exact series solution32 for each frequency component of in
terest. In implementation of the series solution, summati
were truncated when the magnitude of a single coeffici
T. Douglas Mast: Abberation correction for diffraction tomography
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dropped below 10212 times the sum of all coefficients. Thes
single-frequency solutions, which correspond to Fourier
efficients of the time-domain scattered field, were weigh
and inverted by discrete Fourier transform to obtain the ex
time-domain scattered field associated with the incid
pulse of Eq.~25!. Scattering from cylinders of radius 4.0 m
and contrasts ranging fromg50.001 tog50.14 was com-
puted on a measurement circle of radius 176 mm for 3
incident-wave directions and 96 measurement directio
The sampling rate employed was 9.14 MHz.

Solutions were also obtained for a large-scale bre
model using a time-domaink-space method.33 The breast
model was obtained by image processing a coronal c
section of three-dimensional photographic data from the V
ible Human Female data set with a pixel size of 0.333 m
Hue, saturation, and value were mapped to sound speed
density using empirically determined relations. Sound sp
and density were assumed to be linearly proportional;
assumption is realistic for mammalian soft tissues.34,35

Sound speed and density maps were smoothed usi
Gaussian filter to reduce artifacts associated with the slic
process.~The tissue map employed is shown in Fig. 3.! This
tissue model was scaled down by a factor of 0.6 from
original data set and mapped onto a grid of 5123512 points
with a spatial step of 0.111 mm. A time step of 0.0546ms,
corresponding to a Courant–Friedrichs–Lewy number
0.75, was employed. Based on the scaling of the tis
model, the scattered field obtained is equivalent to that of
full-scale breast model~largest dimension 75 mm! for a cen-
ter frequency of 0.5 MHz.

Scattered acoustic pressure signals were recorded
sampling rate of 9.15 MHz for 128 incident-wave direction
A circle of 512 simulated point receivers, which had a rad
of 9.0 mm in these computations~equivalent to a radius o
45 mm for a 0.5 MHz center frequency!, completely con-
tained the scaled-down breast model. Far-field wavefo
were computed by Fourier transforming the time-dom
waveforms on the near-field measurement circle, transfo
ing these to far-field waveforms for each frequency usin
numerically exact transformation method,21,36 and perform-
ing inverse Fourier transformation to yield time-domain fa
field waveforms at a measurement circle of radius 234 cm~or
1170 mm if scaled to a 0.5 MHz center frequency!. All for-
ward and inverse temporal Fourier transforms, as well
angular transforms occurring in the near-field–far-field tra
formation, were performed by fast Fourier transform
~FFTs!.37

The time-domain imaging method was directly impl
mented using Eq.~20!, evaluated using straightforward nu
merical integration over all incident-wave and measurem
directions employed. In one implementation, similar to th
from Ref. 18, images were evaluated only for the timet
50. In this case, before evaluation of the argumentt for
each signal, the time-domain waveforms were resampled
sampling rate of 16 times the original rate. This resampl
was performed using FFT-based Fourier interpolation. T
inverse Hilbert transform was implicitly performed using t
same FFT operation. Values of the pressure signals at
time t were then determined using linear interpolation b
J. Acoust. Soc. Am., Vol. 112, No. 1, July 2002 T. D
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tween samples of the oversampled waveforms. The integ
of Eq. ~20! were implemented using discrete summation o
all transmission and measurement directions employed.

In the implementation of reconstructions for multip
times, storage and computation time requirements nece
tated modification of the algorithm implementation. F
multiple-time reconstructions, a reconstruction ofgv(r ,t) at
the sampling rate of the scattering data was first obtained
direct integration. Delays of the time-domain scattered wa
forms were implemented using cubic spline interpolation38

Reconstructions were performed for an interval of length
ms, multiplied by a window with cosine tapers of length 0
ms at each end, and upsampled by a factor of 8 using Fou
interpolation. Inverse Hilbert transformation ofgv(r ,t) was
performed by the same FFT operation used to implement
Fourier interpolation. Finally, the temporal position of th
envelope peak was found from the zero crossing of the
velope derivative,

]ugv~r ,tpeak!1 iH 21@gv~r ,tpeak!#u
]t

50. ~26!

The derivative in Eq.~26! was evaluated using a secon
order-accurate center-difference scheme.

Focus correction was implemented using a straight-
approximation, which is based on the assumption that ba
ground inhomogeneities result only in cumulative delays~or
advances! of the incident and scattered wavefronts. In th
approximation, the total delay for an image positionr and a
direction f is given by Eq.~22! and aberration-correcte
reconstructions are performed using Eq.~20! with t replaced
by the corrected delay term of Eq.~23!. The path integrals of
Eq. ~23! were performed using an algorithm based on
digital differential analyzer ~DDA! image processing
method.39 This method very efficiently finds the neare
neighbors to a line of specified starting position and slo
thus, the integrals can be evaluated by simple summa
without any need for interpolation. To account for variab
step size along the integration path, this summation is n
malized by multiplication withL/N, whereL is the length of
the specified line andN is the number of points employed i
the summation. Since the reconstruction process acts in
as a low-pass filter, the integral performed using nea
neighbors to the line of interest is sufficiently accurate.

Iterative focus correction was performed by first co
structing an uncorrected image, either fort50 or t5tpeak.
The reconstructed sound speed was then employed to e
ate the delay corrections of Eq.~23! using the DDA imple-
mentation of the integrals from Eq.~22!. To avoid spurious
modification of image points outside the support of the sc
terer, the delay term of Eq.~23! was multiplied by the factor

A5H 1, ugv~r !u>gmax/2,

~12cos@2pugv~r !u/gmax# !/2, ugv~r !u,gmax/2,
~27!

wheregmax is the maximum value ofugv(r )u for the previous
reconstruction and the temporal criterion~t50 or t5tpeak!
employed.

Iteration proceeded as follows. A new reconstructi
was compared to the previous reconstruction; if the rela
59ouglas Mast: Abberation correction for diffraction tomography
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rms error between the two was greater than 5%, furthe
erations were carried out up to a prescribed maximum n
ber of iterations, taken here to be 20. The criterion of 5% w
chosen because image quality was not substantially enha
by use of lower error thresholds. Due to the efficiency of
delay computation, each iteration required about the sa
computation time as the original reconstruction.

IV. NUMERICAL RESULTS

The performance of aberration-corrected time-dom
diffraction tomography imaging, using the two approach
introduced above, is illustrated by the numerical examp
presented in this section.

Figure 1 shows reconstructions of a homogeneous

FIG. 1. Cross sections of time-domain reconstructions with adaptive fo
correction for both imaging criteria. Reconstructions are of a homogene
cylinder with a radius of 4 mm (ka541.2) and a contrastg50.08. In each
case, the ‘‘0’’ curve refers to an uncorrected reconstruction, while cur
labeled ‘‘1’’ and higher correspond to subsequent iterations of focus cor
tion. ~a! t50. ~b! t5tpeak.
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inder with a radius of 4 mm and a contrastg50.08. For the
center frequency of 2.5 MHz, this corresponds to a non
mensional radiuska541.2. Panel~a! shows cross sections o
reconstructions obtained using thet50 criterion. The ‘‘0’’
curve refers to an uncorrected~Born approximation! recon-
struction, while curves labeled ‘‘1’’ and higher correspond
subsequent iterations of focus correction performed using
delay correction of Eq.~23! as described in Sec. III. Panel~b!
shows corresponding cross sections obtained using tht
5tpeakcriterion. One may observe that iterative focus corre
tion greatly improves reconstructions for thet50 criterion.
The initial ~Born! reconstruction shows mainly the edges
the cylinder; further iterations improve the accuracy with
the cylinder interior. This process somewhat resembles
inverse scattering method of layer stripping,40,41 in which an
unknown medium is iteratively reconstructed with each ite
tion probing further into the medium interior.

In contrast, iterative focus correction provides little,
any, improvement to the reconstructions obtained using
t5tpeak criterion @Fig. 1~b!#. In this case, the initial recon
struction captures the cylinder interior very well. Further
erations slightly increase the reconstructed contrast nea
edges, but also introduce artifacts not present in the in
reconstruction. After convergence, the reconstructed valu
more accurate than thet50 image for the cylinder edges bu
less accurate for the interior.

For the reconstructions shown in Fig. 1, images of s
1283128 pixels were computed from time-domain scatt
ing data for 96 incident-wave directions and 384 measu
ment directions. The computation time required on a 6
Mhz Athlon processor was about 6 CPU min per iteration
the t50 image criterion~about 38 min total for the six itera
tions performed! and about 45 CPU min per iteration for th
t5tpeak criterion.

The relative performance of iterative focus correcti
using the two image criteria is illustrated in Fig. 2. Her
reconstructions were based on exact scattering data f
4-mm cylinder with contrast 0.01<g<0.12. Since previous
studies have shown that the accuracy of diffraction tomog
phy reconstructions is roughly a function of the nondime
sional parameterka•g,18,20 the relative error is plotted as
function of this nondimensional parameter. The Born a
proximation is considered to provide useful images for c
inders up toka•g;2;18,20 by this standard, the iterative fo
cus correction implemented here increases the upper lim
validity for t50 images toka•g;4. As in Fig. 1, iterative
focus correction is seen to provide little improvement in a
curacy for images obtained using thet5tpeak criterion. The
quantitative accuracy of reconstructions is slightly increa
by iteration for large values of the parameterka•g, but can
be slightly diminished for smaller values. Also notable is th
iteration using thet50 criterion fails completely aboveka
•g;4, while thet5tpeak criterion reaches a comparable e
ror level aroundka•g;4 and then increases gradually
error with increasing scatterer contrast.

Quantitative images of a large-scale 2D breast mod
used to generate simulated scattering data in the manne
scribed in Sec. IV, are shown in Figs. 3 and 4. Panel~a! of
Fig. 3 shows the 2D model used to generate the synth

s
us

s
c-
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data. For this model, the parameterka•g is about 9.3 if
estimated using the sound speed of fat, the center frequ
of 0.5 MHz, and the largest half-dimension of 37.5 m
However, a more conservative estimate employing the a

FIG. 2. The rms error for reconstructions of a 4.0-mm-radius cylinder w
both imaging criteria, with adaptive focus correction~solid lines! and with-
out ~dashed lines!. ~a! t50. ~b! t5tpeak.

FIG. 3. Reconstruction of a large-scale two-dimensional breast model
simulated scattering data.~a! Model. ~b! Initial time-domain reconstruction
using t5tpeak criterion.
J. Acoust. Soc. Am., Vol. 112, No. 1, July 2002 T. D
cy
.
r-

age contrastg within the scatterer yieldska•g;2.8, which
meets the accuracy criterionka•g,4 determined from the
cylinder simulations. Panel~b! of Fig. 3 shows the image
reconstructed using thet5tpeak criterion without any focus
correction. In this case, the reconstructed image appea
be artifactually sharpened compared to the original mod
Although there is a close correspondence between most
tures of the model and the reconstruction, some differen
exist. For example, the reconstructed skin thickness is
nificantly smaller than that of the actual model in seve
locations.

Reconstructions of the 2D breast model, obtained us
the t50 criterion and iterative focus correction, are shown
Fig. 4. In this case, the initial~Born! reconstruction renders
the skin layer fairly well, but the interior of the breast mod
is reconstructed poorly. Subsequent iterations improve
rendering of the connective and glandular tissue struc
within the breast. Both focus quality and quantitative acc
racy of the reconstructions improve with iteration. The co
verged reconstruction~iteration 5! resembles a low-pass fil
tered version of the original model@Fig. 3~a!# except for a
small area of spuriously high reconstructed contrast wit
the interior glandular tissue.

Both reconstruction criteria successfully image t
sound speed variation of the 2D breast model, even tho
the model also included realistic density variations. This

m

FIG. 4. Images of the large-scale breast model obtained using thet50
criterion with adaptive focusing. Panel 0 shows the initial~linear! recon-
struction and panels 1–5 show the subsequent iterations up to converg
61ouglas Mast: Abberation correction for diffraction tomography
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sult is expected, since diffraction tomography images
sound speed are not greatly degraded by any density v
tions that are small and fairly smooth.18 These criteria are
met by the breast model employed here, in which the den
variations were of comparable magnitude to the small~maxi-
mum about 6%! sound speed variations.

For the large-scale 2D breast model, computation tim
required for 2563256 pixel images, 128 incident-wave d
rections, and 512 measurement directions were about
CPU h per iteration for thet50 image criterion~8.0 h for the
six iterations up to convergence! and about 4.6 CPU h for the
initial reconstruction using thet5tpeak criterion.

V. DISCUSSION

The two abberation correction methods considered h
may be compared as follows. Both methods have the ef
of improving the alignment of the time-domain reconstru
tion gv(r ,t). In the case oft50 images with adaptive focu
correction, the time-domain reconstruction is implicit
aligned by compensation for propagation delay within
inhomogeneous medium. Thet5tpeak criterion can be
thought of as an explicit alignment of the time-domain
construction.

Previous qualitative studies of the validity of the Bo
approximation18,20 have established a threshold for val
Born reconstructions atka•g;2, which corresponds to a
normalized rms error of about 0.5~Fig. 2!. Given this some-
what arbitrary threshold for the maximum allowable err
both aberration correction methods employed here hav
similar range of validity, up to aboutka•g;4. Thus, either
approach extends the parametric range of validity for tim
domain diffraction tomography by about a factor of 2.

Each image criterion also introduces characteristic a
facts. Thet50 criterion with adaptive focusing acts in pa
as a low-pass filter to reconstructions, consistent with
well-known low-pass filtering effect of conventional diffrac
tion tomography.1 The t5tpeakcriterion introduces edge arti
facts that have the qualitative effect of artifactually sharp
ing images. More robust methods of delay estimation, s
as cross-correlation between the time-domain reconstruc
gv(r ,t) and the modulating waveformv(t),21 may provide
better reconstruction quality than thet5tpeak criterion, par-
ticularly for scattering data corrupted by noise or measu
ment imprecision.

The t50 image criterion can provide faster reconstru
tions, since the reconstructed contrastgv(r ,t) needs only to
be evaluated for one time. However, for large or hig
contrast scatterers, iterative aberration correction is ne
sary to obtain high-quality reconstructions. Thet5tpeak cri-
terion requires longer computation time for ea
reconstruction; however, because this criterion implicitly
corporates a form of aberration correction, subsequent it
tions provide little additional benefit. As a result, compu
tion times required for a given level of accuracy can
comparable for either image criterion.

Notable is that reconstruction quality, as characteriz
by criteria such as the point-spread function of a quantita
image, can be improved by optimization of the weig
62 J. Acoust. Soc. Am., Vol. 112, No. 1, July 2002
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v̂( f ).21 Although the delay-and-sum reconstruction formu
~20! depends on a frequency weight determined by the in
dent waveformu(t), any desired weightv̂( f ) can still be
applied by preprocessing of the scattering data. That is,
inverse problem associated with an arbitrary incident wa
form w(t) ~such as the impulse response of a particular e
troacoustic transducer! can be transformed into the invers
problem associated with a desired waveformu(t) by apply-
ing the deconvolution operation

@ps~u,a,t !#u~ t !5F21F û~ f !

ŵ~ f !
F@ps~u,a,t !#w~ t !G , ~28!

where F denotes temporal Fourier transformation, to t
measured scattering data. This operation transforms the m
sured data into the corresponding data that would be m
sured using an optimal incident pulseu(t). For reasons of
stability, the effective bandwidth ofû( f ) should be compa-
rable to that ofŵ( f ) ~as determined, for instance, by th
noise floor of a given measurement!.

The adaptive focusing implemented here employed
simple straight-ray approximation for wavefront aberrati
incurred in tissue. However, the principle of aberration c
rection by adaptive focusing should allow greater improv
ments to be gained using more complete distortion mod
For example, the distortion caused by a strongly scatte
medium can be accurately modeled using a full-wave co
putational method such as that of Ref. 33. In principle, a
propriate deconvolution could be employed to remove
effects of the intervening medium for each incident-wa
direction, measurement direction, and image location, so
an aberration-corrected reconstruction could then be
formed by applying Eq.~20! to the corrected scattering dat
In some cases,a priori information on the scattering medium
may be exploited to improve the convergence of such ad
tive focusing algorithms. This basic approach, in which
linearized reconstruction is performed on scattering data
has been transformed to remove higher-order scattering
fects, is common to a number of existing nonlinear inve
scattering methods.42

The methods of aberration correction proposed here
fer from most adaptive imaging methods for pulse-echo
trasound~e.g., Refs. 12 and 16! because adaptive focusing
performed using a direct reconstruction of the medium rat
than a simpler distortion estimate. Thus, aberration corr
tion using quantitative imaging methods could be of gr
interest for pulse-echo systems such as current clinical s
ners. However, the limited spatial-frequency informati
provided in pulse-echo mode1,18 reduces the quality of quan
titative images of this kind. One possible approach to
creasing the spatial-frequency content of pulse-echo qua
tative images could be to apply deconvolution to t
scattered signals.43–45 If such deconvolution methods coul
increase the spatial-frequency coverage sufficiently to ob
accurate ~although possibly low-resolution! quantitative
sound-speed maps, such maps could be employed dire
for adaptive focusing in pulse-echo images.
T. Douglas Mast: Abberation correction for diffraction tomography
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VI. CONCLUSIONS

Two related approaches to aberration correction
quantitative ultrasonic imaging have been presented. Th
methods are based on approximate solutions to the linear
time-domain inverse scattering problem, implemented us
adaptations of two previous time-domain diffraction tomo
raphy methods.18,21One approach, based on a delay-and-s
reconstruction formula, applies adaptive focusing based
estimates of the scattering medium. The other appro
implements aberration correction by applying appropri
delays to a time-dependent reconstruction.

Numerical results show that each of the considered
erration correction approaches increases the parametric r
of validity for time-domain diffraction tomography by abou
a factor of 2. The extended range of validity is sufficient
allow effective quantitative imaging of large-scale scatter
media, such as the 75-mm breast model imaged here a
MHz. Adaptive focusing correction based on more compl
scattering models could further increase this range of va
ity. Given sufficienta priori information on the unknown
medium, the principle of focus correction may allow acc
rate quantitative images to be obtained for strong
scattering media at larger scales and higher frequencies

The approaches presented here may also be usefu
aberration correction in pulse-echo imaging. If sufficien
broadband information can be extracted from pulse-e
scattering data, the time-domain diffraction tomograp
methods considered here may allow quantitative tissue c
acterization using clinically convenient measurement c
figurations. Quantitative maps obtained in this manner wo
also be useful as medium models for aberration correctio
conventional B-scan and synthetic-aperture imaging.
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