Abstract

We extend the classical Pohozaev’s identity to semilinear elliptic systems of Hamiltonian type, providing an alternative and simpler approach to the results of E. Mitidieri [8], R.C.A.M. Van der Vorst [15], and Y. Bozhkov and E. Mitidieri [2].

Key words: Pohozaev’s identity, Non-existence of solutions.

AMS Subject Classification: 35J57

1 Introduction

Any solution \(u(x) \) of semilinear Dirichlet problem on a bounded domain \(\Omega \subset \mathbb{R}^n \)

\[
\Delta u + f(u) = 0 \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega
\]

(1.1)

satisfies the well known Pohozaev’s identity

\[
\int_{\Omega} [2nF(u) + (2 - n)uf(u)] \, dx = \int_{\partial \Omega} (x \cdot \nu)|\nabla u|^2 \, dS.
\]

(1.2)

Here \(F(u) = \int_0^u f(t) \, dt \), and \(\nu \) is the unit normal vector on \(\partial \Omega \), pointing outside. (From the equation (1.1), \(\int_{\Omega} uf(u) \, dx = \int_{\partial \Omega} |\nabla u|^2 \, dS \), which gives an alternative form of the Pohozaev’s identity.) A standard use of this identity is to conclude that if \(\Omega \) is a star-shaped domain with respect to the origin, i.e. \(x \cdot \nu \geq 0 \) for all \(x \in \partial \Omega \), and \(f(u) = u|u|^{p-1} \), for some constant \(p \), then
the problem (1.1) has no non-trivial solution in the super-critical case, when \(p > \frac{n+2}{n-2} \). In this note we present a proof of Pohozaev’s identity, which appears a little more straightforward than the usual one, see e.g. L. Evans [3], and then use a similar idea for systems, generalizing the well-known results of E. Mitidieri [8]. After completing this work, we found out that this result appeared previously in Y. Bozhkov and E. Mitidieri [2]. However, our proof is different, and it appears to be much simpler. Similarly, we derive Pohozhaev’s identity for a version of \(p \)-Laplace equation.

Let \(z = x \cdot \nabla u = \sum_{i=1}^{n} x_i u_{x_i} \). It is easy to verify that \(z \) satisfies
\[
\Delta z + f'(u)z = -2f(u). \tag{1.3}
\]

We multiply the equation (1.1) by \(z \), and subtract from that the equation (1.3) multiplied by \(u \), obtaining
\[
\sum_{i=1}^{n} \left[(zu_{x_i} - uz_{x_i})_{x_i} + x_i \frac{\partial}{\partial x_i} (2F(u) - uf(u)) \right] = 2f(u)u. \tag{1.4}
\]

Clearly,
\[
\sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} (2F - uf) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} [x_i (2F - uf)] - n(2F - uf).
\]

We then rewrite (1.4)
\[
\sum_{i=1}^{n} \left[(zu_{x_i} - uz_{x_i}) + x_i (2F(u) - uf(u)) \right]_{x_i} = 2nF(u) + (2 - n)uf(u). \tag{1.5}
\]

Integrating over \(\Omega \), we conclude the Pohozaev’s identity (1.2). (The only non-zero boundary term is \(\sum_{i=1}^{n} \int_{\partial \Omega} z_{u_{x_i}} u_i dS \). Since \(\partial \Omega \) is a level set of \(u \), \(\nu = \pm \frac{\nabla u}{|\nabla u|} \), i.e. \(u_{x_i} = \pm |\nabla u| u_i \). Then \(z = \pm (x \cdot \nu) |\nabla u| \), and \(\sum_{i=1}^{n} u_{x_i} u_i = \pm |\nabla u| \).

It appears natural to refer to (1.5) as a \textit{differential form} of Pohozaev’s identity. For radial solutions on a ball, the corresponding version of (1.5) played a crucial role in the study of exact multiplicity of solutions, see T. Ouyang and J. Shi [9], and also P. Korman [6].

2 Non-existence of solutions for a class of systems

The following class of systems has attracted considerable attention recently
\[
\begin{align*}
\Delta u + H_v(u, v) &= 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \\
\Delta v + H_u(u, v) &= 0 \text{ in } \Omega, \quad v = 0 \text{ on } \partial \Omega,
\end{align*}
\tag{2.1}
\]

where \(H(u, v) \) is a given differentiable function, see e.g. the following surveys: D.G. de Figueiredo [4], P. Quittner and P. Souplet [13], B. Ruf [14], see also P. Korman [5]. This system is of \textit{Hamiltonian} type, which implies that it has some of the properties of scalar equations.

More generally, we assume that \(H(u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_m) \), with integer \(m \geq 1 \), and consider the Hamiltonian system of \(2m \) equations
\[
\begin{align*}
\Delta u_k + H_{v_k} &= 0 \text{ in } \Omega, \quad u_k = 0 \text{ on } \partial \Omega, \quad k = 1, 2, \ldots, m, \\
\Delta v_k + H_{u_k} &= 0 \text{ in } \Omega, \quad v_k = 0 \text{ on } \partial \Omega, \quad k = 1, 2, \ldots, m.
\end{align*}
\tag{2.2}
\]
We call solution of (2.2) to be positive, if \(u_k(x) > 0 \) and \(v_k(x) > 0 \) for all \(x \in \Omega \), and all \(k \). We consider only the classical solutions, with \(u_k \) and \(v_k \) of class \(C^2(\Omega) \cap C^1(\Omega) \). We have the following generalization of Pohozaev’s identity, see also [2].

Theorem 2.1 Assume that \(H(u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_m) \in C^2(\mathbb{R}_+^m \times \mathbb{R}_+^m) \cap C(\overline{\mathbb{R}}_+^m \times \overline{\mathbb{R}}_+^m) \).

For any positive solution of (2.2), and any real numbers \(a_1, \ldots, a_m \), one has

\[
\int_{\Omega} \left[2nH(u, v) + (2 - n)\Sigma_{k=1}^m (a_k u_k H_{u_k} + (2 - a_k) v_k H_{v_k}) \right] \, dx = 2\Sigma_{k=1}^m \int_{\partial \Omega} (x \cdot \nu) |\nabla u_k| |\nabla v_k| \, dS. \tag{2.3}
\]

Proof. Define \(p_k = x \cdot \nabla u_k = \Sigma_{i=1}^n x_i u_{kx_i} \), and \(q_k = x \cdot \nabla v = \Sigma_{i=1}^n x_i v_{kx_i} \), \(k = 1, 2, \ldots, m \). These functions satisfy the system

\[
\begin{align*}
\Delta p_k + \Sigma_{j=1}^m H_{u_k u_j} p_j + \Sigma_{j=1}^m H_{u_k v_j} q_j &= -2 H_{u_k}, \quad k = 1, 2, \ldots, m \\
\Delta q_k + \Sigma_{j=1}^m H_{u_k u_j} q_j + \Sigma_{j=1}^m H_{u_k v_j} p_j &= -2 H_{v_k}, \quad k = 1, 2, \ldots, m. \tag{2.4}
\end{align*}
\]

We multiply the first equation in (2.2) by \(q_k \), and subtract from that the first equation in (2.4) multiplied by \(v_k \). The result can be written as

\[
\Sigma_{i=1}^n \left[(u_{kx_i} q_k - p_{kx_i} v_k) x_i + (-u_{kx_i} q_k - v_{kx_i}) \right] + H_{v_k} q_k - \Sigma_{j=1}^m H_{u_k u_j} p_j v_k - \Sigma_{j=1}^m H_{u_k v_j} q_j v_k = 2 v_k H_{v_k}. \tag{2.5}
\]

Similarly, we multiply the second equation in (2.2) by \(p_k \), and subtract from that the second equation in (2.4) multiplied by \(u_k \), and write the result as

\[
\Sigma_{i=1}^n \left[(v_{kx_i} p_k - q_{kx_i} u_k) x_i + (-v_{kx_i} p_k - u_{kx_i}) \right] + H_{u_k} p_k - \Sigma_{j=1}^m H_{u_k u_j} p_j u_k - \Sigma_{j=1}^m H_{u_k v_j} v_j u_k = 2 u_k H_{u_k}. \tag{2.6}
\]

Adding the equations (2.5) and (2.6), we get

\[
\Sigma_{i=1}^n \left[(u_{kx_i} q_k - p_{kx_i}) x_i + v_{kx_i} p_k - q_{kx_i} u_k \right] + H_{u_k} p_k + H_{v_k} q_k - \Sigma_{j=1}^m H_{u_k u_j} p_j u_k - \Sigma_{j=1}^m H_{u_k v_j} q_j v_k = 2 u_k H_{u_k} + 2 v_k H_{v_k}. \]

We now sum in \(k \), then switch the orders of summation in \(i \) and \(k \) in the second group of terms on the left (the ones involving \(H \)), putting the result into the form

\[
\Sigma_{i=1}^n x_i \left(2 H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k} \right) x_i = 2 \Sigma_{k=1}^m u_k H_{u_k} + 2 \Sigma_{k=1}^m v_k H_{v_k}. \]

Writing,

\[
\Sigma_{i=1}^n x_i \frac{\partial}{\partial x_i} (2 H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k}) = \Sigma_{i=1}^n x_i \left(2 H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k} \right),
\]

we obtain the differential form of Pohozaev’s identity

\[
\Sigma_{k=1}^m \Sigma_{i=1}^n \left[u_{kx_i} q_k - p_{kx_i}, v_k + v_{kx_i}, p_k - q_{kx_i}, u_k + x_i (2 H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k}) \right] = 2n H + (2 - n) \left(\Sigma_{k=1}^m u_k H_{u_k} + \Sigma_{k=1}^m v_k H_{v_k} \right). \]
Integrating, we obtain as before
\[
\int_{\Omega} [2nH(u, v) + (2 - n)(\Sigma_{k=1}^{m} u_k H_{u_k} + \Sigma_{k=1}^{m} v_k H_{v_k})] \, dx \\
= 2\Sigma_{k=1}^{m} \int_{\partial\Omega} (x \cdot \nu) |\nabla u_k| |\nabla v_k| \, dS.
\] (2.7)

(\text{Since we consider positive solutions, and } \partial\Omega \text{ is a level set for both } u_k \text{ and } v_k, \text{ we have } \nu = -\frac{\nabla u_k}{|\nabla u_k|} = -\frac{\nabla v_k}{|\nabla v_k|}; \text{ i.e., } u_{ki} = |\nabla u_k| \nu_i \text{ and } v_{ki} = |\nabla v_k| \nu_i \text{ on the boundary } \partial\Omega.)

From the first equation in (2.1), \(\int_{\Omega} v_k H_{v_k} \, dx = \int_{\Omega} \nabla u_k \cdot \nabla v_k \, dx \), while from the second equation \(\int_{\Omega} u_k H_{u_k} \, dx = \int_{\Omega} \nabla u_k \cdot \nabla v_k \, dx \), i.e., for each \(k \)
\[
\int_{\Omega} v_k H_{v_k} \, dx = \int_{\Omega} u_k H_{u_k} \, dx.
\]

Using this in (2.7), we conclude the proof.

\textbf{Remark} Here and later on, we consider only the classical solutions. Observe that by our conditions and elliptic regularity, classical solutions are in fact of class \(C^3(\Omega) \), so that all quantities in the above proof are well defined. Also, it suffices to assume that \(\Omega \) is star-shaped with respect to any one of its points (which we then take to be the origin).

As a consequence, we have the following non-existence result.

\textbf{Proposition 1} Assume that \(\Omega \) is a star-shaped domain with respect to the origin, and for some real constants \(\alpha_1, \ldots, \alpha_m \), and all \(u_k > 0, v_k > 0 \), we have
\[
nH + (2 - n)\Sigma_{k=1}^{m} (\alpha_k u_k H_{u_k} + (1 - \alpha_k) v_k H_{v_k}) < 0.
\] (2.8)

Then the problem (2.2) has no positive solutions.

\textbf{Proof.} We use the identity (2.3), with \(\alpha_k/2 = \alpha_k \). Then, assuming existence of positive solution, the left hand side of (2.3) is negative, while the right hand side is non-negative, a contradiction.

\textbf{Example} Assume that \(m = 2 \), and consider \(H(u_1, v_1, u_2, v_2) = \frac{1}{p} (u_1^p + u_2^p) + u_1^r u_2^s \), with \(p > \frac{2n}{n-2} \), and \(r + s > \frac{2n}{n-2} \). Then the inequality (2.8) holds, with \(\alpha_1 = \alpha_2 = \frac{2}{3} \). It follows that the system
\[
\Delta u_1 + u_1^{p-1} = 0 \quad \text{in } \Omega, \quad u_1 = 0 \quad \text{on } \partial\Omega,
\]
\[
\Delta v_1 + ru_1^{-1} u_2^s = 0 \quad \text{in } \Omega, \quad v_1 = 0 \quad \text{on } \partial\Omega,
\]
\[
\Delta u_2 + u_2^{p-1} = 0 \quad \text{in } \Omega, \quad u_2 = 0 \quad \text{on } \partial\Omega,
\]
\[
\Delta v_2 + su_1^{-1} u_2^{s-1} = 0 \quad \text{in } \Omega, \quad v_2 = 0 \quad \text{on } \partial\Omega
\]
has no positive solutions.

In case \(m = 1 \), we recover the following result of E. Mitidieri [8]. We provide some details, in order to point out that some restrictions in [8] can be relaxed.

\textbf{Proposition 2} Assume that \(\Omega \) is a star-shaped domain with respect to the origin, and for some real constant \(\alpha \), and all \(u > 0, v > 0 \) we have
\[
\alpha uH_u(u, v) + (1 - \alpha)vH_v(u, v) > \frac{n}{n-2} H(u, v).
\] (2.9)
Then the problem (2.1) has no positive solution.

Comparing this result to E. Mitidieri [8], observe that we do not require that \(H_u(0,0) = H_v(0,0) = 0 \).

An important subclass of (2.1) is

\[
\Delta u + f(v) = 0 \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \\
\Delta v + g(u) = 0 \quad \text{in } \Omega, \quad v = 0 \quad \text{on } \partial \Omega,
\]

which corresponds to \(H(u,v) = F(v) + G(u) \), where as before, \(F(v) = \int_0^v f(t) \, dt \), \(G(u) = \int_0^u g(t) \, dt \). Unlike [8], we do not require that \(f(0) = g(0) = 0 \). The Theorem 2.1 now reads as follows.

Theorem 2.2 Let \(f, g \in C(\bar{\mathbb{R}}_+) \). For any positive solution of (2.10), and any real number \(a \), one has

\[
\int_{\Omega} [2n(F(v) + G(u)) + (2 - n)(avf(v) + (2 - a)ug(u))] \, dx \\
= 2\int_{\partial \Omega} (x \cdot \nu)[\nabla u][\nabla v] \, dS.
\]

(2.11)

We now consider a particular system

\[
\Delta u + v^p = 0 \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \\
\Delta v + g(u) = 0 \quad \text{in } \Omega, \quad v = 0 \quad \text{on } \partial \Omega,
\]

(2.12)

with \(g(u) \in C(\bar{\mathbb{R}}_+) \), and a constant \(p > 0 \).

Theorem 2.3 Assume that \(\Omega \) is a star-shaped domain with respect to the origin, and

\[
nG(u) + (2 - n) \left(1 - \frac{n}{(n - 2)(p + 1)} \right) ug(u) < 0, \quad \text{for all } u > 0.
\]

(2.13)

Then the problem (2.12) has no positive solution.

Proof. We use Pohozaev’s identity (2.11), with \(f(v) = v^p \). We select the constant \(a \), so that

\[
2nF(v) + (2 - n)avf(v) = 0,
\]

i.e., \(a = \frac{2n}{(n - 2)(p + 1)} \). Then, assuming existence of a positive solution, the left hand side of (2.11) is negative, while the right hand side is non-negative, a contradiction. \(\Box \)

Observe that in case \(p = 1 \), the Theorem 2.3 provides a non-existence result for a biharmonic problem with Navier boundary conditions (in E. Mitidieri [8], a separate identity was used to cover the biharmonic case)

\[
\Delta^2 u = g(u) \quad \text{in } \Omega, \quad u = \Delta u = 0 \quad \text{on } \partial \Omega.
\]

(2.14)

Proposition 3 Assume that \(\Omega \) is a star-shaped domain with respect to the origin, and the condition (2.13) holds. Then the problem (2.14) has no positive solution.
Finally, we consider the system
\[
\begin{align*}
\Delta u + v^p &= 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \\
\Delta v + u^q &= 0 \text{ in } \Omega, \quad v = 0 \text{ on } \partial \Omega.
\end{align*}
\] (2.15)

The curve \(\frac{1}{p+1} + \frac{1}{q+1} = \frac{n-2}{n} \) is called a critical hyperbola. We recover the following well known result of E. Mitidieri [8], see also R.C.A.M. Van der Vorst [15]. (Observe that we relax the restriction \(p, q > 1 \) from [8].)

Proposition 4 Assume that \(p, q > 0 \), and
\[
\frac{1}{p+1} + \frac{1}{q+1} < \frac{n-2}{n}.
\] (2.16)

Then the problem (2.15) has no positive solution.

Proof. Condition (2.16) is equivalent to (2.13), and the Theorem 2.3 applies. ♦

In case \(p = 1 \), we have the following known result, see E. Mitidieri [8].

Proposition 5 Assume that \(\Omega \) is a star-shaped domain with respect to the origin, and \(q > \frac{n+4}{n-4} \). Then the problem
\[
\Delta^2 u = u^q \text{ in } \Omega, \quad u = \Delta u = 0 \text{ on } \partial \Omega
\]
has no positive solutions.

3 Pohozaev's identity for a version of \(p \)-Laplace equation

We consider the following version of \(p \)-Laplace equation
\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \varphi(u_{x_i}) + f(u) = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega.
\] (3.1)

Here \(\varphi(t) = t|t|^{p-2} \), with a constant \(p > 1 \). This is a variational equation for the functional
\[
\int_{\Omega} \left[\frac{1}{p} (|u_{x_1}|^p + \ldots + |u_{x_n}|^p) - F(u) \right] \, dx.
\]
This equation is known to the experts, see P. Lindqvist [7], but it has not been studied much.

Observe that \(\varphi(at) = a^{p-1} \varphi(t) \), for any constant \(a > 0 \). Also, \(\varphi'(t) = (p-1)|t|^{p-2} \), i.e.,
\[
t \varphi'(t) = (p-1) \varphi(t).
\] (3.2)

Letting, as before, \(z = x \cdot \nabla u = \sum_{i=1}^{n} x_i u_{x_i} \), we see that \(z \) satisfies
\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} [\varphi'(u_{x_i}) z_{x_i}] + f'(u) z = -pf(u).
\] (3.3)

To derive (3.3), we consider \(u^s(x) \equiv u(sx) \), which satisfies
\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \varphi(u^s_{x_i}) = -s^p f(u^s).
\] (3.4)
(To see that, it is convenient to write (3.1) as \(\sum_{i=1}^{n} \varphi'\left(\frac{\partial}{\partial x_i} u \right) \frac{\partial^2}{\partial x_i^2} u + f(u) = 0 \).) Then differentiating (3.4) with respect to \(s \), and setting \(s = 1 \), we obtain (3.3). (Alternatively, to derive (3.3), one could differentiate (3.1) in \(x_j \), then multiply by \(x_j \), and sum in \(j \).)

Proposition 6 Any solution of (3.1) satisfies

\[
\int_{\Omega} \left[pnF(u) + (p - n)uf(u) \right] \, dx = (p - 1) \int_{\partial\Omega} (x \cdot \nu) |\nabla u| \sum_{i=1}^{n} \varphi(|\nabla u|\nu_i) \nu_i \, dS, \tag{3.5}
\]

where \(\nu_i \) is the \(i \)-th component of \(\nu \), the unit normal vector on \(\partial\Omega \), pointing outside.

Proof. Multiply the equation (3.1) by \(z \), and write the result as

\[
(p - 1) \sum_{i=1}^{n} \left([z\varphi(u_{x_i})] - (p - 1) \sum_{i=1}^{n} \varphi(u_{x_i})z_{x_i} + (p - 1)f(u)z \right) = 0. \tag{3.6}
\]

Multiply the equation (3.3) by \(u \), and write the result as

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left([u\varphi'(u_{x_i})z_{x_i}] - \sum_{i=1}^{n} u_{x_i}\varphi'(u_{x_i})z_{x_i} + f'(u)uz \right) = -pfuf(u). \tag{3.7}
\]

We now subtract (3.7) from (3.6). In view of (3.2), we have a cancellation, and so we obtain

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left([(p - 1)z\varphi(u_{x_i}) - u\varphi'(u_{x_i})z_{x_i}] + [(p - 1)f(u) - uf'(u)]z \right) = pfuf(u). \]

As before,

\[
[(p - 1)f(u) - uf'(u)]z = \sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} (pF(u) - uf(u)) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} [x_i (pF(u) - uf(u))] - n(pF(u) - uf(u)). \tag{3.8}
\]

This gives us a differential form of Pohozaev’s identity

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} [(p - 1)z\varphi(u_{x_i}) - u\varphi'(u_{x_i})z_{x_i} + x_i (pF(u) - uf(u))] = pnF(u) + (p - n)uf(u). \tag{3.9}
\]

Integrating, and using the divergence theorem, we conclude the proof. \(\diamond \)

For star-shaped domains, the right hand side of (3.5) is non-negative, so if

\[
 pnF(u) + (p - n)uf(u) < 0 \text{ for all } u,
\]

then the problem (3.1) has no non-trivial solutions.

Example For star-shaped domains, the problem

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \varphi(u_{x_i}) + u|u|^{r-1} = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega
\]

has no non-trivial solutions, provided the constant \(r \) satisfies \(r > \frac{mp - n + p}{n - p} \).

Acknowledgment Supported in part by the Taft Faculty Grant at the University of Cincinnati. It is a pleasure to thank T. Adamowicz for pointing out the reference [7] to me.
References

[12] F. Rellich, Darstellung der Eigenwerte von $\Delta u + \lambda u = 0$ durch ein Randintegral. (German) *Math. Z.* 46 (1940), 635-636.

