Orthogonal Projection is a Linear Transformation

Linear Algebra MATH 2076

Orthogonal Projection onto a Vector Subspace $\mathbb W$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^k \operatorname{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^k \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i \text{ and } \vec{z} = \vec{x} - \vec{p}.$$

Definition

We call \vec{p} the orthogonal projection of \vec{x} onto \mathbb{W} , and write $\vec{p} = \operatorname{Proj}_{\mathbb{W}}(\vec{x})$.

Note that $\mathbb{R}^n \xrightarrow{\operatorname{Proj}_{\mathbb{W}}} \mathbb{R}^n$ is a linear transformation, so

Linear Algebra

Orthogonal Projection is a linear transformation

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n . Consider the LT $\mathbb{R}^n \xrightarrow{\text{Proj}_{\mathbb{W}}} \mathbb{R}^n$ given by orthogonal projection onto \mathbb{W} , so

$$\mathsf{Proj}_{\mathbb{W}}(ec{x}) = \sum_{i=1}^k rac{ec{x} \cdot ec{b}_i}{ec{b}_i \cdot ec{b}_i} ec{b}_i.$$

What are:

- the kernel and range of this LT?
- the standard matrix for this LT?
- the eigenvalues and eigenvectors for this LT?

It is not hard to check that $\mathcal{R}ng(\operatorname{Proj}_{\mathbb{W}}) = \mathbb{W}$, $\mathcal{K}er(\operatorname{Proj}_{\mathbb{W}}) = \mathbb{W}^{\perp}$, and for each \vec{w} in \mathbb{W} , $\operatorname{Proj}_{\mathbb{W}}(\vec{w}) = \vec{w}$ (so 1 is an eigenvalue and $\mathbb{E}(1) = \mathbb{W}$), for each \vec{z} in \mathbb{W}^{\perp} , $\operatorname{Proj}_{\mathbb{W}}(\vec{z}) = \vec{0}$ (so 0 is an eigenvalue and $\mathbb{E}(0) = \mathbb{W}^{\perp}$).

Finding the standard matrix for $\mathsf{Proj}_{\mathbb{W}}$ requires a little work, but this is a worthwhile exercise!

Linear Algebra

Matrix for Orthogonal Projection Onto a Vector

The orthogonal projection of \vec{x} onto \vec{u} is given by

$$\operatorname{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} = (\vec{x} \cdot \vec{u}) \vec{u}$$

provided \vec{u} is a *unit* vector.

Let's compute the standard matrix A for the LT $\mathbb{R}^n \xrightarrow{l} \mathbb{R}^n$ given by $T(\vec{x}) = (\vec{x} \cdot \vec{a})\vec{b}$ where \vec{a}, \vec{b} are fixed vectors in \mathbb{R}^n . Recall that $\operatorname{Col}_j(A) = T(\vec{e_j}) = (\vec{e_j} \cdot \vec{a})\vec{b} = a_j\vec{b}$, where a_1, a_2, \ldots, a_n are the standard coords for \vec{a} .

Thus
$$A = [a_1 \vec{b} \ a_2 \vec{b} \cdots a_n \vec{b}] = \vec{b} [a_1 \ a_2 \dots a_n] = \vec{b} \ \vec{a}^T \neq \vec{a}^T \ \vec{b}.$$

Applying this to the LT $\vec{x} \mapsto \operatorname{Proj}_{\vec{u}}(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u}$ we get a standard matrix $P = \vec{u} \cdot \vec{u}^T$. That is, $\operatorname{Proj}_{\vec{u}}(\vec{x}) = P\vec{x}$. Don't forget, this requires that \vec{u} be a *unit* vector!

Matrix for Orthogonal Projection Onto a Vector SubSpace

Let $\mathcal{U} = \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ be *orthon* basis for a vector subspace \mathbb{W} of \mathbb{R}^n . The LT $\mathbb{R}^n \xrightarrow{\text{Proj}_{\mathbb{W}}} \mathbb{R}^n$ given by orthogonal projection onto \mathbb{W} ,

$$\mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} (\vec{x} \cdot \vec{u_i}) \ \vec{u_i} = \sum_{i=1}^{k} \mathsf{Proj}_{\vec{u_i}}(\vec{x})$$

has standard matrix

$$P = \sum_{i=1}^{k} \vec{u_i} \, \vec{u_i}^{\mathsf{T}} = U \, U^{\mathsf{T}}$$

where

$$U=\left[\vec{u_1}\ \vec{u_2}\cdots\vec{u_k}\right].$$

That is, $|\operatorname{Proj}_{\mathbb{W}}(\vec{x}) = P\vec{x}|$. This requires that \mathcal{U} be an *orthon* basis!

Linear Algebra

Orthog Proj is an LT

Chapter 6, Section 3 PLT

5/5