ASYMPTOTIC PROPERTIES OF THE VECTOR CARLESON EMBEDDING THEOREM

MICHAEL GOLDBERG

Abstract. The dyadic Carleson embedding operator acting on \mathbb{C}^n-valued functions has norm at least $C \log n$. Thus the Carleson Embedding Theorem fails for Hilbert space valued functions.

Let \mathbb{T} be the unit circle in \mathbb{C}, and $\{I\}_{I \in D}$ its collection of dyadic arcs. Let w_I be nonnegative real numbers indexed by $I \in D$. For integrable functions f on \mathbb{T}, denote by $\langle f \rangle_I$ the average $|I|^{-1} \int_I f(y)dy$. The classical Carleson embedding theorem [1] is equivalent to the following dyadic result:

Theorem 0. If $\sum_{I \subset K} w_I \leq |K|$ for all $K \in D$, then $\sum_{I \in D} w_I \langle f \rangle_I^2 \leq C \|f\|^2$ for all $f \in L^2(\mathbb{T})$.

The converse is also true (up to the placement of constants) and is verified by considering functions of the form $f = \chi_J, J \in D$.

An analogous statement may be made for functions taking values in \mathbb{C}^n with matrix-valued weights $W_I \geq 0$ in the sense of quadratic forms. We wish to consider the following n-dimensional embedding theorem:

Proposition. If $\|\sum_{I \subset K} W_I\| \leq |K|$ for all $K \in D$, then $\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) \leq C_n \|f\|^2$ for all $f \in L^2(\mathbb{T}; \mathbb{C}^n)$.

The space \mathbb{C}^n here is viewed as a finite-dimensional Hilbert space. One might ask whether a similar result still holds when f takes values in a general Hilbert space \mathbb{H} and W_I are positive selfadjoint operators. This is answered in the negative by [4], which proves that C_n must be bounded from below by $c \log n$. In the current paper we will use the construction in [4] to verify the stronger bound $C_n \geq c (\log n)^2$, which is also proved in [5]. A precise statement is as follows:

Theorem 1. There exist a function $f \in L^2(\mathbb{T}; \mathbb{C}^n)$ and matrix weights $W_I \geq 0$ such that $\|\sum_{I \subset K} W_I\| \leq |K|$ and $\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) \geq c (\log n)^2 \|f\|^2$, where $c > 0$ is independent of n.

Remarks. The example presented here is due to Nazarov, Treil, and Volberg [4]. It is further shown in [3] and [4] that the best possible C_n is bounded above by $C (\log n)^2$, making these results sharp up to a constant factor.

Proof of Theorem 1. Let e_0, e_1, \ldots, e_n be the standard basis for \mathbb{C}^{n+1}. Define the Rademacher functions $r_j(e^{2\pi i t}) = (-1)^{2jt}$. For a dyadic interval $I, |I| \leq 2^{-j}$, r_j is seen to be constant along I. Its value throughout the interval will be called $r_j(I)$.

Date: May 9, 2000.
Let \(f(x) = \sum_{j=0}^{n} r_j(x)e_j \). Clearly \(\|f\|^2 = n + 1 \). The averages of \(f \) over dyadic intervals are also easy to compute. When \(|I| = 2^{-i} \), \(f(I) = \sum_{j=0}^{i} r_j(I)e_j \).

Let \(W_I, |I| \geq 2^{-n} \) be the rank-one operator satisfying \(W_Iv = |I|(v, \phi_I)\phi_I \), where \(\phi_I = \sum_{j=0}^{i} \frac{1}{i+j-1} r_j(I)e_j \). Define \(\phi_I \) to be 0 when \(|I| < 2^{-n} \). Already we can estimate the sum

\[
\sum_{I \in D} (W_I(f)_I, (f)_I) = \sum_{I \in D} |I|((f)_I, \phi_I)^2 = \sum_{I \in D} \left(\sum_{j=0}^{i} \frac{1}{i + 1 - j} \right)^2 \geq cn(\log n)^2
\]

The only task remaining is to show that \(\| \sum_{I \subseteq K} W_I \| \) is controlled by \(|K| \). We will prove the estimate \(\sum_{I \subseteq K} W_Iv, v = \sum_{I \subseteq K} |I|(v, \phi_I)^2 \leq C|K||v|^2 \) for all \(v \in C^{n+1} \).

For each interval \(I \) with \(|I| = 2^{-i} \), split the vector \(\phi_I \) into the sum of two parts, \(\phi_I = \sum_{j=0}^{k} \frac{1}{i + j - 1} r_j(K)e_j + \sum_{j=k+1}^{n} \frac{1}{i + j - 1} r_j(I)e_j \). Denote the first sum, which depends only on the length of \(I \subseteq K \), by \(g_i \). Summing over all \(I \) with \(|I| = 2^{-i} \), and exploiting the orthogonality of the Rademacher functions,

\[
\sum_{I \subseteq K} |I|(v, \phi_I)^2 = |K|(v, g_i)^2 + \sum_{j=k+1}^{n} \frac{1}{(i + 1 - j)^2} |v_j|^2
\]

Thus

\[
\sum_{I \subseteq K} (W_Iv, v) = |K|(\sum_{i=k}^{n} (v, g_i)^2 + \sum_{j=k+1}^{n} |v_j|^2 \sum_{i=j}^{n} \frac{1}{(i + 1 - j)^2})
\]

The second sum is less than \(C|K| \sum_{j=0}^{n} |v_j|^2 = C|K|^2 |v|^2 \). To estimate the first sum, let \(G \) represent the \((n - k + 1) \times (k + 1)\) matrix whose \(i \) entry is the coefficient of \(e_{j-1} \) in \(g_{i+k-1} \). Then \(\sum_{i=k}^{n} (v, g_i)^2 \leq \|G\|^2 |v|^2 \). Here \(\|G\| \) is taken as an operator from \(C^{k+1} \) to \(C^{n-k+1} \). Under a suitable permutation of indices, however, \(G \) is seen to be a restriction of the Hilbert matrix \(A_i(A_{ij} = \frac{1}{i+j}) \) to finite-dimensional subspaces. It is well known [2] that \(A \) is bounded from \(\ell^2(\mathbb{N}) \) to itself. Thus the first sum is less than \(|K||v|^2 = C|K|^2 |v|^2 \). Dividing all weights \(W_I \) by an appropriate constant proves the theorem.

References

AMS subject Classification: 42B20, 42A50
Keywords: Carleson embedding theorem, vector valued functions, operator valued measures, weights.

Department of Mathematics, University of California, Berkeley, CA 94720-3840
E-mail address: mikeg@math.berkeley.edu