Analysis of the Convergence Behavior of the Static Localized Nonlinear Approximation for an Electromagnetic Scattering Problem

Donald A. French *
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025

March 10, 2001

Abstract

A study of the convergence behavior of the static localized nonlinear approximation introduced by Habashy, Groom, and Spies [3] is furnished for a specific case of the time-harmonic Maxwell equations. Some asymptotics are used to explain the robustness of this scheme in the high conductivity case.

1. Introduction:

We will study the static localized nonlinear(SLN) approximation introduced in [3] applied to the nondimensionalized time-harmonic Maxwell equations,

$$
\begin{equation*}
\nabla \times E-i \gamma H=-M_{s} \text { and } \quad \nabla \times H-\gamma \sigma E=0 \text { in } \quad \mathbf{R}^{3} \tag{1}
\end{equation*}
$$

where

$$
\sigma(x)= \begin{cases}\sigma_{s} / \sigma_{b} & \text { if } x \in \Omega \\ 1 & \text { if } x \in \mathbf{R}^{3}-\Omega\end{cases}
$$

The set Ω is the nondimensionalized domain which represents the scatterer and γ is a parameter which we will assume satisfies $0<\gamma<1$. The positive constants σ_{s} and σ_{b} are conductivities in the scatterer and background, respectively. The functions E and H are the rescaled electric and magnetic fields, respectively, and M_{s} is the magnetic source.

As in Habashy et al [3] we will focus on the case where the scatterer Ω is a simple closed region, there is a source (transmitter) outside of Ω so M_{s} is a vector multiple of the delta function, and we are interested in the accuracy of our approximation at some point (receiver) outside of Ω.

[^0]It can be shown that the magnetic field satisfies the following integral equation

$$
\begin{equation*}
H(x)=H_{b}(x)+\gamma \nabla_{x} \times \int_{\Omega} g(x, y) q(y) E(y) d y \tag{2}
\end{equation*}
$$

where

$$
g(x, y):=\frac{e^{i \gamma \zeta|x-y|}}{4 \pi|x-y|}
$$

with $\zeta=(1+i) / \sqrt{2}$. The function $q=\sigma-1$. The function H_{b} is the background magnetic field and is assumed to be given in this situation. The well known Born approximation which we will also consider is formed by substituting the given background electric field E_{b} in the right side for E;

$$
\begin{equation*}
H_{B}(x)=H_{b}(x)+\gamma \nabla_{x} \times \int_{\Omega} g(x, y) q(y) E_{b}(y) d y . \tag{3}
\end{equation*}
$$

The SLN approximation has the form

$$
H_{S L N}(x)=H_{b}(x)+\gamma \nabla_{x} \times \int_{\Omega} g(x, y) q(y) \Gamma_{0} E_{b}(y) d y
$$

where

$$
\Gamma_{0}:=\frac{3 \sigma_{b}}{2 \sigma_{b}+\sigma_{s}} I
$$

A discussion of the motivation for this new approximation is given in section 3.
The paper [3] which introduces the SLN approximation also provides computational results in the case Ω is a sphere and M_{s} is a delta function. These numerics give evidence that the SLN and Born approximations are accurate if $\sigma_{s} / \sigma_{b}, \omega$, and D are of moderate size and the parameters $\rho_{R}=\operatorname{dist}\left(x_{R}, \Omega\right)$ and $\rho_{T}=\operatorname{dist}\left(x_{T}, \Omega\right)$ are large ($\rho_{R}>1$ and $\rho_{T}>1$) where x_{R} and x_{T} are the receiver and transmitter locations, respectively. The computations also indicate that when the contrast σ_{s} / σ_{b} is large the Born approximation fails while the SLN remains reasonably accurate. Our results in this paper support these conclusions and provide some theoretical reasons for these observations. Note that throughout this paper C will represent an $O(1)$ positive constant.

We now give a brief outline and summarize our main results. In section 2 we describe the nondimensionalization and give sample values for the various parameters. In section 3 a derivation of the SLN approximation is presented. Section 4 contains some basic a priori estimates on the L^{2}-norm of the scattered E-field. In section 5 we show the following:

$$
\begin{equation*}
\left|\left(H-H_{B}\right)\left(x_{R}\right)\right| \leq C Q \gamma \rho_{R}^{-1} \rho_{T}^{-1} \quad \text { and } \quad\left|\left(H-H_{S L N}\right)\left(x_{R}\right)\right| \leq C Q \gamma \rho_{R}^{-1} \rho_{T}^{-1} \tag{4}
\end{equation*}
$$

where $Q=\left.q\right|_{\Omega}=\left(\sigma_{s}-\sigma_{b}\right) / \sigma_{b}$. Both of these upper bounds "blow up" as $Q \rightarrow \infty$. This is an appropriate portrayal of the behavior of the Born approximation (see [3]). The SLN approximation,
however, is more robust. In section 6 we give a nonrigorous asymptotic argument that $E \rightarrow 0$ as $Q \rightarrow \infty$ in the scatterer and this allows us to argue, in section 7, that

$$
\begin{equation*}
\left|\left(H-H_{S L N}\right)\left(x_{R}\right)\right| \leq C \rho_{R}^{-1} \rho_{T}^{-1} \tag{5}
\end{equation*}
$$

when Q is large which is our other main result.
Acknowledgement: The first author is grateful to Fadil Santosa and Bernardo Cockburn for introducing him to this problem. The problem originated in a meeting involving Cockburn, Santosa, and T.M. Habashy at Schlumberger-Doll Research.

2. Nondimensionalization:

The time harmonic Maxwell equations which we study, before nondimensionalization, are as follows

$$
\begin{gather*}
\tilde{\nabla} \times \tilde{E}-i \omega \mu_{b} \tilde{H}=-\tilde{M}_{s}(\tilde{x}) \quad \text { in } \quad \mathbf{R}^{3} \tag{6}\\
\tilde{\nabla} \times \tilde{H}-\tilde{\sigma}(\tilde{x}) \tilde{E}=0 \quad \text { in } \quad \mathbf{R}^{3} \tag{7}
\end{gather*}
$$

where \tilde{E} is the electric field, \tilde{H} is the magnetic field, $\omega>0$ is the frequency, μ_{b} is the background magnetic permittivity, \tilde{M}_{s} is the impressed magnetic source, and we have set the background electric permittivity equal to zero since it is typically negligibly small ($\epsilon_{b}=8.854 \times 10^{-12} \mathrm{f} / \mathrm{m}$ where $f=$ Farads and $\left.f / m=C^{2} /\left(N m^{2}\right)\right)$. The conductivity has the special form

$$
\tilde{\sigma}(\tilde{x})= \begin{cases}\sigma_{s} & \text { if } \tilde{x} \in \tilde{\Omega} \\ \sigma_{b} & \text { if } \tilde{x} \in \mathbf{R}^{3}-\tilde{\Omega} .\end{cases}
$$

where the constant $\sigma_{s}>0$ is the conductivity in the scatterer which is the set $\tilde{\Omega}$ that is a bounded simply connected region with diameter D and a smooth boundary. The constant $\sigma_{b}>0$ is the constant background conductivity. Primarily for simplicity we will assume that $\sigma_{s} \geq \sigma_{b}$. We assume \tilde{M}_{s} has compact support in $\mathbf{R}^{3}-\tilde{\Omega}$.

Below is a table with some specific values for the constants as suggested in [3].

Name	Value	Units
Frequency	$\omega=100 \mathrm{~Hz}$	$H z=s^{-1}$
Scatterer Diameter	$D=30 \mathrm{~m}$	$\mathrm{~m}=$ meters
Background Conductivity	$\sigma_{b}=0.1 \mathrm{~S} / \mathrm{m}$	$S / \mathrm{m}=C^{2} /\left(N \mathrm{~m}^{2} s\right)$
Background Permittivity	$\mu_{b}=1.2 \times 10^{-6} \mathrm{~h} / \mathrm{m}$	$h / m=\left(N \mathrm{~s}^{2}\right) /\left(C^{2}\right)$
Electric Field	$E_{c}=10^{-10} v / m$	$v / m=N / C$
Magnetic Field	$H_{c}=3 \times 10^{-9} a / m$	$a / m=C /(m s)$
Magnetic Source	$M_{s, c}=3.3 \times 10^{-11} v / m^{2}$	$v / \mathrm{m}^{2}=N /(C m)$
Transmitter Location	$\tilde{\rho}_{T}=60 \mathrm{~m}$	$m=$ meters
Receiver Location	$\tilde{\rho}_{R}=60 \mathrm{~m}$	$m=$ meters

Variables and Units ($C=$ Coulombs, $s=$ seconds, $N=$ Newtons, $H z=$ Hertz, $S=$ Siemens, $h=$ henrys, v $=$ volts, and $a=\mathrm{amps})$.

Note that $\tilde{\rho}_{R}=\operatorname{dist}\left(\tilde{x}_{R}, \tilde{\Omega}\right)$ and $\tilde{\rho}_{T}=\operatorname{dist}\left(\tilde{x}_{T}, \tilde{\Omega}\right)$ where \tilde{x}_{R} and \tilde{x}_{T} are the receiver and transmitter locations, respectively. We now make the following variable changes to simplify,

$$
\begin{gathered}
\gamma=\sqrt{\omega \mu_{b} \sigma_{b}} D, \tilde{x}=D x, \tilde{E}(\tilde{x})=E_{c} E(x), \\
\tilde{M}_{s}(\tilde{x})=M_{s, c} M_{s}(x), \tilde{\sigma}(\tilde{x})=\sigma_{b} \sigma(x), \text { and } \tilde{H}(\tilde{x})=H_{c} H(x)
\end{gathered}
$$

where we relate

$$
H_{c}=\sigma_{b} D \gamma^{-1} E_{c} \quad \text { and } \quad E_{c}=D M_{s, c} .
$$

We also define

$$
\rho_{T}=\tilde{\rho}_{T} / D \quad \text { and } \quad \rho_{R}=\tilde{\rho}_{R} / D .
$$

Using these substitutions in (6)-(7) we obtain the equations (1). Note that $\gamma=0.104$ so that our assumption on the size of γ is satisfied.

Other forms of the Maxwell equations will be useful in our analysis. Taking the curl of one of the equations and substituting in the other we obtain

$$
\begin{align*}
& \nabla \times \nabla \times E-i \gamma^{2} \sigma E=-\nabla \times M_{s} \tag{8}\\
& \nabla \times\left(\sigma^{-1} \nabla \times H\right)-i \gamma^{2} H=\gamma M_{s} \tag{9}
\end{align*}
$$

We now split the fields into the background and scattered fields $E=E_{b}+E_{s}$ and $H=H_{b}+H_{s}$ where from (1) we have

$$
\begin{equation*}
\nabla \times E_{b}-i \gamma H_{b}=-M_{s} \text { and } \nabla \times H_{b}-\gamma E_{b}=0 \text { in } \mathbf{R}^{3} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times E_{s}-i \gamma H_{s}=0 \text { and } \nabla \times H_{s}-\gamma \sigma E_{s}=\gamma q E_{b} \text { in } \mathbf{R}^{3} . \tag{11}
\end{equation*}
$$

Again taking the curl of one equation and substituting in the other we have

$$
\begin{align*}
\nabla \times \nabla \times E_{s}-i \gamma^{2} \sigma E_{s} & =i \gamma^{2} q E_{b} . \tag{12}\\
\nabla \times\left(\sigma^{-1} \nabla \times H_{s}\right)-i \gamma^{2} H_{s} & =\gamma \nabla \times\left(\frac{q}{\sigma} E_{b}\right) . \tag{13}
\end{align*}
$$

For later use let $Q=\left.q\right|_{\Omega}=\left(\sigma_{s}-\sigma_{b}\right) / \sigma_{b}$ be the conductivity contrast.

3. The Born and Static Localized Nonlinear Approximations:

In this section we describe the well-known Born approximation and introduce the SLN approximation of [3]. To accomplish this we must describe the Green's function representation of the electric field solution of (12). The function g satisfies

$$
\Delta_{y} g(x, y)+i \gamma^{2} g(x, y)=-\delta(x-y)
$$

and from this (see Kong [5]) we find that

$$
G(x, y)=\left(I+\left(i \gamma^{2}\right)^{-1} \nabla_{x}^{2}\right) g(x, y) \text { satisfies } \quad \nabla_{y} \times \nabla_{y} \times G-i \gamma^{2} G=-\delta(x-y) I .
$$

It can be shown using the properties of g and G that

$$
E_{s}(x)=\left(i \gamma^{2} I+\nabla_{x}^{2}\right) \int_{\Omega} g(x, y) q(y) E(y) d y .
$$

Then

$$
\begin{equation*}
E(x)=E_{b}(x)+\left(i \gamma^{2} I+\nabla_{x}^{2}\right) \int_{\Omega} g(x, y) q(y) E(y) d y . \tag{14}
\end{equation*}
$$

One can now derive (2) from the above and the Maxwell equations (1).
To introduce the new approximation from Habashy, Groom, and Spies we find, by rewriting (14), that

$$
\begin{equation*}
E(x)=E_{b}(x)+\left[\left(i \gamma^{2} I+\nabla_{x}^{2}\right) \mathcal{G}(x)\right] E(x)+T(x) \tag{15}
\end{equation*}
$$

where

$$
T(x)=\left.\left(i \gamma^{2} I+\nabla_{x}^{2}\right) \int_{\Omega} g(x, y) q(y)(E(y)-E(\bar{x})) d y\right|_{\bar{x}=x}
$$

and

$$
\mathcal{G}(x)=\int_{\Omega} g(x, y) q(y) d y
$$

We then have

$$
E=\Gamma\left(E_{b}+T\right) .
$$

where

$$
\Gamma^{-1}(x)=I-\left(i \gamma^{2} I+\nabla_{x}^{2}\right) \mathcal{G}(x) .
$$

Substituting this expression for E in (2) we obtain

$$
H=H_{L N}+e
$$

where $H_{L N}$ is the localized nonlinear approximation;

$$
H_{L N}(x)=H_{b}(x)+\gamma \nabla_{x} \times \int_{\Omega} g(x, y) q(y) \Gamma(y) E_{b}(y) d y
$$

and the error term is

$$
e(x)=\gamma \nabla_{x} \times \int_{\Omega} g(x, y) q(y) \Gamma(y) T(y) d y .
$$

The terminology is motivated by the localization that occurs in (15) and the fact that $H_{L N}$ is not linear in q (since Γ depends on q) while the typical algorithms such as Born are linear in q.

Finally, we define the SLN approximation. This is introduced in [3] by examining the Γ function defined above in the case where γ is small. They find that $\Gamma \cong \Gamma_{0}$ and then define $H_{S L N}$ from the above.

4. A Priori Estimate for E :

In this section we derive an L^{2}-estimate for the scattered electric field where the bound depends on the L^{2}-norm of the background field E_{b}. This estimate will be useful in our error analysis.

Since the background conductivity is nonzero in all of \mathbf{R}^{3} it follows that the solutions to our problem will decay exponentially as $|x| \rightarrow \infty$. This is clear from examining the Green's function formulations (see (14) and (2)). It is natural to require

$$
\begin{equation*}
[E \times \nu]=0 \quad \text { and } \quad[H \times \nu]=0 \quad \text { on } \partial \Omega \tag{16}
\end{equation*}
$$

where

$$
[v]=\left.v\right|_{\text {Limit from inside } \Omega}-\left.v\right|_{\text {Limit from outside } \Omega} .
$$

and ν is the outward pointing unit normal from Ω to $\partial \Omega$. These conditions imply that the traces of the tangential components of E and H are continuous. We assume that there exists a unique solution consisting of E and H fields which satisfy the Maxwell equations, decay exponentially for large $|x|$ and satisfy the conditions (16) (see [1] for a proof of existence).

Complementary to the conditions (16) are the following conditions shown in [1] on the normal components:

$$
\begin{equation*}
[\sigma E \cdot \nu]=0 \text { and }[H \cdot \nu]=0 \text { on } \partial \Omega \text {. } \tag{17}
\end{equation*}
$$

Note that the statements (16) and (17) apply to E_{s} and H_{s} since the background fields are smooth across $\partial \Omega_{\gamma}$. Also observe that (16) and (17) imply that H and H_{s} are continuous across $\partial \Omega$.

We will need to evaluate the divergence of the E and H fields. If we compute this quantity in Ω and $\mathbf{R}^{3}-\Omega$ separately and note that $\nabla q(x)=0$ in these regions we have from (1)

$$
\begin{equation*}
\nabla \cdot E_{s}(x)=0 \quad \text { and } \quad \nabla \cdot H_{s}(x)=0 \tag{18}
\end{equation*}
$$

(Note that $\nabla \cdot E_{b}=0$).
The Green identity

$$
\begin{equation*}
\int_{V}(\nabla \times F) \cdot L d x=\int_{V} F \cdot(\nabla \times L) d x+\int_{\partial V}(F \times L) \cdot \nu d s \tag{19}
\end{equation*}
$$

will allow us to derive a variational formula from which we can obtain the desired estimate. We will use the arithmetic-geometric mean inequality,

$$
\begin{equation*}
a b \leq \beta a^{2}+\frac{1}{4 \beta} b^{2}, \quad(0<\beta<1) \tag{20}
\end{equation*}
$$

We are now in a position to derive the estimate for E_{s}. We first take the dot product of the defining equation for E_{s}, (12), with the conjugate \bar{E}_{s}, and apply (19) in Ω and $\mathbf{R}^{3}-\Omega$ separately. This yields

$$
\left(\int_{\Omega}+\int_{\mathbf{R}^{3} \backslash \Omega}\right)\left|\nabla \times E_{s}\right|^{2} d x+\int_{\partial \Omega}\left[\nabla \times E_{s} \times \bar{E}_{s} \cdot \nu\right] d s-i \gamma^{2} \int_{\mathbf{R}^{3}} \sigma\left|E_{s}\right|^{2} d x=i \gamma^{2} \int_{\Omega} q E_{b} \cdot \bar{E}_{s} d x .
$$

Since $\nabla \times E$ is not defined on $\partial \Omega$ we must integrate it over Ω and $\mathbf{R}^{3}-\Omega$ separately. For this we use the more concise notation

$$
\left(\int_{\Omega}+\int_{\mathbf{R}^{3} \backslash \Omega}\right) f d x=\int_{\Omega} f d x+\int_{\mathbf{R}^{3}-\Omega} f d x .
$$

Using (11) to rewrite the boundary term and the identity $H_{s} \times \bar{E}_{s} \cdot \nu=\bar{E}_{s} \times \nu \cdot H_{s}$. We have

$$
\left(\int_{\Omega}+\int_{\mathbf{R}^{3} \backslash \Omega}\right)\left|\nabla \times E_{s}\right|^{2} d x-i \gamma^{2} \int_{\mathbf{R}^{3}} \sigma\left|E_{s}\right|^{2} d x+i \gamma \int_{\partial \Omega}\left[\bar{E}_{s} \times \nu \cdot H_{s}\right] d s=i \gamma^{2} \int_{\Omega} q E_{b} \cdot \bar{E}_{s} d x
$$

The boundary term vanishes due to (16) and the fact that H_{s} is continuous across $\partial \Omega$. Now, taking real and imaginary parts and using (20) we obtain

$$
\begin{equation*}
\left(\int_{\Omega}+\int_{\mathbf{R}^{3} \backslash \Omega}\right)\left|\nabla \times E_{s}\right|^{2} d x+\gamma^{2} \int_{\mathbf{R}^{3}} \sigma\left|E_{s}\right|^{2} d x=\gamma^{2} \int_{\Omega} q\left|E_{b}\right|^{2} d x . \tag{21}
\end{equation*}
$$

5. Estimates for the Born and SLN Approximations:

In this section we furnish the estimates (4) for the accuracy of the Born and SLN approximations in the case when the constrast σ_{s} / σ_{b} is of moderate size. In this case we note that from (21) we have

$$
\begin{equation*}
\left\|E_{s}\right\|_{L^{2}(\Omega)} \leq\left\|E_{b}\right\|_{L^{2}(\Omega)} \tag{22}
\end{equation*}
$$

We assume that E_{b} on Ω satisfies the estimate

$$
\begin{equation*}
\left\|E_{b}\right\|_{L^{\infty}(\Omega)} \leq C \rho_{T}^{-1} . \tag{23}
\end{equation*}
$$

This is reasonable if, as in [3], we have $M_{s}=\delta\left(\cdot-x_{T}\right) U_{b}$ where U_{b} is a vector with $\left|U_{b}\right|=O(1)$ and then $E_{b}=-\nabla g\left(\cdot, x_{T}\right) \times U_{b}$. It then follows that

$$
E_{b}(x)=\frac{-e^{i \gamma \zeta\left|x-x_{T}\right|}}{4 \pi}\left(\frac{i \gamma \zeta}{\left|x-x_{T}\right|}-\frac{1}{\left|x-x_{T}\right|^{2}}\right) \frac{x-x_{T}}{\left|x-x_{T}\right|} \times U_{b}
$$

and thus for $x \in \Omega$

$$
\left|E_{b}(x)\right| \leq \frac{1}{4 \pi}\left(\frac{\gamma}{\rho_{T}}+\frac{1}{\rho_{T}^{2}}\right)\left|U_{b}\right|
$$

from which (23) follows, as a reasonable hypothesis, since $\gamma<1$ and $\rho_{T} \geq 1$. Observe that a similar argument gives

$$
\begin{equation*}
\left|\nabla g\left(x_{R}, y\right)\right| \leq C \rho_{R}^{-1} \tag{24}
\end{equation*}
$$

for $y \in \Omega$. We are now in a position to estimate the accuracy of the Born approximation. Subtracting (3) from (2) and evaluating the resulting equation at $x=x_{R}$ we have

$$
\left|\left(H-H_{B}\right)\left(x_{R}\right)\right| \leq \gamma Q\left|\int_{\Omega} \nabla g\left(x_{R}, y\right) \times\left(E-E_{b}\right)(y) d y\right| .
$$

From the estimate (24) on $|\nabla g|$ we have

$$
\left|\left(H-H_{B}\right)\left(x_{R}\right)\right| \leq C Q \gamma \rho_{R}^{-1}\left\|E_{s}\right\|_{L^{2}(\Omega)}
$$

and applying (22) we obtain

$$
\left|\left(H-H_{B}\right)\left(x_{R}\right)\right| \leq C Q \gamma \rho_{R}^{-1}\left\|E_{b}\right\|_{L^{2}(\Omega)} \leq C Q \gamma \rho_{R}^{-1} \rho_{T}^{-1} .
$$

This gives the first part of (4). Note that the estimate "blows up" in the case when Q is large which corresponds to the contrast σ_{s} / σ_{b} also being large.

The estimation of the accuracy of the SLN approximation is quite similar and leads to the same result which is the second part of (4). Here we have

$$
\left|\left(H-H_{S L N}\right)\left(x_{R}\right)\right| \leq \gamma Q\left|\int_{\Omega} \nabla g\left(x_{R}, y\right) \times\left(E-\Gamma_{0} E_{b}\right)(y) d y\right|
$$

and the integrand can be decomposed as

$$
E-\Gamma_{0} E_{b}=E_{s}+\left(I-\Gamma_{0}\right) E_{b} .
$$

Thus the estimate will involve two terms, the one with the scattered field which is essentially the Born approximation error term and the second term will have the background field and the $I-\Gamma_{0}$ factor. So

$$
\begin{aligned}
\left|\left(H-H_{S L N}\right)\left(x_{R}\right)\right| & \leq C Q \gamma \rho_{R}^{-1}\left(\|E\|_{L^{2}(\Omega)}+\left|1-\frac{3 \sigma_{b}}{2 \sigma_{b}+\sigma_{s}}\right|\left\|E_{b}\right\|_{L^{2}(\Omega)}\right) \\
& \leq C Q \gamma \rho_{R}^{-1}\left(1+\left|\frac{\sigma_{s}-\sigma_{b}}{2 \sigma_{b}+\sigma_{s}}\right|\right)\|E\|_{L^{2}(\Omega)}
\end{aligned}
$$

From which the second part of (4) follows.

6. Perturbation Approximation of E for High Contrasts:

The numerical experiments in [3] (see figures 3 and 4 on pages 1765 and 1766) indicate that the SLN
approximation is accurate in the high conductivity case when the Born approximation generally fails. The key reason is that the tensors Γ and Γ_{0} tend to zero as $Q \rightarrow \infty$ (this is noted in section 4.1 of [7]). In this section we focus on the behavior of the electric field near the boundary when $\epsilon:=\sqrt{\sigma_{b} / \sigma_{s}}$ is small (equivalent to Q large since $\epsilon=(Q+1)^{-1 / 2}$) and Ω is a sphere. We give a non-rigorous asymptotic argument that $E=0$ over most of the region occupied by the scatterer with a thin layer near the boundary. We will also see that $E=O(\epsilon)$ on that boundary and decays exponentially in the layer.

Let S denote the electric field inside the scatterer and B outside. From (8) and the identity

$$
\begin{equation*}
\nabla \times \nabla \times A=\nabla(\nabla \cdot A)-\Delta A \tag{25}
\end{equation*}
$$

we have that

$$
\begin{gather*}
\Delta S+i \epsilon^{-2} \gamma^{2} S=0 \text { and } \nabla \cdot S=0 \text { in } \Omega \tag{26}\\
\Delta B+i \gamma^{2} B=-\nabla \times M_{s} \text { and } \nabla \cdot B=0 \text { in } \mathbf{R}^{3} \backslash \Omega \tag{27}
\end{gather*}
$$

and conditions

$$
\begin{gather*}
(S-B) \times \nu=0 \text { and }(\nabla \times(S-B)) \times \nu=0 \text { on } \partial \Omega \tag{28}\\
B(x) \rightarrow 0 \text { as }|x| \rightarrow 0 . \tag{29}
\end{gather*}
$$

We first determine the outer solution in the scatterer and thus look for S in the form

$$
S=S^{0}+\epsilon S^{1}+\ldots
$$

Substituting in (26) we obtain, after some rearrangement,

$$
i \epsilon^{-2} \gamma^{2} S^{0}+i \epsilon^{-1} \gamma^{2} S^{1}+\left(\Delta S^{0}+i \gamma^{2} S^{2}\right)+\epsilon\left(\Delta S^{1}+i \gamma^{2} S^{3}\right)+\ldots=0
$$

Setting the coefficients of the differing powers of ϵ on the left side to zero we find that $S^{0}=S^{1}=$ $S^{2}=\ldots=0$. So to match the B and S functions we develop a boundary layer solution.

We now change to spherical coordinates (r, θ, ϕ). Define η by the equation $r=1-\epsilon \eta$ and $W(\eta, \theta, \phi)=S(r, \theta, \phi)$. The function W will provide the behavior of the electric field, S, near $\partial \Omega$ in Ω. Since

$$
\frac{\partial S}{\partial r}=-\frac{1}{\epsilon} \frac{\partial W}{\partial \eta}
$$

the Helmholz equation in (26) becomes

$$
\begin{equation*}
\frac{1}{\epsilon^{2}}\left(\frac{\partial^{2} W}{\partial \eta^{2}}+i \gamma^{2} W\right)-\frac{2}{\epsilon}\left[\frac{\partial}{\partial \eta}\left(\eta \frac{\partial W}{\partial \eta}\right)+i \eta \gamma^{2} W\right]+O(1)=0 \tag{30}
\end{equation*}
$$

From the divergence condition in (26) we have

$$
\begin{equation*}
-\frac{1}{\epsilon} \frac{\partial W_{r}}{\partial \eta}+\left[2 \frac{\partial}{\partial \eta}\left(\eta W_{r}\right)+\nabla_{T} \cdot W_{r}\right]+O(\epsilon)=0 \tag{31}
\end{equation*}
$$

where

$$
W=\left(\begin{array}{c}
W_{r} \\
W_{\theta} \\
W_{\phi}
\end{array}\right), \quad W_{T}=\binom{W_{\theta}}{W_{\phi}}
$$

and

$$
\nabla_{T} \cdot A_{T}=\frac{1}{\sin \theta}\left(\frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{\partial A_{\phi}}{\partial \theta}\right) .
$$

The first part of the boundary condition (28) implies that $W_{T}=B_{T}$ while the second part gives

$$
\frac{1}{\epsilon} \frac{\partial}{\partial \eta}\left(\begin{array}{c}
0 \tag{32}\\
W_{\theta} \\
W_{\phi}
\end{array}\right)+\left(\begin{array}{c}
0 \\
W_{\theta}-\partial W_{r} / \partial \theta \\
W_{\phi}-(\sin \theta)^{-1} \partial W_{r} / \partial \phi
\end{array}\right)+O(\epsilon)=\left(\begin{array}{c}
0 \\
B_{\theta}-\partial B_{r} / \partial \theta \\
B_{\phi}-(\sin \theta)^{-1} \partial B_{r} / \partial \phi
\end{array}\right)
$$

at the boundary. Choosing

$$
W=W^{0}+\epsilon W^{1}+\ldots
$$

we find from (30)-(32) that

$$
\begin{gather*}
\frac{1}{\epsilon^{2}}\left(\frac{\partial^{2} W^{0}}{\partial \eta^{2}}+i \gamma^{2} W^{0}\right)+\frac{1}{\epsilon}\left[\frac{\partial^{2} W^{1}}{\partial \eta^{2}}+i \gamma^{2} W^{1}-2\left(\frac{\partial}{\partial \eta}\left(\eta \frac{\partial W^{0}}{\partial \eta}\right)+i \eta \gamma^{2} W^{0}\right)\right]+O(1)=0 \tag{33}\\
-\frac{1}{\epsilon} \frac{\partial W_{r}^{0}}{\partial \eta}+\left[-\frac{\partial W_{r}^{1}}{\partial \eta}+2 \frac{\partial}{\partial \eta}\left(\eta W_{r}^{0}\right)+\nabla_{T} \cdot W_{r}^{0}\right]+O(\epsilon)=0 \tag{34}
\end{gather*}
$$

and at the boundary

$$
\begin{equation*}
\frac{\partial}{\partial \eta}\left(\frac{1}{\epsilon} W_{T}^{0}+W_{T}^{1}\right)+W_{T}^{0}-\binom{\partial W_{r}^{0} / \partial \theta}{(\sin \theta)^{-1} \partial W_{r}^{0} / \partial \phi}+O(\epsilon)=B_{T}-\binom{\partial B_{r} / \partial \theta}{(\sin \theta)^{-1} \partial B_{r} / \partial \phi} \tag{35}
\end{equation*}
$$

We are now in a position to give a description of the zeroth order solution. From (34) we have that

$$
\frac{\partial W_{r}^{0}}{\partial \eta} \equiv 0
$$

Since this implies $\partial^{2} W_{r}^{0} / \partial \eta^{2} \equiv 0$ we have from (33) that $W_{r}^{0} \equiv 0$. Also from (33) we can solve for the leading order tangential terms and obtain

$$
W_{T}^{0}(\eta, \theta, \phi)=A_{T}^{0}(\theta, \phi) e^{-\zeta \gamma \eta}
$$

where we dropped the growing exponential term to match the outer solution. Now from (35) we can conclude $-\zeta A_{T}^{0} \equiv 0$ so

$$
W^{0} \equiv 0 .
$$

We now can provide a boundary condition for the B function from the first part of (28) since $S \times \nu=O(\epsilon)$ and thus

$$
\begin{equation*}
B \times \nu \cong 0 \tag{36}
\end{equation*}
$$

We now determine the first order solution. Substituting the zeroth order solution, W^{0} in (33) we find

$$
W^{1}(\eta, \theta, \phi)=A^{1}(\theta, \phi) e^{-\zeta \gamma \eta}
$$

from (34) we find that

$$
A_{r}^{1} \equiv 0 .
$$

Now from (35) we have

$$
B_{T}-\binom{\partial B_{r} / \partial \theta}{(\sin \theta)^{-1} \partial B_{r} / \partial \phi}=\frac{\partial W_{T}^{1}}{\partial \eta}=-\gamma \zeta A_{T}^{1}(\theta, \phi)
$$

on the boundary. Thus

$$
\left|W_{T}^{1}\right|=\frac{1}{\gamma}\left(\left|B_{T}\right|+\left|\nabla_{T} B_{r}\right|\right) e^{-\gamma \eta / \sqrt{2}}
$$

where B_{T} and $\nabla_{T} B_{r}$ are evaluated on the boundary. We, therefore, need to estimate the size of B_{T} and $\nabla_{T} B_{r}$. To obtain a reasonable approximation we again consider the model case where $M_{s}=\delta\left(\cdot-x_{T}\right) U_{b}$. Since the function $-\nabla g\left(\cdot, x_{T}\right) \times U_{b}$ satisfies (27) and (29) and has magnitude $\gamma \rho_{T}^{-1} \cong 0$ on $\partial \Omega$ we take

$$
B \cong \nabla g\left(\cdot, x_{T}\right) \times U_{b}
$$

A short calculation shows that if $\rho_{T} \gg 1$ then

$$
\left|B_{T}\right|+\left|\nabla_{T} B_{r}\right| \leq \gamma \rho_{T}^{-1} .
$$

We can now put all these results together to describe E in the case of high conductivity contrast σ_{s} / σ_{b}. We have found, from the outer solution, that $E=0$ over most of the domain Ω except for an $O(\epsilon)$ boundary layer where

$$
E \cong \epsilon \rho_{T}^{-1} e^{-\gamma(1-r) /(\sqrt{2} \epsilon)}
$$

and thus the $L^{1}(\Omega)$-norm of E is

$$
\begin{equation*}
\int_{\Omega}|E| d x=\frac{C \epsilon^{2}}{\gamma \rho_{T}} \tag{37}
\end{equation*}
$$

where C is an $O(1)$ constant.

7. Born and SLN Approximations at High Contrasts:

As we have seen in section 6 the electric field tends to zero in the scatterer as $Q \rightarrow \infty$. In the Born approximation the key replacement is the substitution of E_{b} for E. Since $E_{b} \neq 0$ we expect the Born approximation will blow-up when the contrast becomes large.

The key replacement in the SLN approximation is the substitution of $\Gamma_{0} E_{b}$ for E. Since

$$
\Gamma_{0} E_{b}=\frac{3}{3+Q} E_{b} \rightarrow 0 \text { as } Q \rightarrow 0
$$

we expect the SLN approximation will be accurate since the $\Gamma_{0} E_{b}$ term models the behavior of E in the case of large Q. In rest of this section we use the result of section 6 to make this statement more precise.

From (37) and the definition of ϵ in that section we have

$$
\|E\|_{L^{1}(\Omega)} \leq \frac{C}{\gamma \rho_{T} Q}
$$

Then since $|\nabla g| \leq C \rho_{R}^{-1},\left|E_{b}\right| \leq C \rho_{T}^{-1}$, and the coefficient of I in Γ_{0} is $O\left(Q^{-1}\right)$, we have

$$
\begin{aligned}
\left|\left(H-H_{S L N}\right)\left(x_{R}\right)\right| & \leq \gamma Q \int_{\Omega}\left|\nabla g\left(x_{R}, y\right)\right|\left|E(y)-\Gamma_{0} E_{b}(y)\right| d y \\
& \leq C \gamma \rho_{R}^{-1} Q\left(\frac{1}{\gamma \rho_{T} Q}+\frac{1}{Q \rho_{T}}\right) \\
& \leq C \rho_{R}^{-1} \rho_{T}^{-1} .
\end{aligned}
$$

This estimate is (5). Thus the SLN approximation will remain accurate in the high contrast case.

References

[1] T. Abboud and J.-C. Nédélec, Electromagnetic waves in an inhomogeneous medium, J. Math. Anal. Appl., 164 (1992), 40-58.
[2] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, SpringerVerlag, Applied Mathematical Sciences 93 (1991).
[3] T.M. Habashy, R.W. Groom, and B.R. Spies, Beyond the Born and Rytov approximations: a nonlinear approach to electromagnetic scattering, J. Geophys. Res. 98 (1993), 1759-1775.
[4] T.M. Habashy and M.L. Oristaglio, Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity, Radio Science 29 (1994), 1101-1118.
[5] J.A. Kong, Electromagnetic Wave Theory, Wiley-Interscience ((1986).
[6] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, McGraw-Hill (1953).
[7] C. Torres-Verdín and T.M. Habashy, Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation, Radio Science 29 (1994), 1051-1079.

[^0]: *Research supported in part by the Taft Foundation at the University of Cincinnati through their Grants-in-Aid program and the Institute for Mathematics and its Applications at the University of Minnesota during French's sabbatical year, 1997-8.

