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Inverse Problems in the Biosciences: Introduction, Mathematical

Issues, Solution Approximation and Analysis.

The goal of an interdisciplinary mathematician, inspired by NSF-DMS Mathematical Biology,

is to make contributions to both an outside discipline as well as Mathematics.

In this talk will provide an

(I) Introduction to Inverse Problems.

(II) Identification of Ion Channel Distributions in Olfactory Cilia.

(III) Inverse Problems in HIFU/MRI – Beginnings.

(IV) Attachment/Detachment in Biofilms in Urban Pipes – Beginnings.

Biomedical Engineering Survey (BME 7001), 648 Baldwin Hall, 11 AM, Nov. 7, 2013.
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Inverse Problems – Introduction (Groetsch, Viewig (1993)):

An inverse problem is a problem which is posed in a way that is inverted from that in which

most direct problems are posed.

Example Inverse Problem: Find rate r in population, P = P(t) in millions, growth model;

dP

dt
= rP with initial condition P(0) = 5 and Extra condition P(1) = 10.

Simple since solution is known,

P(t) = P0 exp(rt)

Initial condition gives P0 = 5 so

10 = 5exp(r · 1) => r = ln(2)

2



Partial Differential Equation Example Inverse Problem:

Model by 1-D Heat Conduction I/BVP:

∂u

∂t
=

∂2u

∂x2
+ f BC u(0, t) = u(π, t) = 0 IC u(x,0) = 0.

Task: Given data on u, determine an approximation for the source function f.

Naive Approach: Create approximations of ∂u/∂t and ∂2u/∂x2 from least squares fit to u.
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Data and Derivatives: Suppose

VData(x) = V (x) + ε sin(x/ε2) and thus V ′
Data(x) = V ′(x) + (1/ε) cos(x/ε2)

where V (x) is a smooth function and the sine term represents noise and data errors.
Note

max
s∈R

|VData(s) − V (s)| ≤ ε max
s∈R

|V ′
Data(s) − V ′(s)| = O(1/ε).

Conclusion: Avoid the direct approximation of derivatives from function data.
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Another Challenge - Ill-Posedness: Solution f does not depend continuously on data for u.

∂u

∂t
=

∂2u

∂x2
+ f BC u(0, t) = u(π, t) = 0 IC u(x,0) = 0.

Example: Suppose N is a large positive integer.

Function u(x, t) = N−3/2(2 − e−N2t) sin(Nx) satisfies PDE with f(x, t) = 2
√

N sin(Nx).

(So u(0, t) = u(π, t) = 0 and u(x, 0) = O(N−3/2) small.)

Then u → 0 does not imply f → 0 as N → ∞.
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Back to the 1-D Heat Conduction I/BVP:

∂u

∂t
=

∂2u

∂x2
+ f BC u(0, t) = u(π, t) = 0 IC u(x,0) = 0.

Assuming (Fourier Series)

f(x, t) =

∞∑

n=1

fn(t)sin(nx) with fn(t) =
2

π

∫ π

0

f(y, t)sin(ny) dy

then (Separation of Variables)

u(x, t) =

∞∑

n=1

cn(t)sin(nx) with cn(t) =

∫ t

0

e−n2(t−s)fn(s) ds.

Integral Equation Representation: (Avoids derivative troubles).

u(x, t) =

∫ t

0

∫ π

0

k(x, y, t − s)f(y, s) dyds with k(x, y, τ) =
2

π

∞∑

n=1

e−n2τsin(nx)sin(ny)

Approximation of f by finite difference or element leads (Again, given data on u) to an

ill-conditioned system of equations A~F = ~U. (Tikhonov Regularization can help with this.
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Inverse Problem Results from the Literature:

Absorption a(x) in [TKC] Conductivity k(x) in Tadi

Tadi, Klibanov, and Cai (2002): Unknowns u = u(x, t) and a = a(x).

ut − uxx + au = 0 BC u(0, t) = 0.1 and ux(1, t) = f(t) IC u(x,0) = 0.1

”Extra BCs:” ux(0, t) = y1(t) u(1, t) = y2(t)

Tadi (1997): Unknowns T = T(x, t) and k = k(x).

Tt = (kTx)x BC T(0, t) = 0.1 and kTx(1, t) = f(t) IC T(x, 0) = 0.1

“Extra” BC: T(1, t) = y(t)
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Inverse Problems in Olfaction Experimentation

Identification of ion channel distributions in frog olfactory cilia

With S.J. Kleene (College of Medicine)

Cilia are long thin processes that extend from the olfactory receptor neurons. The first step

in the transduction of an odor into an electrical signal occurs in the membranes of the cilia

and is controlled primarily by ion channels. In this study, Mathematical models and simple

approximation methods are derived to obtain estimates of the spatial distributions of the ion

channels along the length of a cilium from experimental current measurements.
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Olfactory Signal Transduction: Receptor Neuron:
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Steps in Signal Transduction:

Ion Channel

Activity in the

Ciliary Membrane.

cAMPATP

Na
+ Ca

2+

mucus

odorant

CNG
channel

R cytoplasm

G AC

Cl-

Ca2+-activated
Cl¯channel

Odorous molecule binds to G-protein-coupled receptor resulting in formation of cAMP.

cAMP activates CNG channels allowing an influx of Ca2+ and Na+.

Ca2+ activates Cl(Ca) channels allowing an efflux of Cl− enhancing the electrical signal.

Arrangement of Channel Types:

What are the spatial distributions of CNG and Cl(Ca) channels along the length of a cilium?

Are they uniform as is often assumed?
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Experimental Procedure:

Isolate olfactory receptor neurons and remove cilia with pipette.

Immunocytochemistry: Difficult qualitative approach due small size of cilia (No known

antibodies for Cl(Ca) channels).
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CNG Channel Experiments: Exterior of cilium (inside pipette) has Na+ solution with no

Ca2+. cAMP (outside pipette) diffuses into cilia activating CNG channels. Global current I

across cilium membrane due to influx of Na+ is recorded.

Cl(Ca) Channel Experiments: Interior of cilium has Cl− solution with no cAMP. Ca2+

(outside pipette) diffuses into cilia activating Cl(Ca) channels. Global current I across cilium

membrane due to efflux of Cl− is recorded.
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Reduced Integral Equation Model:

Assume the number of CNG channels is small the binding can be neglected and cable equa-
tion for membrane potential simplified. Open end of cilium is at x = 0 and closed end is at
x = L.

cAMP Concentration: ρ(x) = CNG density, c(x, t) = cAMP concentration;

∂c

∂t
= D

∂2c

∂x2
, c(0, ·) = cBulk and

∂c

∂x
(L, ·) = 0, c(·, 0) = 0.

Local and Global Current:

J(x, t) = gCNG P ρ(x) F(c(x, t)) v(x, t) where F(c) =
cn

cn + Kn
1/2

I(t) =

∫ L

0

J(x, t) dx, I(t) = J0

∫ L

0

ρ(x)F(c(x, t)) dx, ρ ≥ 0 and J0 = gCNGPvBulk.

Constants:

Diam = .28 µm, gCNG = 8.3 pS, P = .70, K1/2 = 1.7µM, n = 1.7, vBulk = −40mV,

D = 270µm2/s, cBulk = 40µM, J0
∼= 0.232 pA/ch.
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Further Simplifications => Analytical Solution

Constants: I ∼ 100 pA and L ∼= 40 µm

Neglect no-flux BC at x = L => cAMP concentation satisfies linear diffusion;

c(x, t) = cBulkerfc(x/(2
√

Dt)).

Function c has level lines with x2 ∼ Dt. Simplification of Hill Function: (Assume n is large)

F(c(x, t)) =
c(x, t)n

c(x, t)n + Kn
1/2

∼= H(c(x, t) − K1/2) = H(β2t − x2) where β ∼
√

D.

=> I(t) = J0

∫ L

0

ρ(x)H(β2t − x2) dx = J0

∫ β
√

t

0

ρ(x) dx (H(s) =
{

1 for s ≥ 0,
0 for s < 0,

)

=> I ′(t) =
1

2
J0βt−1/2ρ(β

√
t) => ρ(y) =

2I ′((y/β)2)y

J0β2
(assuming ρ(0) = 0, and y = β

√
t).
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Result – Current Profile Representative of Data:

I(t) =

{
0 for 0 < t < tDelay

IMax(t − tDelay)nI/
[
KnI

I
+ (t − tDelay)nI

]
for t > tDelay
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Front Tracking Algorithm (On Reduced Integral Equation Model):

Compute ρ sequentially as the ligand enters the cilium with “Wavefront” K(x, t) = F(c(x, t))

Given: ε > 0 and N ∈ Z+ define T so K(L, T) = ε.

Partition: 0 < t1 < . . . < tN = T, tj = j T
N
.

Wavefront points: xj where K(xj, tj) = ε.

Approximation of ρ: ρA(x) = ρA
j for x ∈ [xj−1, xj].

Sequential determination of ρA (Drop O(ε) terms):
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For j = 2, . . . , N.

I(tj) ∼= J0

∫ xj−1

0

K(·, tj)ρA dx + J0ρ
A
j

∫ xj

xj−1

K(·, tj) dx => ρA
j =

I(tj) − J0

∫ xj−1

0
K(·, tj)ρAdx

J0

∫ xj

xj−1
K(·, tj)dx

.
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A Posteriori Analysis: .
Assume: 0 ≤ ρA(x) ≤ M, C1 = maxt |I ′(t)| and C2 = max(x,t) |∂K/∂t| (0 < t < T).

|I(ti) − J0

∫ L

0

ρAK(·, ti) dx|

≤

∣∣∣∣I(ti)− J0

∫ xi−1

0

ρAK(·, ti) dx − ρA
i J0

∫ xi

xi−1

K(·, ti) dx

∣∣∣∣ + J0

∫ L

xi

|ρA||K(·, ti)| dx

≤ 0 + J0MLε.

and

|I(t) − J0

∫ L

0

ρAK(·, t) dx|

≤ |I(t) − I(ti)| + |I(ti)− J0

∫ L

0

ρAK(·, ti) dx| + |J0

∫ L

0

ρA(K(·, ti)− K(·, t)) dx|

≤ C1
T

N
+ J0MLε + J0MLC2

T

N
.

So

|I(t) − J0

∫ L

0

ρAK(·, t) dx| ≤ (C1 + J0MLC2)
T

N
+ J0LMε ≤ C(1/N + ε).

(C depends on M, J0, L, C1, C2 and T .)
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Sample Computations: Gauss-Seidel iterations with variable t-grid. Explicit enforcement

of ρA ≥ 0. Condition Numbers (∼ 104).

Simulated Data:
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Laboratory Data:
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Overall Results from CNG Channel Study: There were 42 experiments with 13 cilia.

The CNG ion channels were typically clustered in a narrow band roughly 10-15 µm wide.

These densities were averaged and the distance from the base of the cilium to the peak of

this overall distribution was 28% of the length. There were 1967± 392 CNG channels per

cilium.

Overall Results from Cl(Ca) Channel Study: There were 239 experiments from 59

different cilia. Typically the Cl(Ca) ion channels were clustered in a narrow band around

5-15 µm wide. On average, the channels were concentrated a distance of 28% of ciliary

length from the base. There were 4040± 260 Cl(Ca) channels per cilium.

Selected Papers:

1. DF, R. Flannery, C.W. Groetsch, W.B. Krantz, and S.J. Kleene, Numerical approximation

of solutions of a nonlinear inverse problem arising in olfaction experimentation, Mathematical

and Computer Modelling, 43 (2006), 945-956.

2. R. Flannery, DF and S.J. Kleene, Clustering of cyclic-nucleotide-gated channels in olfac-

tory cilia, Biophys. J., 72 (2006), 179-188.

3. D. Badamdorj, DF, and SJ Kleene, Identification of Cl(Ca) Ion Channel Distributions

PLoS ONE 5 (2010) (12): e15676.
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Future Directions:

Refinement of Models:

1. Include radial variation that changes at transition from proximal to distal ?

Use Fick-Jacobs model or ones developed in Berezhkovskii et al (2009) or Kalinay and Percus

(2010).

2. Develop analysis of Tikhonov Regularization approach.

National Science Foundation: (IGMS NSF DMS 0207145) (DF, 2002-4) (Cost-sharing

with the Taft Foundation, Department of Mathematical Sciences, Dean of Arts and Sciences,

and the Provost at the University of Cincinnati). NSF DMS 0515989 Research Grant (DF

and S. Kleene, 2005-8).

National Institutes of Health: National Research Service Award (R. Flannery). National

Institute on Deafness and Other Communication Disorders (R01, S. Kleene).

Mathematical Biosciences Institute.
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Collaborators:

S. Kleene C. Groetsch D. Badamdorj D. Edwards R. Flannery

Neuroscience The Citadel Delaware Delaware NIH

(Also thanks to W.B. Krantz (Chemical Engineering – Now in Singapore)).
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MRI assisted HIFU

Ultasound transducers inflict small temperature changes in tissue over region Ω that is moni-
tored by MR imaging. Accurate solution of the inverse problem provides tissue property data
used in HIFU tumor ablation.

Pressure:

{
∇ · ((1/ρ)∇p) + (k2/ρ)p = 0 in Ω

BC ∂p/∂ν = i2πfρvn on ΓU and ∂p/∂ν = 0 on ∂Ω − ΓU.

(ρ density, k = 2πf/c+ iα, f frequency, c speed of light, α absorption, vn transducer speed.)

Temperature:

{
ρCT(∂T/∂t) = ∇ · (κ∇T) − β(T − TA) + Q

IC T(·, 0) = TA & BC T = TA on ∂Ω.

(CT specific heat, TA ambient temperature, κ conductivity, β perfusion, Q = α|p|2/(cρ).)

Parameter Identification: Given: T(xj, yj, t`) where (xj, yj) ∈ Ω. Determine α, ρ, β and κ.

Special Details – Challenges: Unknown parameter functions are piecewise constant. So-

lutions of Helmholtz involve high frequencies with discontinuous coefficients.
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Beginnings/Theory for Simplified Heat Conduction:
Consider:

−U ′′ + βU = f with boundary conditions U(0) = U(1) = 0.

where unknown is

β(x) =
{

β0 for 0 ≤ x ≤ m,
β1 for m < x ≤ 1,

0 < m < 1, m = O(1)

Given: Piecewise linear data function UD defined on a partition of Ω = [0,1] with subintervals
of uniform width hD.
Assume there is a solution U = U(x) associated with β and

‖U − UD‖ ≤ ε (0 < ε << 1).

Inverse Problem Solver:
Use smooth cutoff functions ω0 ∈ C∞

0 (0,m) and ω1 ∈ C∞
0 (m,1).

Approximation βA:

βA
0 =

∫
Ω

fω0 dx +
∫
Ω

UDω′′
0 dx∫

Ω
UDω0 dx

and βA
1 =

∫
Ω

fω1 dx +
∫
Ω

UDω′′
1 dx∫

Ω
UDω1 dx

.

Theorem: There exists a constant C independent of ε and hD such that
max{|β0 − βA

0 |, |β1 − βA
1 |} ≤ Cε.

Challenges/Directions:

(i) Output Least Squares Approach – Avoid assumption of existence of U to UD.

(ii) Impact of new, first set, of data from Yu Li’s lab ?

(iii) XFEM for Helmholtz – ”X” for high frequencies ?
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The HIFU ”Lab”:

DF Yu Li Benjamin Vaughan Jr. Kristen Fox-Neff
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Mathematical Sciences

Inverse Problems Involving Models of Biofilms in Urban Pipes

The natural or deliberate release of a pathogen into urban water pipes can have a profound

effect on the quality of water used for human consumption. Biofilms can trap the dangerous

pathogens, enhance their growth and release them at a later time.

Gap: No recent models involving biofilms simulate attachment, very few handle detachment

and none consider high (or modest) Reynolds number flows and/or the onset of turbulence.

Specific Objectives:

1. Quantify attachment and detachment of pathogens to biofilms.

2. Develop biofilm/fluid models in urban pipes (Diameter ∼ 10 cm) with rough surfaces.

3. Take incremental steps toward high Reynolds Number/Turbulent Regimes.
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Colonies of Bacteria that form on solid surfaces are called biofilms.

Biofilms are present in tooth decay, remediation of wastewater, maintenance of navy ships,

transmission of bacteria in hospital tubing and cystic fibrosis.

Extracellular Polymeric Substance (EPS) is a substance produced by biofilm bacteria

that enhances their colony/structure.

Other Players: Disinfectants (Chlorine, bacteria very tolerant in biofilm), Nutrients (Aerobic

and Anaerobic), Fluid Dynamics (Erosion and Sloughing, Shear Stress, Fast vs Slow).
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Annular Reactor Modeling:
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Experiment: Pathogens are ”spiked” into an AR with a fully developed biofilm; the level of

pathogens in bulk and biofilm is tracked over time (Constant inflow and outflow).
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Basic ODE Model:

Following Bakke et al (1984) and Jones et al (2003):

dxf

dt
= −αxf + β

SA

V
xb −

Q

V
xf and

dxb

dt
= α

V

SA

xf − βxb

Identification Problem: Given data on concentration in bulk fluid, xf = xf(t) and biofilm
xb = xb(t) find parameters α and β.

Output Least Squares Approach: Given data YD find parameter ~p so there is y that sat-
isfies

dY/dt = f(y, ~p) with y(0) = Y0 on [0, T ].

Use minimization search (e.g. MATLAB fminsearch) to find y ∼= YD and ~p∗ that minimizes

J(~p) =
1

2
‖YD − y(·; ~p)‖L2(0,T )

where y(·; ~p) satisfies the IVP

dy/dt = f(y, p) with y|
t=0

= Y0
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Biofilm Model Specifics:
The approximation process involves the N data points (t1, x̂f(t1)), . . . , (tN , x̂f(tN)) for fluid
concentrations and (t1, x̂b(t1)), . . . , (tN , x̂b(tN)) for the biofilm. Weighted Minimization func-
tional was

EW(α, β, kf)
2 =

N∑

i=1

w
(b)
i [log10(x̂b(ti)) − log10(xb(ti;α, β))]2

+

N∑

i=1

w
(f)
i [log10(x̂f(ti))− log10(xf(ti;α, β))]2

with, for i = 1, . . . , N,

w(b)
i =

xb(ti)

σ(b)
i Φb

, w(f)
i =

xf(ti)

σ(f)
i Φf

, Φb =

N∑

i=1

xb(ti)

σ(b)
i

and Φf =

N∑

i=1

xf(ti)

σ(f)
i

.

Especially interested in relative error;

R(α, β) =
J(α, β)

D
where D2 =

N∑

i=1

[log10(x̂f(ti))]
2 +

N∑

i=1

[log10(x̂b(ti))]
2.
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Output Least Squares Results:
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Other Steps for Simple ODE Model:

New DE Model with Linear Decay kfxf for Bulk Pathogen Equation.

Linear Regression on Closed Form Solutions of DE Models.

Contour Plots, Error vs (α, β), reveal robust solutions in ratio β/α.
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Next Steps/Directions:

Biofilm Model: Wanner-Gujer, Multi-species (N. Cogan) etc. (Neglect influence of thin

biofilm on flow.)

Rough Pipe Simulations:

Immersed Boundary Method

(Sookkyung Lim)

Turbulent flow by k − ε Reynolds Averaged Navier-Stokes (RANS) method (B. Vaughan).

Improved Data Collection – Dyed Tracer Organisms.

Simulation of Pathogen and Biofilm in Rivers Persistance – Delivery – Evolution (with

D. Hassett).

Seeking funding from NSF Environmental Engineering with proposal entitled Mathematical

Modeling of Biofilms in Urban Pipes and the Spread of Dangerous Pathogens (PI Vaughan

& Co-I’s Kupferle (Engr), D.F. and Lim).
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The Biofilm ”Lab”:

M. Kupferle Sookkyung Lim D.F.

Nick Cogan (FSU) Benjamin Vaughan Jr. Dan Hassett
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