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INTRODUCTION:High-density lipoprotein (HDL)
participates in cholesterol homeostasis and
may also have anti-inflammatory or anti-
microbial roles through its interaction with
numerous plasma proteins. The liver synthe-
sizes most HDL in the body, but the intestine
also produces HDL. However, a role for intes-
tinal HDL distinct from that produced by the
liver has not been identified. While remodel-
ing its cargo, HDL particles circulate through
tissue spaces, but so far, HDL trafficking within
tissues has been scarcely studied.

RATIONALE:We reasoned that understanding
HDL-trafficking patterns might bring insight
into its roles in health and disease, including
whether HDL made by the intestine is func-
tionally redundant with that produced by the
liver. Using a knock-in mouse that we previ-
ously generated to phototag HDL in any tissue
location, we aimed to trace the fate of HDL
synthesized by the intestine.

RESULTS: PhototaggedHDLderived from small
bowel enterocytes was generatedmost abun-
dantly by the ileum and did not travel into
draining lymphatic vessels as enterocyte-
derived chylomicrons do. Instead, intestinal
HDL rapidly entered the portal vein, themajor
blood supply to the liver. This finding raised
the issue of whether the liver might benefit
from intestinal HDL and pointed us to an older
concept thatHDLmight neutralize a keymicro-
bial signal that can escape a permeable gut:
lipopolysaccharide (LPS) from Gram-negative
bacteria. Past studies using multiple models
have shown that LPS engagement of its re-
ceptor, Toll-like receptor 4 (TLR4), in the liver
drives significant liver pathology, including in-
flammation that progresses to fibrosis. Using
biochemical, proteomic, and functional ap-
proaches, we observed that the intestine pro-
duces a particular subspecies of HDL called
HDL3. Unlike another HDL subspecies (HDL2),
HDL3 sequestered LPS so efficiently that it

could not bind to TLR4+ liver macrophages.
In this way, HDL3 produced by the intestine
protected the liver from the inflammation and
fibrosis observed in a variety of mouse models
of liver injury that parallel clinically relevant
conditions in humans, including surgical re-
section of the small bowel, alcohol consump-
tion, or high-fat diets. Administration of an
oral drug targeting the transcription factor
liver X receptor, the master regulator of genes
associatedwithHDL biogenesis, raised enteric
HDL levels and protected the mice from liver
pathology. This protection was lost if mice did
not express enterically derived HDL, indicat-
ing that intestinal HDL was a key target of
the drug. Six samples of human portal venous
blood with matched systemic venous blood
confirmed the enrichment of HDL3.
Mechanistically, LPS-binding protein (LBP)

was enriched in HDL3 particles and was re-
quired for HDL3 to mask LPS from detection
by TLR4. This findingwas unexpected because
LBP otherwise promotes TLR4 signaling by
shuttling LPS to CD14, which then shuttles it
to TLR4. Thus, HDL3 interacts with a known
component of the TLR4-signaling platform,
LBP, to hide LPS fromdetection.Without bind-
ing to TLR4, the HDL3-LBP-LPS complex was
not retained in liver. Instead, it exited the liver
while the LPS associated with it was inacti-
vated. The enzymeacyloxyacyl hydrolase,which
is produced in part by liver macrophages and
which deacylates critical fatty acid residues in
LPS for TLR4 activation, could still access and
act upon HDL3-associated LPS to detoxify it.
Low-density lipoprotein bound LPS, but not
LBP, and was thus unable to prevent LPS ac-
tivation of liver macrophages. LBP is in the
same family of lipid-binding proteins as phos-
pholipid transfer protein and cholesterol ester
transfer protein, which have well-established
roles in remodeling the lipid configuration of
HDL. Another microbial lipid, lipoteichoic acid
from Gram-positive bacteria, is known to bind
LBP. We found that it too complexed with
HDL3 and suppressed the activation of liver
macrophages.

CONCLUSION: The production of HDL by small
bowel enterocytes in a form that potentlymasks
LPS comprises a disease tolerance strategy to
protect the liver from injury of enteric origin.
Enteric HDL may thus be a suitable pharma-
cologic target for protecting the liver against
gut-derived LPS leakage in alcoholic and non-
alcoholic settings.▪
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The biogenesis of high-density lipoprotein (HDL) requires apoA1 and the cholesterol transporter ABCA1.
Although the liver generates most of the HDL in the blood, HDL synthesis also occurs in the small
intestine. Here, we show that intestine-derived HDL traverses the portal vein in the HDL3 subspecies
form, in complex with lipopolysaccharide (LPS)–binding protein (LBP). HDL3, but not HDL2 or low-density
lipoprotein, prevented LPS binding to and inflammatory activation of liver macrophages and instead
supported extracellular inactivation of LPS. In mouse models involving surgical, dietary, or alcoholic
intestinal insult, loss of intestine-derived HDL worsened liver injury, whereas outcomes were improved by
therapeutics that elevated and depended upon raising intestinal HDL. Thus, protection of the liver
from injury in response to gut-derived LPS is a major function of intestinally synthesized HDL.

T
he portal vein collects venous drainage
from the intestine, carrying nutrients
andmetabolites of host andmicrobiome
origin to the liver (1). Through this route,
components of themicrobiomemaydrive

liver steatohepatitis and fibrosis (2, 3). Enteri-
cally derived lipopolysaccharide (LPS) from
Gram-negative bacteria triggers Toll-like re-
ceptor 4 (TLR4)–dependent injury in the liver
after insult to the intestine (3–7).
Mechanisms to limit LPS-mediated liver

injury through the gut-portal axis remain
incompletely defined. We hypothesized that
high-density lipoprotein (HDL) may have an
overlooked role in protecting the liver through
its potential to neutralize LPS (8–10). Indeed,
it is unclear why HDL is synthesized by the
intestine rather than solely by the liver. HDL-
cholesterol (HDL-C) is the smallest lipoprotein
particle in the blood and is best known for its
role in cholesterol transport. Only two tissues
produce the core protein component of HDL-C,
apolipoprotein A1 (apoA1): the liver and the
small intestine (11). When intestinal epithelial
cells selectively delete the gene encoding the
cholesterol transporter ABCA1, which is essen-
tial for HDL biogenesis, an ~25% reduction in

plasma HDL-C ensues. Conversely, an ~75%
reduction in HDL-C occurs after liver-specific
loss of ABCA1 (12), leaving investigators to
regard the intestine as simply a second source
of HDL-C.
An obstacle to considering a role for intes-

tinal HDL in the gut-liver axis is the paucity
of knowledge concerning how enterically de-
rived HDL is delivered to the liver. HDL typi-
callymobilizes from tissues through lymphatic
vessels (13–15), which do not route to the liver
from the intestine (16). However, an earlier
study failed to demonstrate that enterically
produced HDL-C entered lymphatics (17).
Here, we show that enterically derived HDL-C
alternatively traverses portal blood, and that
nearly all HDL-C found in the portal vein
arises from the intestine. Intestinal epithelial
cells produced small HDL particles (HDL3)
(18) with potent LPS-neutralizing properties.

Results
Enterically derived HDL is the main source of
HDL in portal blood

Although albumin levels were constant be-
tween portal and systemic blood (from the
inferior vena cava) (fig. S1A), apoA1 was ~40%
lower in portal versus systemic plasma in hu-
mans andmice (Fig. 1A). To determinewhether
this reduction resulted from diminished recir-
culation of HDL into portal blood, we traced
HDL using photoactivatable green fluorescent
protein (GFP) apoA1 knock-in mice (Pga1KI/+)
(15). When phototagged in the skin, HDL ap-
peared in systemic blood but was very low in
portal blood (Fig. 1B). Its appearance in mes-
enteric lymph to a concentration approaching
that in the systemic circulation (Fig. 1B) sug-
gested that it left the bloodstream to access
lymph before entering the portal vein (Fig. 1B).

Within 5 min after phototagging HDL in
the small intestinal lumen, fluorescence was
strong in portal blood but not lymph (Fig. 1C).
By 30 min, these compartments equilibrated
(Fig. 1C). HDL phototagged along the intes-
tinal exterior appeared in lymph but not
portal blood (Fig. 1D). These patterns were
unaffected by dietary composition or fasting
(fig. S1, B to D). Thus, HDL tagged at the in-
testinal epithelium first enters the portal vein
and is not observed in lymph until cargo in the
portal vein passes through the liver and enters
the systemic circulation. Upon reapproaching
the gut, it appears to traverse into the inter-
stitium and then into lymph.
Separate phototagging of the duodenum,

jejunum, and ileum revealed the ileum as the
major site of enteric HDL biogenesis (Fig. 1E).
Like apoA1, HDL-C in portal plasma of humans
or mice was present at lower concentrations
than in systemic blood (Fig. 1F). HDL-C was
decreased by >75% in portal blood of intestine-
specific ABCA1-knockoutmice (Vil1Cre-Abca1fl/fl;
Abca1DVil1) (Fig. 1G).However, in systemic blood
of Abca1DVil1 mice, HDL-C dropped by only
25% (Fig. 1H) (12). By contrast, a marked re-
duction of HDL-C in systemic but not portal
blood was observed in liver-specific ABCA1-
knockout mice (Alb1Cre-Abca1fl/fl; Abca1DAlb1)
(Fig. 1, G and H). Thus, two distinct blood
compartments for HDL exist: one entering
the portal drainage governed by intestinal
production of HDL and the other in systemic
vessels governed by liver production of HDL.

Portal blood HDL is mainly HDL3 and strongly
suppresses Kupffer cell inflammatory responses

Portal venous HDL was relatively small in
size (~8 nm) in humans (Fig. 2A) and mice
(Fig. 2B), suggestive of a subspecies of HDL
called HDL3. Small-sized HDL3 and large-
sized HDL2 particles carry distinct accessory
proteins, with paraoxonase 1 (PON1) enriched
in the former and apoB in the latter (18). Thus,
we compared HDL2 or HDL3 species separated
by ultracentrifugation from pooled human
systemic blood with that of the larger or
smaller HDL species from portal or systemic
blood isolated by size-exclusion fast protein
liquid chromatography (FPLC) and affinity
purification (Fig. 2C). This approach yielded
four samples from the same individual, puta-
tive HDL2 and HDL3, each from both systemic
and portal blood, allowing evaluation of how
venous location affects HDL composition. Pro-
teomic analysis revealed >250 proteins in each
sample. A heatmap depicting relative abun-
dance of proteins revealed that small-portal
venous HDL shared a protein profile with
HDL3 from human systemic blood (Fig. 2D
and table S1). Similarities included known
enrichments of PON1, PON3, a1-antitrypsin
(SerpinA1), and PLTP in all HDL3 fractions
regardless of portal or systemic blood origin
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Fig. 1. Intestinal HDL transits through the portal vein and accounts for
most of the HDL in the portal blood. (A) Immunoblot for apoA1 in systemic
and portal serum from humans and mice. ALB, albumin. (B) Plasma and lymph
fluorescence measured 2 hours after phototagging HDL in skin. (C and D) Portal
plasma and mesenteric lymph fluorescence after phototagging the lumen
(C) or externa muscularis (D) of the small intestine (SI) of Pga1KI/+ mice. (E) HDL
phototagged in different small bowel regions separately. (F) Lipoprotein profiles
from humans fasted overnight or mice fasted for 4 hours. (G and H) Lipoprotein
profiles and HDL-C quantification of portal (G) or systemic (H) plasma after
4 hours of fasting. Plots show mean ± SEM. (A) and (F) show paired data from

six human subjects or six WT mice (same subjects in both panels). (B) to (E) show
data for 65 Pga1KI/+ mice. Each symbol designates different mice, except that
systemic versus portal blood in (B) and systemic versus portal blood from
the same time points in (C) were from the same mice (paired). Most panels show
one experiment, except for (C), which combines two experiments. (G) and (H)
show five individual mice from each of three genotypes from one experiment,
with paired portal (G) and systemic (H) plasma within the same genotype.
*P < 0.05, **P < 0.01, ***P < 0.001, ##P < 0.01, ###P < 0.001. Data in (A)
and (F) were analyzed for statistical significance using a paired t test; data in all
other panels were analyzed using one-way ANOVA.
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or method of isolation (Fig. 2E). Some pro-
teins, such as LPS-binding protein (LBP), were
especially enriched in immunopurified portal
blood HDL3 but notably absent after ultra-
centrifugation (Fig. 2E). The distribution of
LBPwas confirmed by immunoblotting of the
FPLC fractionsused topurifyHDL2 (fraction 20)
versus HDL3 (fraction 22) from human portal
vein (Fig. 2F), systemic blood (fig. S2), or mu-
rine portal blood (fig. S2). When these serum
samples were subjected to HDL isolation using
ultracentrifugation, LBP was absent (Fig. 2F),
suggesting its dissociation during ultracen-
trifugation (19).
Because LBP delivers LPS to CD14 to facil-

itate TLR4 signaling (20), we investigated
whether the association of portal venous HDL3
with LBP affects LPS signaling.We isolated pri-
mary liver Kupffer cells (KCs) (21, 22) (fig. S3A)
from wild-type (WT) or Tlr4−/− mice, and ob-
served that portal vein–derived HDL from
humans or mice neutralized LPS-induced pro-
inflammatory responses in these cultures more
effectively than HDL from systemic blood or
no HDL at all (Fig. 3, A and B). Whole portal
plasma obtained from Abca1DVil1 mice less ef-
fectively protected against induction of in-
flammation (Fig. 3C), implicating gut-derived
HDL in this activity. Similarly, comparison of
human HDL2 or HDL3 from human periph-
eral blood showed that HDL3 more strongly
suppressed LPS-induced inflammatory genes
(Fig. 3D) than HDL2 in a concentration-
dependent, TLR4-dependent manner (Fig. 3D).
Activation of KCs by lipoteichoic acid was also
robust and strongly blocked by HDL3. CpG
oligodeoxynucleotides stimulated KCs less
strongly, but HDL3 did have some inhibitory
effect (fig. S3B). Modest inhibition was ob-
servedwhen the cytokines interleukin 1b (IL-1b)
or tumor necrosis factor (TNF) were used to
induce inflammatory activation of KCs (fig.
S3C). In these assays (Fig. 3, A to D), LBP was
included as an exogenous additive to restore
the LBP removed during centrifugation. Ex-
cluding LBP abrogated the anti-inflammatory
effects of HDL3 (Fig. 3E). Similarly, HDL3 sup-
pressed LPS bioactivity but only in the pres-
ence of LBP (Fig. 3F). Thus, portal blood HDL3
inhibits LPS signaling in TLR4+ macrophages
in an LBP-dependent manner.

Portal HDL3 efficiently binds LBP and LPS to
prevent LPS binding to KC TLR4
We next evaluated binding between HDL and
LPS using LPS conjugated with biotin at its
inner core (23–25). HDL3more robustly bound
LPS compared with HDL2, but the presence of
LBP was required (Fig. 4A). HDL2-bound LPS
readily transferred to low-density lipoprotein
(LDL) or very-low-density lipoprotein (VLDL),
whereas most HDL3-bound LPS remained as-
sociated with HDL3 (Fig. 4B). In an immuno-
absorption assay, HDL3 was indeed shown
to be more effective than HDL2 and LDL in
binding LBP (Fig. 4C), and LDL did not com-
pete (Fig. 4, C and D). LDL bound LPS effi-
ciently (Fig. 4D) but did not bind LBP (Fig. 4C).
LDLdidnot neutralize LPSbioactivity (Fig. 4E),
nor did it dampen inflammatory gene expres-
sion (fig. S4A) with or without LBP (Fig. 4E).
ReconstitutedHDL also did not neutralize LPS
(Fig. 4E). In the presence of LBP, interactions
between biotin-LPS and HDL3 generally re-
duced the detection of biotin-LPS by strep-
tavidin capture (Fig. 4F). This reduction was
caused by efficient masking of the inner core
biotin label of LPS, because disruption of HDL3
with detergent reexposed the biotin (Fig. 4F).
Thus, binding of LBP to HDL3 promotes the
sequestration of LPS.
To determinewhetherHDL3 sequesters LPS

from KCs, we cocultured KCs with biotin-LPS
and monitored surface binding (Fig. 4G). This
binding largely depended upon TLR4 (Fig. 4H)
and was unaffected by the absence or blockade
of lipoprotein or scavenger receptors (fig. S4B).
HDL3 robustly prevented LPS interactionwith
KCs but only in the presence of LBP. Recon-
stituted HDL (Fig. 4G) or LDL in the presence
or absence of LBP (fig. S4C) did not diminish
binding, whereas HDL2 partially blocked it
(Fig. 4G). Peak interaction occurred within
3 hours of incubation with KCs (Fig. 4I). Sub-
stantial internalization of biotin-LPS by mac-
rophages in the presence or absence of HDL3
was not detected during this time (fig. S4D).
We next wondered whether, after failing to

bind to cells, LPS associated with HDL3 might
later be inactivated. Using a low dose of HDL3
(20 mg/ml) that only weakly suppressed LPS
activity in a cell-free system (Fig. 3F), we ob-
served that LPS activity was further lowered in

the presence of macrophages or macrophage
supernatant. This was true as long as the KCs
were not held at 4°C (Fig. 4J), suggesting that
a soluble product from KCs inactivated LPS.
The enzyme acyloxyacyl hydrolase (AOAH),
which is produced in part by KCs, deacylates
and thereby inactivates LPS (26). Depletion of
AOAH fromKC-conditionedmedium increased
the recovery of LPS bioactivity (Fig. 4K). Be-
cause AOAH would not remove the biotin
from the inner core of LPS upon deacylation,
we calculated LPS bioactivity normalized to
recovered biotin after disrupting HDL3 with
detergent, finding that AOAH indeed drove
inactivation of HDL3-bound LPS (Fig. 4L). We
performed a similar experiment in vivo, inject-
ing a constant dose of biotin-LPS into the
portal vein in complex with HDL3, HDL2, or
LDL. After 30 min, when enterically derived
HDL had passed through the liver to access
the systemic circulation (Fig. 1C), we drew sys-
temic venous blood to recapture and assess
LPS. More of the recovered LPS was inactive
when complexed with HDL3 than with HDL2
or LDL (Fig. 4M and fig. S4E), indicating the
inactivation of HDL3-associated LPS. The ad-
ministration of LPS-loaded lipoproteins into
the portal vein caused acute elevation in as-
partate aminotransferase (AST), a measure
that was lowest when HDL3 was the vehicle
carrying LPS and highest when LDL carried
LPS (fig. S4F). Thus, HDL3 masks LPS to limit
inflammation by blocking LPS binding to KCs,
but HDL3-associated LPS remains susceptible
to inactivation by AOAH, allowing its perma-
nent inactivation.

The LPS receptor TLR4 on KCs drives liver injury
and fibrosis

To determine whether HDL neutralization
of LPS modulates liver inflammation in vivo,
we studied a model of small bowel resection
that promotes marked liver fibrosis (27, 28).
Small bowel resection removed 50 or 75%
of the small intestine (Fig. 5A), sparing the
proximal part of the small intestine and the
terminal ileum except when indicated other-
wise. Within 3 months, these resections in-
duced morphological changes in the liver (Fig.
5B), elevated the plasma AST (Fig. 5C), and en-
hanced the infiltration of myeloid cells (F4/80+
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Fig. 2. Portal vein HDL is enriched in small HDL3 particles. Samples
(from Fig. 1A) of systemic or portal plasma from humans (A) or mice
(B) immunoblotted for apoA1 after electrophoresis under nondenaturing
conditions. Representative gels and plots show HDL3/HDL2 ratios in
six paired samples. Also shown are representative electron microscopy
images of negative-stained HDL fractions. Scale bars, 20 nm. HDL diameter
measurements, plotted as individual symbols, combine assessments from
four of six humans or mice (right). For proteomics (C to F), density
ultracentrifugation-purified HDL2 or HDL3 yielded 289 associated proteins
(C, left). Size-exclusion FPLC with immunopurified HDL identified 321 proteins
(C, right). This experiment was performed once using four paired samples

derived from the same individual (HDL2 or HDL3 from two vascular beds).
Additional samples were HDL2 or HDL3 from commercially available pooled
human plasma isolated by density ultracentrifugation. (D) Heatmap
of protein abundance. (E) Normalized spectral abundance factor plotted
for selected proteins. (F) Select proteins immunoblotted from portal or
systemic plasma HDL (top), using indicated fraction numbers collected
after FPLC separation (middle). Immunoblot of LBP from human or mice
systemic (hS- and mS-) and portal (hP- and mP-) plasma or whole liver
lysate (bottom). LBP quantification is shown in fig. S2A. N.D., not detected.
**P < 0.01, ***P < 0.001. Paired t test was used for statistical evaluation
in (A); unpaired t test was used in (B).
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Fig. 3. Portal blood HDL3 strongly inhibits LPS activation of KCs in an
LBP-dependent manner. (A and B) LPS-treated KCs were incubated with
100 mg/ml of HDL from human (hS-HDL) or mouse (mS-HDL) systemic
plasma or with human (hP-HDL) or mouse (mP-HDL) portal plasma. Analysis
included RT-PCR for inflammatory mediators, flow cytometry phenotyping
(iNOS+ F4/80hi macrophages), and CCL2 ELISA. (C) RT-PCR from LPS-
treated KCs incubated with 5% portal vein–derived plasma from Abca1fl/fl,
Abca1DVil1, and Abca1DAlb1 mice. (D) WT and TLR4−/− KCs were incubated in
LBP-containing medium with or without 20 ng/ml of LPS and 100 mg/ml
of HDL2, HDL3, or vehicle control before RT-PCR or ELISA to detect the
depicted mediators. (E) LPS-treated KCs were incubated with 100 mg/ml of
HDL3 with or without 1 mg/ml of LBP before CCL2 ELISA. (F) Endotoxin

LAL activity after 0.5 Ehrlich units (EU)/ml of E. coli LPS were preincubated
with HDL with or without 1 mg/ml of LBP. HDL fractions in the experiments
in this figure were isolated by density ultracentrifugation. Plots show
mean ± SEM. Each symbol represents independent preparations of KCs
from different mice. For (A) and (B), n = 3 different KC preparations
(three experiments). For (C), n = 9 different KC preparations, with n = 3 per
genotype (three experiments). In (D) and (E), n = 6 KC preparations
(n = 3 each WT or TLR4 knockout). In (F), there were three independent
technical replicates (three experiments) per condition per time point.
**P < 0.01, ***P < 0.001, #P < 0.05, ##P < 0.01, ###P < 0.001. Statistical
analysis on data presented as bar graphs used one-way ANOVA; data
presented as concentration curves were analyzed using two-way ANOVA.
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Fig. 4. HDL3 binds LPS and masks its capacity to bind to TLR4+ KCs while
allowing enzymatic inactivation by AOAH. (A) ELISA to assess HDL and

biotin-LPS binding with or without LBP added. (B) HDL3 or HDL2 preincubated
with biotin-LPS and incubated for 2 hours with LDL or VLDL. Biotin-LPS was then
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and S100A9+) into the liver (Fig. 5D). LPS bio-
activity in the portal vein was elevated by small
bowel resection (Fig. 5E) and was associated
with increased intestinal permeability (Fig.
5F), reductions in the epithelial junction pro-
teins ZO-1 and occludin (Ocln) (Fig. 5G), and
elevated plasmalemma vesicle-associated pro-
tein 1 (PV1) in villus capillaries (Fig. 5H) drain-
ing into the portal vein (29).
Reduced liver fibrosis and inflammatory

changes characterized KC-specific Clec4f-
Cre×Tlr4flox/flox male mice compared with
littermate controls (30) (Fig. 5, I to M). Female
mice (fig. S5) developed disease similarly to
males. Bonemarrow transplants in whichmice
received Tlr4−/− bone marrow confirmed the
role of TLR4 (fig. S6). Thus, TLR4 expressed by
KCs participates critically in liver fibrosis after
small bowel resection.

Disruption of enterically derived HDL
exacerbates liver injury

Portal venous HDL-C decreased after small
bowel resection (Fig. 6A), possibly a conse-
quence of the loss of bowel mass that might
normally contribute to HDL biogenesis. Ex-
pression of ABCA1 sharply increased from the
proximal to distal small bowel, whereas apoA1
modestly rose, overall fitting with the ileum as
the main site for HDL production in the small
bowel (Fig. 6B). When we modified the region
of the bowel resected to remove the proximal
50% or distal 50% portion of the small intestine,
HDL-C in portal blood decreased more sub-
stantially after distal resection (Fig. 6C). Accord-
ingly, liver injury and inflammatorymarkerswere
greater in response to distal resection (Fig. 6D
and fig. S7, A and B).
We compared liver injury outcomes in

Abca1DVil1 mice versus control Abca1fl/fl mice
or Abca1DAlb1 mice after small bowel resection.
HDL-C in portal blood was further reduced
in Abca1DVil1 mice (Fig. 6E), and these mice
indeed exhibited greater liver injury, fibro-
sis, and inflammation (Fig. 6, F to I). Sham

surgery did not provoke liver injury (fig. S7,
C to F). After small bowel resection, LPS bio-
activity was elevated in Abca1DVil1 mice (Fig.
6J, upper bar graph). However, the absolute
amount of LPS in portal plasmamatched that
of other groups (Fig. 6J, lower bar graph), sug-
gesting that the lowerHDL-C inAbca1DVil1 mice
led to increased LPS activity for a given quan-
tity of LPS because of reduced neutralization.
Liver inflammationwas elevated inAbca1DVil1

mice over control mice after perturbations in-
cluding 12 weeks of high-fat diet (HFD) feeding
or 4 weeks of the Lieber–DiCarli alcohol diet
(ALD) (Fig. 6, K to M). These additional liver
injury models are associated with elevated
LPS translocation across the intestinal barrier
(31, 32), elevations that we verified and that
were in keeping with reduced HDL-C in the
portal vein and apparent increased fat stor-
age in the liver of the HFD model (fig. S7, G
to I). Thus, enterically derived HDL protects
against injury in multiple mouse models of
liver damage.

Activation of LXR in the intestine increases HDL
output and protects against liver injury

Liver X receptors (LXRs) are transcription fac-
tors that govern the expression of HDL-related
genes such as Abca1. Low-dose LXR agonists
such as GW3965, when administered orally,
bypass activation of LXRs in the liver while
targeting the intestine (33, 34).We thus admin-
istered GW3965 orally at a low dose in mice
subjected to 75% small bowel resection and
followed gene expression in the ileum and liver
(Fig. 7, A to E, and fig. S8). GW3965 treatment
prompted increases inAbca1 andApoa1mRNA
in the ileum (Fig. 7, A and C). The impact of
low-dose oral GW3965 on these genes and
on LXR target genes associated with de novo
lipogenesis wasminimal in the liver (Fig. 7, B
and D). However, inflammatory and collagen-
remodeling genes in the liver were markedly
down-regulated in response to GW3965 in
Abca1fl/fl mice that retained expression of in-

testinal HDL (Fig. 7E and fig. S9). These genes
remained elevated in Abca1DVil1 mice (Fig. 7E),
confirming that the effect ofGW3965 depended
on intestinal HDL. Oral, low-dose GW3965
did not affect Abca1 or related genes in peri-
toneal macrophages adjacent to the portal
venous drainage in the mesentery (fig. S8A).
Some intestinal macrophages were positive
for ABCA1 (fig. S8B), but deletion of ABCA1
in macrophages neither affected gene expres-
sion in the ileum nor altered portal HDL-C
(fig. S8C).No changes to the liverwere apparent
in Abca1 DVil1 mice compared with littermate
Abca1fl/fl controls receiving sham operations
(fig. S10).
Functionally, portal venous HDL-C, remain-

ing predominantly in the form of HDL3, was
increased by GW3965 inAbca1fl/fl mice but not
in Abca1DVil1 mice (Fig. 7, F and G). Indeed,
oral GW3965 prominently reduced fibrosis
and inflammation in the liver after small bowel
resection (Fig. 7, H to K) but was unable to do
so in Abca1DVil1 mice (Fig. 7, H to K). Thus,
orally delivered low-dose GW3965 protects
the liver from inflammation and fibrosis in
a manner that depends upon its capacity to
increase enteric HDL.

Discussion

Intestinal epithelial cells produce HDL par-
ticles (11), but neither the fate nor the function
of intestinal HDL has been clear. We show here
that the intestine produces the small form of
HDL called HDL3 and that it is enriched in
LBP. This HDL is shuttled to the liver through
the portal vein. By the time it reaches the portal
blood, it is already complexed with LBP, and
the LPS that it carries is masked so that it
does not bind to liver KCs, circumventing the
induction of proinflammatory and profibrotic
genes. The intestinal epithelial location forHDL
production allows the local capture of LPS be-
fore it gains access to downstream tissue.
That HDL may prevent LPS from binding

to cells in the liver has been noted earlier by
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detected in the various lipoproteins separated by FPLC. (C and D) Lipoproteins
incubated with LBP and biotin-LPS for 2 hours and then retrieved using apoA1
or apoB IP. The amounts of LBP protein (C) and biotin-LPS (D) in resulting
pellets (IP) versus supernatants (Sup) were measured. (E) Endotoxin
LAL activity assessed after 0.5 EU/ml of E. coli LPS preincubated with
different concentrations of HDL3, rHDL, or LDL with or without 1 mg/ml LBP.
(F) Biotin-LPS incubated with HDL3 with or without LBP. The complex was then
disrupted with SDS, and biotin-LPS was measured by streptavidin ELISA.
(G) KCs cultured with HDL3, HDL2, or rHDL with or without LBP in the presence
of biotinylated LPS for 3 hours, followed by streptavidin detection. Flow
cytometry plots (left) and quantification (right) of binding to KCs are shown.
(H) Binding of LPS to Tlr4fl/fl and Tlr4△Clec4f KCs cultured with biotin-LPS (white)
or biotin-LPS/HDL3 (red). (I) Time course of KC binding to biotin-LPS. (J) LPS
and HDL3 (20 mg/ml) coincubated for 3 hours in cell-free medium, with KCs
(+Mac), in medium conditioned by KCs (Mac Sup), or with KCs held at 4°C
(Mac Cold). LAL activity was then assessed. (K) Endotoxin LAL activity assessed
after LPS and HDL3 were incubated in KC-conditioned medium from which

AOAH was depleted or not. (L) Biotin-LPS and HDL3 incubated in the indicated
medium. LAL activity was assessed, and SDS denaturation was conducted
to allow for total biotin measurements. Relative LAL activity shown is normalized
to a constant amount of biotin. (M) HDL3, HDL2, or LDL complexed with
biotin-LPS and injected into the portal vein. Systemic plasma was harvested after
30 min. Endotoxin LAL activity and the amount of biotin were measured
and normalized as in (L). All HDL fractions studied in this figure were isolated
by density ultracentrifugation and, unless indicated [as in (B) to (G)],
coincubated with 1 mg/ml of LBP during the assays (H to M). (A) to (F) depict
three independent technical replicates (three experiments) per condition or
time point. (G) to (L) used two to six different primary KC cultures (each
prepared from different mice), with each symbol depicting data arising from
one of the KC cultures. (M) is from one experiment using 15 WT mice (n = 5 mice
per condition). *P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.05, ##P < 0.01,
###P < 0.001. Statistical analysis on data presented as bar graphs used
one-way ANOVA except for (K), for which a t test was used; data presented as
concentration curves were analyzed using two-way ANOVA.
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Fig. 5. Small bowel resection triggers TLR4-mediated liver inflammation.
(A to H) Small bowel resection (SBR) operations were conducted on WT
mice. Nonoperated (Nonop) (n = 4), sham (n = 8), 50% SBR (n = 8), and

75% SBR (n = 8) mice were euthanized 12 weeks later. (A) Total length
of the remaining small intestine. (B) Representative hematoxylin and eosin
(H&E)–stained liver sections. Scale bar, 50 mm. (C) Plasma AST levels.
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Munford and colleagues (35), who pioneered
our understanding of the role of AOAH in
inactivating LPS (26). Indeed, we show that
whereas LBP-containing HDL3 suppresses
recognition of LPS by KCs, it remains accessi-
ble to AOAH inactivation. It is unknown how
HDL3 prevents TLR4 recognition of LPS but
not that of AOAH. The difference may relate
to the role of LBP. Because TLR4 depends
upon LBP shuttling to CD14 to interact with
LPS, the HDL3–LBP complex may most ef-
fectively mask this interaction by masking
the critical epitope that would support LBP-
mediated handoff of LPS to CD14. However,
AOAH activity does not require LBP or CD14
and thusmay recognize LPS in the HDL3 parti-
cle through a region of LPS notmasked by LBP.
HDL suppressed the LPS-mediated activa-

tion of KC, as well as the proinflammatory
action of mediators such as lipoteichoic acid,
which also interacts with HDL through LBP
(36). Enterically derived HDL may bind and
neutralize other microbial cargo not yet identi-
fied. Furthermore, theabsenceofHDL-mediated
neutralization of microbial lipids such as LPS
may affect the course of inflammation in lo-
cations other than the liver. For example, in
Crohn’s disease, a major inflammatory bowel
disease, apoA1 is the most substantially down-
regulated gene in the affected ileal tissue (37).
In cardiovascular disease and sepsis, HDL3

rather thanHDL2 levels correlate with better
health outcomes (38, 39). The connection be-
tween disease pathogenesis in these various
conditions and enteric HDL is ripe for future
investigations.
Unanswered questions arise from this study.

First, how do LPS and LBP interact withHDL3
in amanner that masks the bioactivity of LPS?
Although LBP is a critical promoter of TLR4
signaling, it conversely mediates suppressed
signaling in the presence of HDL3. The struc-
tural basis of this unexpected result deserves
future attention. Moreover, studies in whole-
body knockout mice likely obscure the anti-
inflammatory contribution of LBPwhen bound
to HDL3 because of its other well-characterized
proinflammatory role. Finally, are other com-
ponents of HDL3 needed to support the LPS-
masking action ofHDL3 that we identify here?

Yet another mystery is why most portal
venous HDL-C derives from the intestine. We
had expected that portal venous blood HDL
would arise from both portal and systemic
sources. However, although systemic HDL
clearly arrived to the gut or mesentery, as evi-
dencedby efficient entry into intestine-draining
mesenteric lymphatics, it was not strongly de-
tected in the portal vein. These data suggest the
existence of unknown trafficking steps, includ-
ing the possible extravasation of systemic HDL
near or within the intestine. After extravasa-
tion, HDL2 that has entered or formed in the
intestinal interstitium from the peripherymay
be too large to enter the fenestrated blood
vessels that drain to the portal blood such that
only enterically derived HDL3 gains efficient
access. Consistent with this possibility, mesen-
teric lymph is relatively deficient in the smaller
HDL3 particles but relatively enriched inHDL2
(40). In contrast to our findings and those of
others (12), studies in rats have found that
the intestine routes HDL to lymph (41, 42).
Although this discrepancy may be a species
difference, studies in humans are more con-
sistent with our present findings (43, 44) than
with those in the rat. Moreover, it has been
proposed that the use of lecithin-cholesterol
acyltransferase inhibitors in these rat studies
aberrantly affected the results (12).
We believe that this research has strong

translational potential. In humans, like mice,
portal blood was enriched in HDL3 and po-
tently suppressed KC activation in response
to LPS.We used three murinemodels of liver
injury involving nutritional, alcoholic, or sur-
gical insult to the intestine. All showed that
intestinally derived HDL reduced liver injury.
From a therapeutic perspective, oral delivery
of LXR agonists proved effective in protect-
ing the liver by upregulating HDL within the
intestine, consistent with another recent study
that engineered mice so that LXR activity was
genetically augmented selectively in the intes-
tine (45). Furthermore, our profiling and func-
tional analysis revealed that the intestinal
epitheliummust express ABCA1, which is crit-
ical for HDL biogenesis, in order for a low-
dose, oral LXR agonist to protect the liver.
LXR agonists have failed to find utility in the

clinical setting to date, but orally restricted
LXR agonists remain promising (46, 47). Our
findings highlight the possibility that enteric
HDL–raising LXR agonists have appeal for
the treatment of various forms of liver injury.
However, if suitable LXR agonists cannot be
developed for application in humans, then
other approaches to elevating intestinal HDL
should be explored.

MATERIALS AND METHODS
Mice

C57BL/6 WT, Tlr4−/− (B6.B10ScN-Tlr4lps-del/
JthJ; JAX #007227), Vil1-Cre (B6.Cg-Tg(Vil1-
cre)997Gum/J; JAX #004586), Alb1-Cre (B6.
FVB(129)-Tg(Alb1-cre)1Dlr/J; JAX #016832),
Abca1fl/fl (B6.129S6-Abca1tm1Jp/J; JAX #028266),
Tlr fl/fl (B6(Cg)-Tlr4tm1.1Karp/J; JAX #024872)
Clec4f-Cre (C57BL/6J-Clec4fem1(cre)Glass/J;
JAX #033296), Abca1/g1fl/fl (B6.Cg-Abca1tm1Jp

Abcg1tm1Tall/J; JAX #021067), and Lyz2-Cre
(B6.129P2-Lyz2tm1(cre)Ifo/J; JAX #004781) mice
(7–10 weeks of age) were originally purchased
from Jackson Laboratories and housed in a
specific-pathogen-free room at 22 to 24°C and
50 to 60% humidity with a 12-hour light-dark
cycle. We previously generated and described
PGAKI/+mice (15).Lyz2-Cre×Abca1/glfl/fl breed-
ers were provided by Dr. R. Apte and Cd36-
knockout mice (both strains also on C57BL/6
background) byDr. N. Abumrad atWashington
University. All experiments were performed
in a blinded and randomized fashion. Mice
were housed on a 12-hour light-dark cycle in
a temperature-controlled, specific-pathogen-
free unit with food and water provided ad
libitum. The studies were approved by the
WashingtonUniversityAnimal StudiesCommit-
tee (protocols 20170154, 20170252, and 20-0032)
or the Medical College of Wisconsin Animal
Studies Committee (protocol AUA00004173)
in accordance with the National Institutes
of Health laboratory animal care and use
guidelines.

Small bowel surgery and associated treatments
or transplants

For small bowel resection experiments, mice
underwent a 50% proximal (jejunal) bowel
resection, 75% proximal bowel resection, or
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(D) F4/80+ macrophages and S100A9+ neutrophils in liver sections. Scale bar,
50 mm. (E) LAL endotoxin activity in portal plasma. (F) Kinetics of FITC-dextran
translocation from intestine to peripheral blood. Area under the curve was
measured. (G) qRT-PCR for intestinal mRNA transcripts encoding tight junction
proteins. (H) Staining for von Willebrand Factor (vWF) (blood vessel) and
PV1 in intestinal sections (left). Note that goblet cell mucin stains with the PV1
antibody, possibly nonspecifically. Relative increase in PV1 staining of vWF+

vessels (highlighted by white arrows) after SBR (right). Scale bar, 50 mm.
(I to M) Sham or 75% SBR operations were performed on Tlr4fl/fl and
Tlr4△Clec4f male mice, which were euthanized after 10 weeks. (I) Sirius red and
immunostaining of liver sections. Scale bars, 100 mm. (J) Relative sirius

red–positive area per field. (K) Numbers of F4/80+ macrophages and S100A9+

neutrophils per field. (L) Plasma ALT and AST levels. (M) Hepatic mRNA
transcripts of inflammatory genes analyzed by qRT-PCR. (A) to (G) are the
results of analysis of 30 WT mice combined from two experiments, with
n = 4 to 10 mice per condition (nonoperated, sham, 50% SBR, or 75% SBR).
(I) to (M) depict one experiment arising from analysis of 26 mice (n = 6 to
7 per genotype with or without SBR). Each symbol represents data from
an individual mouse. *P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.05,
##P < 0.01, ###P < 0.001. Statistical analysis on data presented as bar
graphs used one-way ANOVA; data presented as concentration curves were
analyzed using two-way ANOVA.
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Fig. 6. Disruption of enteric HDL production worsens small bowel
resection–induced liver injuries. (A) Portal HDL cholesterol levels in mice
receiving sham or 75% SBR operations. (B) RT-PCR for Abca1 and Apoa1 in

mouse duodenum, jejunum, ileum, and liver (left). Protein expression of apoA1
and ABCA1 in human proximal and distal gut were analyzed by immunoblotting
(right). (C and D) SBR operations were conducted for WT mice. Mice receiving
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sham control operation (bowel transection
with reanastomosis alone), as previously de-
scribed (28). In brief, through a midline lapa-
rotomy, the small bowel was exteriorized and
transected 1–2 cm distal from the ligament of
Treitz and ~12 cm (for 50% resection) or 6 cm
(for 75% resection) proximal to the ileocecal
junction. For sham operations, a transection
12 cm proximal to the ileocecal junction with
immediate reanastomosis was performed. For
distal 50% small bowel resection, the ileum
(last 12 cm of small bowel) was removed with
an anastamosis of the jejunum to a small cuff
of small bowel on the cecum. All anastomoses
were hand sewn end to end with interrupted
9-0 nylon sutures. Postoperative care included
housing in an incubator for temperature sta-
bility and 24 hour fasting before starting a liq-
uid diet (PMIMicro-Stabilized Rodent Liquid
Diet LD 101; TestDiet), on which themice were
maintained for 8–12 weeks until euthanasia.
For bone marrow transplants, WT recipient

mice received whole-body irradiation at a
dose of 11 Gy at 8 weeks of age, and then were
intravenously injected with 5 × 106 bone mar-
row cells fromWTor Tlr4−/− donormice. After
4weeks, short bowel resectionswere conducted.
For LXR agonist treatment, GW3965 (Sigma-

Aldrich, #G6295) was suspended in 0.5% car-
boxymethyl cellulose and orally administered
twice weekly at 1 mg/kg body weight per day
for the last 5 weeks in the 10-week period after
intestinal resection. The different experimen-
tal groups of mice maintained a similar body
weight during liquid diet feeding and/or drug
treatment.

Dietary challenge models

Where specified, mice were given HFD or
ALD to induce liver inflammation and injury
(48, 49). The HFD study, containing 60% kcal
from fat (Research Diets, #D12492), was con-
ducted for 12 weeks. For ethanol feeding, the
mice were acclimated to increasing alcohol
concentration of 2.1, 4.2, and 6.4% v/v (ethanol
and liquid diet) over 3 days, respectively. After
alcohol adaptation, a 6.4% ethanol–enriched
diet was supplied in the same liquid diet used
after small bowel resection surgeries (diet
changed daily) for 4 weeks. In supplemental
experiments, mice were fasted (with ad libitum

access to water) for up to 20 hours, or chal-
lenged for 3 weeks with an atherogenic diet
containing 42% kcal from fat (Harlan Teklad,
#TD.88137).

Immunostaining and confocal microscopy

Left lobes of liver tissues and small intestines
were excised and fixed in 4%paraformaldehyde
(Santa Cruz Biotechnology) overnight at 4°C.
Ten-micrometer paraffin-embedded sections
were prepared and slides were boiled in Diva
Decloaker solution (BiocareMedical, #DV2004)
in a pressurized chamber for 15 min. Sections
wereblocked inphosphate-buffered saline (PBS)
containing 5% donkey serum, 1% bovine serum
albumin (BSA) (Sigma-Aldrich), and0.03%Triton
X-100 (Plusone, #17-1315-01) for 1 hour, then incu-
bated with rat anti-F4/80 (Abcam, #ab6640),
goat anti-S100A9 (R&DSystems, #AF2065), rab-
bit anti-vonWillebrandFactor (DAKO, #a0082),
rat anti-PV1 (BD pharmingen, #550563), or rab-
bit anti-ABCA1 (Novus Biologicals, NB400-105)
at 4°C overnight. Primary antibodies were de-
tected using Cy3- or Cy5-conjugated secondary
antibodies (Jackson ImmunoResearch). The
stained sections were imaged using an SP8
confocal microscope (Leica) equipped with
nine lasers and four tunable detectors (two hy-
brid, two tunable) and a 20× HC PL Apo CS 2
multi-immersion objective, numerical aperture
0.75. Images were processed with Imaris soft-
ware (Bitplane). Ten fields were quantified and
averaged for each sample, with cell counts per
image quantified using Image J software (NIH).
All slides were analyzed in a blinded and ran-
domized fashion.

Quantitative real-time polymerase chain
reaction (qRT-PCR)

Total RNA from tissues or cells was isolated by
using RNeasy Mini or Micro kits according to
the manufacturer’s protocol (Qiagen). cDNA
was synthesized using the high-capacity cDNA
reverse transcription kit (Applied Biosystems,
#4368814). qRT-PCR experiments were per-
formed using ABI StepOnePlus Real-Time
PCR machine with specific primers (Applied
Biosystems). Primer sequences are available
upon request. The relative transcriptional ex-
pression of target genes was evaluated by the
Eq. 2−DCt (DCt = Ct of target gene minus Ct of

18S rRNA).Relative transcription,whereplotted,
was calculated with the mean of the control
group set as 1.

Intestinal permeability assay

After themice had fasted for 4 hours, 200mg/kg
body weight of 4-kDa fluorescein isothiocyanate
(FITC)–dextran (Sigma-Aldrich) was adminis-
tered by gavage. After 0.5, 1, 2, or 4 hours, blood
for the preparation of plasma was collected
from the tail vein, and the fluorescence inten-
sity of the samples and standards was read at
excitation 485 nm/emission 525 nm using the
Cytation 5 Cell Imaging Multi-Mode Reader
(BioTek).

Photoactivation of PGA1KI/+ mice

For phototaggingHDL fromskin, 8- to 10-week-
old PGA1KI/+ mice were anesthetized and a re-
gion of shaved skin was photoconverted using
a SOKY, Violet 405 nm 500mW (FDA), PL-405-
500B laser, as described previously (15). For
photoactivation of the lumen of the small in-
testine of anesthetizedmice, we stretched the
mesentery and intestine over the solid surface
of a Petri dish, located the region of interest,
and surgically clipped the bowel just enough
so that we could thread into the lumen a fiber-
optic endoscopic laser (Laserland, Violet 405nm
100 mW) to photoactivate enterocytes. Unless
otherwise specified, three areas were activated
for one data point, with the laser being held on
for 10 s and off for 20 s, cycling for 1 min 10 s to
achieve three exposures per location. For photo-
activation of the exterior of the small intestine,
the Laserland Violet 405 nm 100 mW 5V laser
was used to activate area of 14.668mm2 of gut
with a similar on–off cycle as for the intesti-
nal lumen.

Collection of blood and lymph

Theportal bloodwas collected using a 33-gauge
needle to a volumeof 40 ml permouse. Systemic
blood was collected from the inferior vena cava
using a 26-gauge needle in EDTA-containing
tubes.Mesenteric lymph fluidwas also collected,
and the fluorescence intensity of plasma or
lymph fluid was measured using the Cytation
5 Cell Imaging Multi-Mode Reader (BioTek).
Mesenteric lymphatic cannulations were ac-
complished under general anesthesia using an
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sham (n = 3), proximal 50% SBR (P-SBR) (n = 7), and distal 50% SBR (D-SBR)
(n = 6) operations were euthanized 10 weeks later. (C) Portal HDL cholesterol
levels. (D) Plasma AST levels. (E to J) 75% SBR operations were performed
for Abca1fl/fl (n = 10), Abca1DVil1 (n = 10), and Abca1DAlb1 (n = 7) mice, which were
euthanized 8 weeks later. (E) Portal HDL cholesterol levels. (F) Representative
sirius red staining of liver sections (left, top row) and relative area per field
(near right). F4/80+ macrophages and S100A9+ neutrophils were visualized
(left, bottom row); cell numbers per field are shown (far right). Scale bars,
100 mm. (G) Representative anti-SMA immunostaining of liver sections.
Scale bar, 200 mm. (H) Plasma ALT and AST levels. (I) Hepatic RT-PCR for
inflammatory genes. (J) Portal LAL LPS activity (top) and LPS quantification

by ELISA (bottom). (K to M) Abca1fl/fl and Abca1DVil1 male mice were fed HFD
or ALD. (K) Representative H&E–stained liver sections. Scale bar, 100 mm.
(L) Plasma ALT and AST levels. (M) RT-PCR for inflammatory genes. (A)
to (C) show results from n = 3 to 7 mice per condition using WT mice
(one experiment each panel). (E) to (I) combine data from two experiments
using 28 mice (n = 7 to 11 mice per genotype). (L) and (M) depict two
experiments (one HFD, one ALD) from n = 15 mice on HFD (n = 9 Abca1fl/fl

mice, 6 Abca1DVil1 mice) or n = 13 mice on ALD (n = 6 Abca1fl/fl mice,
7 Abca1DVil1 mice). *P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.05,
##P < 0.01, ###P < 0.001. Statistical analysis on data presented as bar
graphs used one-way ANOVA except for (A), for which a t test was used.
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operating microscope. A midline laparotomy
with an extension to a left subcostal incision
wasmade and the intestine wasmobilized to
expose the mesenteric lymphatic duct proxi-
mal to the cisterna chyli. A small incision was
made on the mesenteric lymphatic duct and
gently cannulated using polyethylene tubing
(inner diameter, 0.28 mm; outer diameter,
0.61 mm; Intramedic, Sparks, MD). At the
completion of the collection, the mouse was
euthanized.

Preparation of HDL fractions

Human and mouse plasma collected from the
portal vein or peripheral vein (inferior vena
cava for mouse, antecubital vein for human)
was collected and ultracentrifuged overnight
using standard methodology at 100,000g at
4°C in sequential steps, adjusting the solu-
tion to 1.063 g/ml using KBr (Sigma-Aldrich,
#221864) to remove LDL. Then the HDL frac-
tion was prepared by another centrifugation
at 100,000g after further adjusting density of
the solution to 1.21 g/ml with KBr. Isolated
HDL fractions were dialyzed using the Slide-
A-Lyzer Dialysis cassette kit (Thermo Fisher
Scientific) with PBS solutions containing NaCl,
Tris, and EDTA for 4 hours at 4°C to remove
KBr.HumanHDL2 (1.063-1.125 g/ml) andHDL3
(1.125-1.21 g/ml) fractions were obtained from
GenWay Biotech.

FPLC and measurement of HDL cholesterol

Fifty microliters of blood from mice fasted for
4 hours was collected inmicrocentrifuge tubes
containing 10 ml of 0.5 mMEDTA and then cen-
trifuged at 500g to collect plasma. For choles-
terol distribution of total lipoproteins, plasma
was prepared and 100–200 ml was flowed over
a Superose 6 10/300GL gel filtration column
(GE Healthcare) to separate the different
classes of lipoproteins. Cholesterol in each
fraction was measured by an enzymatic assay
kit (Wako Diagnostics Cholesterol E, #439-
17501). AnHDLcholesterol assaykit (CellBiolabs,
#STA-394) was used to measure HDL-C levels.

Immunoblots

Protein immunoblotting was performed using
rabbit anti-mouse apoA1 (Meridian Life Sci-
ences), rabbit anti-human apoA1 (Millipore,

#MAB011), rabbit anti-human ABCA1 (Novus
Biologicals, #NB400-105), mouse anti-PON1
(Abcam,#ab24261), rabbitanti-ApoB(Proteintech,
#20578-1), rabbit anti-LBP (Abcam, #ab233524),
rabbit anti-AOAH (Proteintech, #12911-1), rab-
bit anti-SERPINA1 (Thermo Fisher Scientific,
#PA5-16661),mouse anti-ApoE (kindly provided
by D. M. Holtzmann, Washington University),
or rabbit anti-albumin (Proteintech, #16475-1)
antibodies. Table S2 specifies the dilutions of
the antibodies used. The HDL fractions were
loaded to achieve the same protein concentra-
tion per lane, and plasmawas loaded without
dilution. For native gels, the samples were di-
luted in 2× native sample buffer (Bio-Rad) and
run on 4 to 20%Mini-PROTEAN Tris-glycine
gels (Bio-Rad) with Tris-glycine running buf-
fer. For denaturing gels, the samples were
diluted in 2× Tris-Glycine-SDS sample buffer
(EZ Bioresearch) and heated at 95°C for 10min.
The samples were loaded onto 4 to 20%Mini-
PROTEAN gels and run with Tris-glycine-SDS
running buffer. The separated proteins were
transferred to 0.45-mmpolyvinylidene fluoride
membrane (Milipore, #IPVH00010) with Tris-
glycine transfer buffer for 2 hours at 20 V.
Membranes were blocked with 5% nonfat dry
skimmilk (Bio-Rad, #170-6404) for 1 hour, and
p rimary antibodies were incubated overnight
at 4°C. After incubation with horseradish
peroxidase–conjugated secondary antibodies,
signal was detected using ClarityWestern ECL
solution (Bio-Rad).

Electron microscopy of HDL particles

The isolated HDL fractions were diluted to
15 mg/ml of total protein and negatively stained
with 1% uranium acetate. The samples were
deposited on carbon-coated, 200-mesh copper
grids (Electron Microscopy Sciences). Images
were acquired with a transmission electron
microscope (TEM; JEOL, #JEM-1400Plus) at
120 KeV and 80,000× or 150,000× magnifica-
tions. The diameter of HDL particles wasmea-
sured using ImageJ software.

Isolation or culture of liver immune cells and
macrophages

For quantification of neutrophils, monocyte-
derivedmacrophages, and KCs in livers of mice
subjected to short bowel resection or sham

surgery, livers were collected and homogenized
in Hank's buffered saline solution containing
1.49 mg/ml of collagnase type IV (Sigma-
Aldrich, #C5139) and dissociated using the
gentleMACSOcto Dissociator (Miltenyi Biotec).
After centrifugation at 50g, the supernatant
containingnonparenchymal cellswas separated
using 33% Percoll (GE Healthcare).
For KC isolation and culture, the livers of

7- to 10-week-old male C57BL/6 mice were
perfused through the inferior vena cava with
collagenase type IV solution as described pre-
viously (50). The cell suspensionwas centrifuged.
Cell suspensions collected in the supernatant
were collected and again centrifuged in 50%/
25%Percoll (GEHealthcare). The layer contain-
ing liver macrophages was plated in RPMI-
1640 (Hyclone) containing 10% fetal bovine
serum (FBS). After 2hours of culture to allow for
cell attachment, the cell mediumwas changed
to “vehicle” medium, which was serum-free
RPMI-1640 containing 1 mg/ml of recombinant
LBP (R&D Systems, #6635-LP) for 3 hours of
culture. HDL preparations were added, or not,
to these cultures with 20 ng/ml of LPS (Sigma-
Aldrich, #L2630), 10 mg/ml lipoteichoic acid
(LTA) (Sigma-Aldrich, #L2515), 10 mg/ml CpG
DNA (Invivogen, #tlrl-1826), 100 ng/ml TNF
(Sigma-Aldrich, #T7539), or 100 ng/ml IL-1b
(Sigma-Aldrich, #I5271).

Flow cytometry

Isolated liver immune cells and cultured liver
macrophages were collected and counted in
an automated cell counters (Cellometer Auto
X4; Nexelcom Bioscience) after staining for
acridine orange (Sigma-Aldrich). Antibodies
(details in table S2) including BUV396-anti-
CD45 (BD Biosciences, #563791), FITC-anti-
Ly6G (BioLegend, #127605), APC/Cy7-anti-F4/
80 (BioLegend, #123117), PerCP/Cy5.5-anti-
Ly6C (BioLegend, #128011), PE/Cy7-anti-CD31
(BioLegend, #102417), Alexa Fluor 488-anti-
iNOS (Thermo Fisher Scientific, #53-5920-82),
APC-anti-CD11b (Thermo Fisher Scientific,
#17-0112-82), PE-anti-Tim4 (Thermo Fisher
Scientific, #12-5866-82), or goat anti-Clec4f
(R&D Systems, #AF2784) were incubatedwith
FACS buffer (2%FBS, 2mMEDTA, and sodium
azide in PBS) on ice for 30 min. In some ex-
periments, the primary cultures of KCs were
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Fig. 7. Intestine-restricted activation of LXR ameliorates liver injury in a
manner dependent upon enteric HDL production. (A to E) Abca1fl/fl and
Abca1DVil1 mice received vehicle (n = 10 Abca1fl/fl mice, n = 8 Abca1DVil1 mice) or
1 mg/kg/day GW3965 (n = 10 Abca1fl/fl mice, 8 Abca1DVil1 mice) by gavage twice
weekly in the last 5 weeks of a 10-week feeding after SBR (Low-GW3965).
(A and B) RT-PCR analysis of select target genes in the ileum and liver tissues
was used to determine fold induction in response to GW3965 treatment.
(C and D) Heatmap of mRNA transcripts of LXR-regulated genes in the ileum
and liver tissues. (E) Heatmap of mRNA transcripts encoding genes associated
with the inflammatory response or collagen metabolism within the liver
according to GW3965 treatment and genotype. (F) Immunoblots for apoA1

to detect HDL after portal vein plasma were run on a nondenaturing gel.
(G) Portal plasma HDL cholesterol levels. (H) Sirius red staining of liver sections
(left) and relative area per field (right). Scale bar, 100 mm. (I) F4/80+

macrophages and S100A9+ neutrophils visualized by immunofluorescence in
liver sections (left) (scale bar, 100 mm) and cell numbers per field counted
(right). (J) Plasma ALT and AST levels. (K) RT-PCR measuring inflammation- or
fibrosis-associated mediators. Plots show mean ± SEM in male mice, with
each symbol on the bar graphs representing a single mouse with data combined
from two experiments; *P < 0.05, **P < 0.01, ***P < 0.001, ###P < 0.001.
t tests were used for statistical comparisons in (A) and (B); one-way ANOVA was
used for statistical comparisons in (G) to (K).
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incubated with 100 ng/ml of biotinylated LPS
(Invivogen, #tlrl-lpsbiot) for 2 hours. Then,
biotinwas detected using PE/Cy7-streptividin
(BioLegend, #405206). After surface staining of
biotin, in some experiments, internalized biotin-
LPS was stained using BV605-streptavidin
(BioLegend, #405229) in cells permeabilized
using the Intracellular Fixation& Permeabiliza-
tion Buffer Set (Thermo eBioscience, #88-8824).
After washing and resuspension, cells were
analyzed on a BDBiosciences FACS Symphony
machine and analyzed by FlowJo software
(BD Biosciences).

Enzyme-Linked Immunosorbent Assay

Enzyme-linked immunosorbent assay (ELISA)
kits were used according to the manufacturer’s
protocol and included the AST Activity Assay
Kit (Sigma-Aldrich, MAK055), TNF-a (Sigma-
Aldrich, RAB0477), or CCL2 ELISA (Sigma-
Aldrich, #RAB0055). Limulus amebocyte lysate
(LAL) endotoxin activity was measured using
the Pierce LALChromogenic EndotoxinQuan-
titationKit (Thermo Fisher Scientific, #88282).
LPS quantification by ELISA used the LPS
ELISA kit from MyBiosource (#MBS700021).
For sandwich ELISA to analyze LPS-HDL bind-
ing, we used high-binding clear polystyrene
microtiter plates (R&D Systems, #DY990), and
purified HDL was immobilized for 2 hours on
these plates at 37°C at 10 mg/ml. After washing,
plates were blocked with 1% BSA for 1 hour.
Then biotinylated LPS was preincubated with
or without 1 mg/ml of recombinant LBP (R&D
Systems) for 1 hour and incubated in plates for
30 min. For ELISA to quantify biotin, samples
including biotinylated LPS were incubated
in high-binding clear polystyrene microtiter
plates overnight at 37°C. Streptavidin perox-
idase (R&D Systems) was added, followed
by diaminobenzidine substrate (Abcam), for
colorimetric reactions. Colorimetric or fluo-
rometric absorbance was detected using the
Cytation 5 Cell Imaging Multi-Mode Reader
(BioTek).

IP of HDL, LDL, and biotinylated LPS

For proteomic analysis of systemic and por-
tal plasma, human plasma samples were sep-
arated using size-exclusion FPLC and then
plasma albumin and IgG were depleted using
the Pierce Albumin/IgG Removal kit (Thermo
Fisher Scientific, #89875). Immunoprecipitation
(IP) on the separated HDL fractions was con-
ducted using Pierce MS-Compatible Streptavi-
din Magnetic IP Kit (Thermo Fisher Scientific,
#90408). The anti-human apoA1 antibody
(Proteintech, #14427-1) was biotinylated using
PierceAntibodyBiotinylationkit for IP (Thermo
Fisher Scientific, #90407) for later capture by
streptavidin IP. The samples were eluted at low
pH and neutralized to 100 mM Tris, pH 8.0.
Biotinylated LPS in cell media was mixed

with 1% SDS to disrupt lipoproteins and then

purified using Streptavidin Magnetic IP kit.
Endotoxin activity of the immunopurified
biotinylated LPS was measured using the LAL
kit and normalized by relative amount of biotin
as detected in ELISA.
For binding studies, 50 mg/ml of protein in

HDL3, HDL2, or LDL fractions wasmixedwith
1 mg/ml of LBP and 20 mg/ml of biotinylated
LPS in 100 mMNaCl, 100 mM Tris, and 1 mM
EDTA buffer for 2 hours. The mixtures were in-
cubatedwith anti-apoA1 antibody (Proteintech)
or anti-apoB antibody (Thermo Fisher Sci-
entific, #MIA1605) overnight and immuno-
precipitated using Protein A agarose beads
(Abcam, #ab193254). The bead-bound sam-
ples were eluted using 0.1 M glycine buffer
(pH 2.5) and neutralized using 100 mM Tris,
pH 8.0. The distributions of LBP and bio-
tinylated LPS were measured by immuno-
blotting and streptavidin-peroxidase ELISA,
respectively.

Generation of reconstituted HDL (rHDL)

Human apoA1 isolation and purification from
fresh human plasma was performed as re-
ported previously (51). The lyophilized pro-
tein was solubilized and denatured in STB
(10 mM Tris, 0.15 M NaCl, 1 mM EDTA, and
0.2% NaN3) containing 3 M guanidine HCl,
followed by refolding at 4°C by dialyzing
against three changes of 4 liters of STB for
a minimum of 3 hours each. rHDL particles
were generated with a modified sodium cho-
late dialysis as previously described (52). A
molar ratio of 80:1 POPC (Avanti Polar Lipids)
and apoA1, respectively, was used to gener-
ate rHDL.

Depletion of HDL or AOAH

The HDL inmouse plasmawas removed with
the HDL Depletion Column IgY Kit (Genway
Biotech, #GWB-HDLIGY). AOAH in cell me-
dium was depleted through IP by anti-AOAH
antibody (Proteintech) and Protein A agarose
beads. After IP, the supernatant was har-
vested and depletion of HDL or AOAH con-
firmed by immunoblotting.

Chromatographic analysis of biotinylated LPS
transfer between lipoprotein species

HDL3 or HDL2 (100 mg protein/ml) was in-
cubated with or without 2 mg/ml of LBP and
1 mg/ml of biotinylated LPS in Tris buffer for
30 min and then dialyzed in a Slide-A-Lyzer
Dialysis cassette kit. Isolated VLDL (10 mg/ml
of protein) and LDL (50 mg/ml of protein)were
subsequently added to the HDL-LPS mix-
ture and incubated for 2 hours at 37°C. The
200-ml mixture was then subjected to FPLC
separation using a Superose 6 10/300GL gel
filtration column. The amount of biotin was
measured through streaptavidin peroxidase
ELISA, and lipoprotein-associated LPS was
thereby determined.

Portal vein injection of biotinylated LPS and
lipoprotein complex
A mixture containing 5 mg of biotinylated LPS
and 2 mg of LBP was incubated with 0.1 mg of
HDL3, HDL2, or LDL (concentration deter-
mined by protein not lipid) in saline buffer for
3 hours. Mice were anaesthetized by injection
of a mixture of ketamine (50 mg/kg body
weight) and xylazine (8 mg/kg body weight)
intraperitoneally. The LPS-loaded lipoprotein
mixtures described above were then injected
through the portal vein in a 100-ml volumeusing
an ultrasmall 33-gauge needle. VETSPON Ab-
sorbable Hemostatic Gelatin Sponges (Novartis)
were used to stop bleeding of the portal vein.
Systemic blood and livers were harvested
30 min later.

Peptide preparation and nano-liquid
chromatography–tandem mass spectrometry

Peptides were prepared as previously de-
scribed (53). Thenmodification of a previous
method (54) was followed. First, the column
was equilibrated to 0.1% formic acid (FA) for a
total of 11 ml at 700 bar pressure. The samples
in FA (1%) were loaded on an EASY nanoLC
(Thermo Fisher), with sample (2.5 ml) applied
onto a 75-mm inner diameter × 50-cm Acclaim
PepMap 100C18RSLCcolumn (ThermoFisher).
A constant pressure of 700 bar was maintained
at 0.1% FA. Peptide chromatography was per-
formed using mobile phase A (1% FA) con-
taining 2% B (100% MeCN, 1%FA) for 5 min,
then increased to 20%Bover 100min, to 32%B
over 20 min, to 95% B over 1 min, and held at
95%B for 29min. The flow ratewas 250nl/min.
Data were acquired in data-dependent acquisi-
tion (DDA) mode. Full-scan mass spectra were
acquired with the Orbitrap mass analyzer
with a scan range ofm/z = 350 to 1500 and a
mass resolving power set to 70,000. Ten data-
dependent, high-energy collisional dissocia-
tions were performed with a mass-resolving
power set to 17,500, a fixed lower value of
m/z 100, an isolation width of 2 Da, and a nor-
malized collision energy setting of 27. The
maximum injection timewas 60ms for parent
ion analysis and product ion analysis. The tar-
get ions that were selected for tandem mass
spectrometry (MS/MS) were dynamically ex-
cluded for 20 s. The automatic gain control
was set at a target value of 3 × 10–6 ions for
full MS scans and 1 × 10–5 ions for MS2. Pep-
tide ions with charge states of 1 or >8 were
excluded for HCD acquisition.

Protein identification

TheMS unprocessed data from the mass spec-
trometer were converted to peak lists using
ProteomeDiscoverer (ThermoFisher Scientific).
The MS2 spectra with charges +2, +3, and +4
were analyzed using Mascot software (Matrix
Science). Mascot was set up to search against
a UniProt (July 2019) database of human

Han et al., Science 373, eabe6729 (2021) 23 July 2021 14 of 16

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of C
incinnati on O

ctober 05, 2021



proteins (20,667 entries), using trypsin cleav-
age specificity (trypsin/P) with four missed
cleavages allowed. The searches were per-
formed using Mascot software according to
previously described parameters for peptide
identification (53). Peptides and proteins were
filtered at 1% false discovery rate (FDR) by
searching against a reversed protein sequence
database. The ontology of HDL signature pro-
teins were acquired from DAVID bioinfor-
matics functional annotiation (https://david.
ncifcrf.gov/).

RNA sequencing

Three individual mice per experimental group
were used for the generation of whole intesti-
nal or whole liver RNA sequencing. Total RNA
integrity was determined using an Agilent
Technologies Bioanalyzer or 4200 Tapestation.
Library preparationwas performedwith 500ng
to 1 mg of total RNA. Ribosomal RNA was re-
moved by anRNase-Hmethod using RiboErase
kits (Kapa Biosystems), and mRNA was then
fragmented in reverse transcriptase buffer
with heating to 94°C for 8 min. Then mRNA
was reverse transcribed to yield cDNA using
SuperScript III RT enzyme (Life Technologies)
and random hexamers. A second strand reac-
tion was performed to yield ds-cDNA. cDNA
was blunt-ended, had an A base added to the
3′ ends, and then had Illumina sequencing
adapters ligated to the ends. Ligated fragments
were then amplified for 12 to 15 cycles using
primers incorporating unique dual index tags.
Fragments were sequenced on an Illumina
NovaSeq-6000 using paired-end reads extend-
ing 150 bases. The gene countswere quantified
with CPM transformations addedwith custom
R scripting. Normalized Log2 CPM values were
visualized as heatmaps through the web in-
terface Phantasus (https://genome.ifmo.ru/
phantasus). Gene ontology pathway analyses
were acquired from DAVID bioinformatics
functional annotation. The sequencing and
expression data have been deposited in the
Gene Expression Omnibus (GEO) database of
theNational Center for Biotechnology Informa-
tion with the accession number GSE167983.

Human studies

Human portal and peripheral systemic blood
was acquired from adult patients undergoing
open surgical procedures in which the surgical
team deemed that the portal vein was safely ac-
cessible.Bloodwas collected inEDTA-containing
tubes and centrifuged for immediate analysis
of plasma for HDL. The population of patients
fromwhichplasmawas acquiredwas composed
of three males and three females ranging in
age from 54 to 80. Four underwent Whipple
pancreatic surgery, one underwent gastric
bypass, and one underwent an orthotopic liver
transplant. Immunoblotswere performedusing
tissue specimens from other patients under-

going surgical resection for proximal or distal
gut after traumatic injury. These were collected
and fixed in formalin by the Department of
Pathology and Immunology for a routine sur-
gical pathology workup and were shared for
research after sign out of the clinical case. After
dissecting tissue enriched in epithelium, dis-
sected tissueswere stabilized inPAXgeneTissue
Stabilization buffer (PreAnalytiX, #765512) for
at least 3 hours. Protein lysates were then pre-
pared by homogenization in Extraction EXB
buffer (Qiagen, #37623). All human studieswere
approved by the Human Research Protection
Office at Washington University (institution-
al review board protocols #201111038 and
#2019101009, PI G. J. Randolph).

Statistics

All graphs are plotted to depict mean ± SEM. A
paired or unpaired two-tailed Student's t test
was used for simple comparisons, a one-way
ANOVAwith Tukey's post hoc test formultiple
comparisons for three or more groups with
one variable, or a two-way ANOVA with Sidak
post hoc test for three or more groups with
two variables. Statistical differences were
analyzed and graphs were prepared using
GraphPadPrism software version 8.0. P < 0.05
was considered to be a significant difference.
Replicates in the bar graphs are shown by dis-
tinct symbols. Replicates in biochemical and/or
binding experiments were independent techni-
cal replicates using the same reagents (techni-
cal replicates; Figs. 3 and 4, A to F). In other
experiments, each symbol in a graph represents
experiments where independent cell prepara-
tions of plasma (Fig. 1, A and F, and Fig. 2, A
and B; paired samples) or primary cells (Fig. 3,
A to E, and Fig. 4, G to L) were generated and
studied within the experimental design. Fi-
nally, in all in vivo experiments, each symbol
in a graph represents data generated from an
individualmouse (Fig. 1, C to E; Fig. 4M; Fig. 5,
A, C, and E to H; Fig. 5, J to L; Fig. 6, A to F, H
to J,and L and M; and Fig. 7, A to K). All data
usingmice contained at least twomice in each
experimental group from the same litter, so
that the data in a given experimental cohort
contained littermate controls in the other
groups of the same experiment. Some studies
combined mice from three or four litters to
generate sufficient numbers. If these mice
were subjected to experimentalmanipulations
such as short bowel surgery on different dates,
then we refer to the combination of those data
into one graph as combining different experi-
ments, with each distinct start date of the
experimental manipulation considered an in-
dependent experiment. Experimental man-
ipulations that began on the same day with
age-matched litters were not classified as in-
dependent experiments. The distribution of
data was not affected by combining indepen-
dent experiments.Wherepossible, data collected

from different experiments were subjected to
assays simultaneously tominimize batch effects.
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Enterically derived high-density lipoprotein restrains liver injury through the portal
vein
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Intestinal HDL is hepatoprotective
High-density lipoprotein (HDL) is important for cholesterol metabolism and may have anti-inflammatory and
antimicrobial properties. Although HDL is mainly produced by the liver, the intestine is also a source. Han et al. show in
mice that intestinal HDL is not routed to the systemic circulation. Rather, in the form of HDL3, it is directly transported
to the liver through the hepatic portal vein. There, it sequesters bacterial lipopolysaccharide from the gut that can
trigger inflammation and liver damage. In various models of liver injury, loss of enteric HDL exacerbated pathology. By
contrast, drugs elevating intestinal HDL improved disease outcomes. HDL3 is enriched in human portal venous blood,
suggesting that enteric HDL may be targetable for the treatment of liver disease.
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