Chalkley, Roger

Basic global relative invariants for nonlinear differential equations. (English) Zbl 1136.34001

Let be a field of characteristic zero with differentiation \(\theta \), \(y \) be a differential indeterminate and \(f \in F_3 \{ y \} \). For any \(\lambda \in F^* \) put \(u = \lambda^{-1} y \) then \(u \) is also indeterminate over \(F \) and the substitution \(y = \lambda u \) in \(f \) gives a new differential polynomial \(\hat{f} \in F \{ u \} \).

Analogously, for any \(\alpha \in F^* \) put \(\delta = \alpha^{-1} \theta \) then \(\delta \) is also a differentiation of \(F \) and the substitution \(\theta = \alpha \delta \) in \(f \) gives a new differential polynomial \(\tilde{f} \in F \{ y \} \). Under these transformations, with use of a suitable normalizing multiplier, some common algebraic properties of the polynomial \(f \) are kept. For example, if \(f \) is a quadratic form in indeterminates like this

\[
q_m = (\theta^m y)^2 + \sum_{i=1}^{m} c_{ij} \theta^{m-i} y \theta^{m-j} y (i, j = 0, \ldots, m; i + j \neq 0)
\]

with a symmetrical matrix of coefficients \(c_q = (c_{ij}) (c_{ij} \in F) \), then the polynomials \(q_m \) and \(\bar{q}_m \) are also quadratic form in indeterminates \(u, \theta u, \ldots, \theta^m u \) and \(y, \delta y, \ldots, \delta^m y \) (respectively) with the symmetrical matrices of coefficients \(c_q \) and \(\bar{c}_q \), respectively.

So, we get a transformation \(\tau_\lambda (\tau_\alpha) \) on set of matrices over \(F \) mapping \(c_q \mapsto \bar{c}_q \) \((c_q \mapsto \tilde{c}_q) \) and \(\tau_\lambda (\tau_\alpha) \) is a regular differentially algebraic mapping over \(F \).

Let \(\mathbb{Q} \) be a field of rational numbers and \(\mathbb{Q} \{ w \} \) be a ring of differential polynomials in the differential indeterminates \(w_i (i, j = 0, \ldots, m; i + j \neq 0) \). A differential polynomial \(P \in \mathbb{Q} \{ w \} \) is called relative (or semi-)invariant if \(P(\tau_\lambda (w)) = \alpha^q P(w) \) and \(P(\tau_\alpha (w)) = \alpha^q P(w) \) (for some \(q \in \mathbb{N} \)). For example, the polynomials

\[
L_{211} = w_{11} - (w_{01})^2,
\]
\[
L_{212} = w_{12} - \frac{1}{2} w_{01} w_{11} - w_{01} w_{02} + \frac{1}{4} (w_{01})^3 - \frac{1}{4} w_{11}^{(1)} + \frac{1}{2} w_{01} w_{01}^{(1)}
\]

are two from three of basic relative invariants for \(q_2 \).

In this memoir, as well as in previous (see [Mem. Am. Math. Soc. 744 (2002; Zbl 1006.34084)]), the full description of the basic relative invariants for considered differential polynomials is given. An evaluation of invariants manually is possible only for differential polynomials of the small order and a low degree. Therefore the description of invariants is given in the form of recurrent relations and instructions for machine evaluations in Mathematica system are provided. The exposition is self-contained, well illustrated by examples and based on classical technique.

Reviewer: Nikolay Vasylie Grigorenko (Kyïv)

MSC:
34-02 Research monographs (ordinary differential equations)
34A34 Nonlinear ODE and systems, general
34M45 Ordinary differential equations on complex manifolds
34M15 Algebraic aspects of ODE in the complex domain

Keywords:
basic global relative invariants

Software:
Mathematica (http://www.swmath.org/software/554)