CHAPTER 16

Computer Algebra with Formulas (15.9)–(15.18)

The research presented in [19, 20, 21] was made possible when (15.16) was discovered and systems of computer algebra could then be used to find several key identities through trial-and-error experimentation. Similarly, one can make interesting discoveries or rediscoveries merely by using the formulas for \(c_i^*(z) \) and \(c_i^{**}(\zeta) \) with a few basic commands in a system of computer algebra. Here, we illustrate how that can be done by selecting a version of Mathematica from [55, 56, 57, 58, 59] as the system. The names of its commands indicate well what they do.

16.1. Computer representations for \(c_i^*(z) \) and \(c_i^{**}(\zeta) \)

We apply (15.9), (15.12), (15.17), (15.18), and (15.16) with the selected version of Mathematica to conclude that successive notebook evaluations of

\[
\begin{align*}
c[m_,0][z_] := & 1 \\
cS[m_,i_][z_] := & \text{Sum}[\text{Binomial}[m-j,i-j]*
(D[rho[z],{z,i-j}]/rho[z])*c[m,j][z],{j,0,i}] \\
alpha[0,j_][zeta_] := & 1 \\
alpha[i_,j_][zeta_] := & (\text{Sum}[alpha[i-1,k]’[zeta]-(i-1+k)(f''[zeta]/f’[zeta])*alpha[i-1,k][zeta],{k,1,j}]) /; i >= 1 \\
cSS[m_,i_][zeta_] := & \text{Sum}[alpha[i-j,m-i][zeta]*
(f’[zeta])^j*c[m,j][f[zeta]],{j,0,i}]
\end{align*}
\]

enable Mathematica to then give computer representations for \(c_i^*(z) \) and \(c_i^{**}(\zeta) \), when \(i = 0, 1, 2, \ldots \) and \(m \) can remain a symbol for any positive integer \(\geq i \).

For instance, the computer representations for the evaluations of \(cS[m,1][z] \) and \(cSS[m,1][\zeta] \) show that \(c_1^*(z) \) and \(c_1^{**}(\zeta) \) are respectively given by

\[
c_1^*(z) \equiv c_1(z) + m\frac{\rho'(z)}{\rho(z)} \quad \text{and} \quad c_1^{**}(\zeta) \equiv f'(\zeta) c_1(f(\zeta)) - \left(\frac{m}{2} \right) \frac{f''(\zeta)}{f'(\zeta)}.
\]

Also, the computer representation for the evaluation of \(cS[m,2][z] \) yields

\[
c_2^*(z) \equiv c_2(z) + (m - 1)c_1(z)\frac{\rho'(z)}{\rho(z)} + \left(\frac{m}{2} \right) \frac{\rho''(z)}{\rho(z)}.
\]
16.2. Applications based on the representations for \(c_i^*(z) \) and \(c_i^{**}(\zeta) \)

Example 16.1. With \(m \geq 2 \) and symbols \(r_1, r_2 \) for rational numbers, we set

\[
P_{m,2} \equiv w_2^{(0)} + r_1 w_1^{(0)} + r_2 w_1^{(1)}.
\]

In regard to the function \(P_{m,2}(z) \) on \(\Omega \) that is obtained by replacing each \(w_i^{(j)} \) in \(P_{m,2} \) with the corresponding \(c_i^{(j)}(z) \) from (15.9), we see that the evaluation of

\[
P[z_] := c[m,2][z] + r_1*c[m,1][z]^2 + r_2*c[m,1]'[z]
\]

represents \(P_{m,2}(z) \). Also, for the function \(P_{m,2}^*(z) \) on \(\Omega \) that is obtained by replacing each \(w_i^{(j)} \) in \(P_{m,2} \) with the corresponding \(c_i^{*(j)}(z) \) from (15.12), the evaluation of

\[
PS[z_] := cS[m,2][z] + r_1*cS[m,1][z]^2 + r_2*cS[m,1]'[z]
\]

represents \(P_{m,2}^*(z) \). There are eight terms in the output for the evaluation of

\[
dif1[z_] = \text{Expand}[PS[z] - P[z]]
\]

and in those terms the parts not involving \(m, r_1, r_2 \) are equal to the evaluations of

\[
b[1] = c[m,1][z]*\text{rho}'[z]/\text{rho}[z];
\]

\[
b[2] = (\text{rho}'[z]/\text{rho}[z])^2;
\]

\[
b[3] = \text{rho}''[z]/\text{rho}[z];
\]

while the evaluations of

\[
a[1] = \text{Coefficient}[dif1[z],b[1]];\]

\[
a[2] = \text{Coefficient}[dif1[z],b[2]];\]

\[
a[3] = \text{Coefficient}[dif1[z],b[3]];\]

then yield the respective coefficients \(a[1], a[2], a[3] \) of \(b[1], b[2], b[3] \) in \(\text{dif1}[z] \). Of course, if \(r_1 = r_1 \) and \(r_2 = r_2 \) are specific rational numbers, then we see that: \(a[1], a[2], a[3] \) are zero if and only if \(PS(z) - P(z) \) is zero and \(P_{m,2}^*(z) \equiv P_{m,2}(z) \). After the evaluation of

\[
\text{list1} = \{a[1]==0, a[2]==0, a[3]==0\}
\]

as a system of three linear equations in \(r_1 \) and \(r_2 \), the evaluation of

\[
\text{Solve}\left[\text{list1}, \{r_1,r_2\}\right]
\]

yields a unique solution that corresponds to

\[
r_1 \equiv -\frac{(m-1)}{2m} \quad \text{and} \quad r_2 \equiv -\frac{(m-1)}{2}.
\]

Thus, when \(r_1, r_2 \) for (16.1) are defined by (16.2), we have \(P_{m,2}^*(z) \equiv P_{m,2}(z) \) on \(\Omega \) as a valid identity for any (15.9) on \(\Omega \) having \(m \geq 2 \) and any transformation (15.10) of that (15.9) into a corresponding equation (15.11) on \(\Omega \).
Example 16.2. With \(m \geq 2 \) and symbols \(s_1, s_2 \) for rational numbers, we set

\[
Q_{m,2} \equiv w_2(0) + s_1(w_1(0))^2 + s_2 w_1(1).
\]

In regard to the function \(Q_{m,2}(z) \) on \(\Omega \) that is obtained by replacing each \(w_i^{(j)}(z) \) in \(Q_{m,2} \) with the corresponding \(c_i^{(j)}(z) \) from (15.9), we see that the evaluation of

\[
Q[z,_] := c[m,2][z] + s_1*c[m,1][z]^2 + s_2*c[m,1][z]'[z]
\]

represents \(Q_{m,2}(z) \). For the function \(Q_{m,2}^{**}(\zeta) \) on \(\Omega^{**} \) that is obtained by replacing each \(w_i^{(j)} \) in \(Q_{m,2} \) with the corresponding \(c_i^{*(j)}(\zeta) \) from (15.16), the evaluation of

\[
QSS[\text{zeta}_,_] := (cSS[m,2][\text{zeta}] + s_1*cSS[m,1][\text{zeta}]^2 + s_2*cSS[m,1]'[\text{zeta}])
\]

represents \(Q_{m,2}^{**}(\zeta) \). There are twenty terms in the output for the evaluation of

\[
dif2[\text{zeta}_,_] = \text{Expand}[QSS[\text{zeta}] - (f'[\text{zeta}])^2*Q[f[\text{zeta}]]]
\]

and in those terms the parts not involving \(m, s_1, s_2 \) are given by the evaluations of

\[
b[4] = c[m,1][f[\text{zeta}]] f''[\text{zeta}];
\]

\[
b[5] = (f''[\text{zeta}]/f'[\text{zeta}])^2;
\]

\[
b[6] = f'''[\text{zeta}]/f'[\text{zeta}];
\]

while the evaluations of

\[
a[4] = \text{Coefficient}[dif2[\text{zeta}],b[4]];\]

\[
a[5] = \text{Coefficient}[dif2[\text{zeta}],b[5]];\]

\[
a[6] = \text{Coefficient}[dif2[\text{zeta}],b[6]];\]

give the coefficients of \(b[4], b[5], b[6] \) in \(\text{dif2}[\text{zeta}] \). Naturally, if \(s_1 = s_1 \) and \(s_2 = s_2 \) are specific rational numbers, then we see that: \(a[4], a[5], a[6] \) are zero if and only if \(QSS[\text{zeta}] - (f'[\text{zeta}])^2*Q[f[\text{zeta}]] \) is zero and we have the identity \(Q_{m,2}^{**}(\zeta) \equiv (f'(\zeta))^2 Q_{m,2}(f(\zeta)) \). After the evaluation of

\[
\text{list2} = \{ a[4]==0, a[5]==0, a[6]==0 \}
\]

as a system of three linear equations in \(s_1, s_2 \), the evaluation of

\[
\text{Solve}[\text{list2}, \{s_1,s_2\}]
\]

yields a unique solution that corresponds to

\[
s_1 \equiv -\frac{(m - 2)(3m - 1)}{6m(m - 1)} \quad \text{and} \quad s_2 \equiv -\frac{m - 2}{3}.
\]

Thus, for \(s_1, s_2 \) in (16.3) defined by (16.4), we have \(Q_{m,2}^{**}(\zeta) \equiv (f'(\zeta))^2 Q_{m,2}(f(\zeta)) \) on \(\Omega^{**} \) as a valid identity for any equation (15.9) on \(\Omega \) having \(m \geq 2 \) and any transformation (15.14) of that (15.9) into a corresponding equation (15.15) on \(\Omega^{**} \).
Example 16.3. Here, we use the computer representations for $c_i^*(z)$ and $c_i^{**}(\zeta)$ in Section 16.1 to check that the expression for $I_{4,1,4}$ in (1.17) on page 4 is printed correctly. We find that the evaluation of

\[
\text{Simplify}\left[\left(cS[4,4][z] -(1/4)cS[4,1][z]*cS[4,3][z] \right. \\
\left. - (1/2)cS[4,3]'[z] - (9/100)cS[4,2][z]^2 \right) \\
+(1/5)cS[4,2]'''[z] + (13/100)cS[4,1][z]^2*cS[4,2][z] \\
+(27/100)cS[4,1]'[z]*cS[4,2][z] + (1/4)cS[4,1][z]*cS[4,2]'[z] \\
-(39/1600)cS[4,1][z]^4 - (39/200)cS[4,1][z]^2*cS[4,1]'[z] \\
-(33/200)(cS[4,1]'[z])^2 -(3/20)cS[4,1][z]*cS[4,1]'''[z] \\
-(1/20)cS[4,1]''''[z] \right] \\
\text{Simplify}\left[\left(cSS[4,4][\zeta] -(1/4)cSS[4,1][\zeta]*cSS[4,3][\zeta] \right. \\
\left. - (1/2)c[4,3]'[\zeta] - (9/100)c[4,2][\zeta]^2 \right) \\
+(1/5)c[4,2]'''[\zeta] + (13/100)c[4,1][\zeta]^2*c[4,2][\zeta] \\
+(27/100)c[4,1]'[\zeta]*c[4,2][\zeta] + (1/4)c[4,1][\zeta]*c[4,2]'[\zeta] \\
-(39/1600)c[4,1][\zeta]^4 - (39/200)c[4,1][\zeta]^2*c[4,1]'[\zeta] \\
-(33/200)(c[4,1]'[\zeta])^2 -(3/20)c[4,1][\zeta]*c[4,1]'''[\zeta] \\
-(1/20)c[4,1]'''''[\zeta] \right] \\
\text{Simplify}\left[\left(f'[\zeta] \right)^4 \left(c[4,4][f[\zeta]]
ight. \\
\left. - (1/4)c[4,1][f[\zeta]]*c[4,3][f[\zeta]] \right) \\
-(1/2)c[4,3]'[f[\zeta]] - (9/100)c[4,2][f[\zeta]]^2 \right) \\
+(1/5)c[4,2]'''[f[\zeta]] \\
+(13/100)c[4,1][f[\zeta]]^2*c[4,2][f[\zeta]] \\
+(27/100)c[4,1]'[f[\zeta]]*c[4,2][f[\zeta]] \\
+(1/4)c[4,1][f[\zeta]]*c[4,2]'[f[\zeta]] \\
-(39/1600)c[4,1][f[\zeta]]^4 \\
-(39/200)c[4,1][f[\zeta]]^2*c[4,1]'[f[\zeta]] \\
-(33/200)(c[4,1]'[f[\zeta]])^2 \\
-(3/20)c[4,1][f[\zeta]]*c[4,1]'''[f[\zeta]] \\
-(1/20)c[4,1]'''''[f[\zeta]] \right] \\
\right] \\
is zero and the evaluation of

\[
\text{Simplify}\left[\left(cS[4,4][z] -(1/4)cS[4,1][z]*cS[4,3][z] \right. \\
\left. - (1/2)cS[4,3]'[z] - (9/100)cS[4,2][z]^2 \right) \\
+(1/5)cS[4,2]'''[z] + (13/100)cS[4,1][z]^2*cS[4,2][z] \\
+(27/100)cS[4,1]'[z]*cS[4,2][z] + (1/4)cS[4,1][z]*cS[4,2]'[z] \\
-(39/1600)cS[4,1][z]^4 - (39/200)cS[4,1][z]^2*cS[4,1]'[z] \\
-(33/200)(cS[4,1]'[z])^2 -(3/20)cS[4,1][z]*cS[4,1]'''[z] \\
-(1/20)cS[4,1]'''''[z] \right] \\
\right] \\
is zero. Consequently, $I_{4,1,4}$ as presented in (1.17) on page 4 is a relative invariant of weight $s = 4$ for the equations (15.9) on page 158 having order $m = 4$.

16.2. Applications Based on the Representations for $c_i(z)$ and $c_i^*(\zeta)$

Example 16.4. With $m \geq 3$ and symbols t_1, t_2, t_3, t_4, t_5 representing rational numbers, we introduce

\[(16.5) \quad I_{m,3} \equiv w_3 + t_1 w_1 w_2 + t_2 (w_1)^3 + t_3 w_2^{(1)} + t_4 w_1 w_1^{(1)} + t_5 w_1^{(2)}.\]

For the function $I_{m,3}(z)$ on Ω that is obtained by replacing each $w_i^{(j)}$ in $I_{m,3}$ with the corresponding $c_i^{(j)}(z)$ from (15.9), the evaluation of

$$\text{Inv}_z := (c_{m,3}[z] + t_1 c_{m,1}[z] c_{m,2}[z] + t_2 c_{m,1}[z]^3 + t_3 c_{m,2}'[z] + t_4 c_{m,1}[z] c_{m,1}'[z] + t_5 c_{m,1}''[z])$$

represents $I_{m,3}(z)$. For the function $I_{m,3}^*(z)$ on Ω that is obtained by replacing each $w_i^{(j)}$ in $I_{m,3}$ with the corresponding $c_i^*(j)(z)$ from (15.12), the evaluation of

$$\text{InvS}_z := (c_{S,m,3}[z] + t_1 c_{S,m,1}[z] c_{S,m,2}[z] + t_2 c_{S,m,1}[z]^3 + t_3 c_{S,m,2}'[z] + t_4 c_{S,m,1}[z] c_{S,m,1}'[z] + t_5 c_{S,m,1}''[z])$$

represents $I_{m,3}^*(z)$. For the function $I_{m,3}^{**}(\zeta)$ on Ω^{**} that is obtained by replacing each $w_i^{(j)}$ in $I_{m,3}$ with the corresponding $c_i^{**(j)}(\zeta)$ from (15.16), the evaluation of

$$\text{InvSS}_{\zeta} := (c_{SS,m,3}[\zeta] + t_1 c_{SS,m,1}[\zeta] c_{SS,m,2}[\zeta] + t_2 c_{SS,m,1}[\zeta]^3 + t_3 c_{SS,m,2}'[\zeta] + t_4 c_{SS,m,1}[\zeta] c_{SS,m,1}'[\zeta] + t_5 c_{SS,m,1}''[\zeta])$$

represents $I_{m,3}^{**}(\zeta)$. We note that t_1, t_2, t_3, t_4, t_5 for (16.5) yield

\[(16.6) \quad I_{m,3}(z) \equiv I_{m,3}(z) \text{ on } \Omega, \quad I_{m,3}(z) \equiv (f'(\zeta))^3 I_{m,3}(f(\zeta)) \text{ on } \Omega^{**}.\]

if and only if their representations t_1, t_2, t_3, t_4, t_5 for (16.5) yield

\[\text{diff1}_z := \text{Expand}[\text{InvS}_z - \text{Inv}_z] \]

\[\text{diff2}_{\zeta} := \text{Expand}[\text{InvSS}_{\zeta} - (f'[\zeta])^3 \text{Inv}[f[\zeta]]] \]

identically zero. Among the thirty-eight terms in the expansion of diff1_z, there are eight parts that do not involve $m, t_1, t_2, t_3, t_4, t_5$. Let them be copied individually from the output, pasted into individual input cells, given the names $b3[1], b3[2], \ldots, b3[8]$, and then evaluated. Among the ninety-three terms in the expansion of diff2_{ζ}, there are eight parts that do not involve $m, t_1, t_2, t_3, t_4, t_5$. Let them be copied from the output, pasted into input cells, given the names $b3[9], b3[10], \ldots, b3[16]$, and then be evaluated. We evaluate

\[\text{Do}[a3[k] = \text{Coefficient}[\text{diff1}_z, b3[k]], \{k,1,8\}]\]

\[\text{Do}[a3[k] = \text{Coefficient}[\text{diff2}_{\zeta}, b3[k]], \{k,9,16\}]\]

and then find that the evaluation of

\[\text{Solve}[\text{Table}[a3[k] == 0, \{k,1,16\}], \{t1,t2,t3,t4,t5\}]\]
yields a unique solution. As expressed for (16.5), it is given by

\[
\begin{align*}
 t_1 & = -\frac{m - 2}{m}, \\
 t_2 & = \frac{(m - 1)(m - 2)}{3m^2}, \\
 t_3 & = -\frac{m - 2}{2}, \\
 t_4 & = \frac{(m - 1)(m - 2)}{2m}, \quad \text{and} \\
 t_5 & = \frac{(m - 1)(m - 2)}{12}.
\end{align*}
\]

Thus, (16.6) is satisfied by (16.7) for each equation (15.9) having \(m \geq 3 \) as well as each transformation (15.10) of (15.9) into a corresponding (15.11) and each transformation (15.14) of (15.9) into a corresponding (15.15). In this regard, see (1.13) of page 3. If the definitions of \(\mathbf{b}_3[1], \mathbf{b}_3[2], \ldots, \mathbf{b}_3[16] \) give difficulty, use the Google browser Chrome to visit

http://homepages.uc.edu/~chalklr/Chapter-16.html

and then download the Mathematica notebook available there. Details are also given in that notebook for Examples 16.1, 16.2, 16.3, and 16.5.

Example 16.5. There are unique rational numbers \(u_1, u_2, \ldots, u_{12} \) for

\[
(16.8) \quad \mathbf{I}_{m,4} \equiv w_1 + u_1 w_1 w_3 + u_2 w_1^{(1)} + u_3 (w_2)^2 + u_4 w_2^{(2)} + u_5 (w_1)^2 w_2 \\
+ u_6 w_2^{(1)} w_2 + u_7 w_1 w_2^{(1)} + u_8 (w_1)^4 + u_9 (w_1)^2 w_1^{(1)} \\
+ u_{10} (w_1^{(1)})^2 + u_{11} w_1 w_1^{(2)} + u_{12} w_1^{(3)}, \quad \text{with} \ m \geq 4,
\]

such that the functions \(I_{m,4}(z) \) on \(\Omega \), \(I_{m,4}^*(z) \) on \(\Omega^* \), and \(I_{m,4}^{**}(z) \) on \(\Omega^{**} \) that are obtained by replacing each \(w_i^{(j)} \) in \(I_{m,4} \) with the corresponding \(c_i^{(j)}(z) \) from (15.9), with the \(c_i^{(j)}(z) \) from (15.11), and with the \(c_i^{**(j)}(z) \) from (15.15), satisfy both

\[
I_{m,4}^*(z) \equiv I_{m,4}(z) \quad \text{on} \ \Omega, \quad \text{and} \quad I_{m,4}^{**}(z) \equiv (f(z))^4 I_{m,4}(f(z)), \quad \text{on} \ \Omega^{**}.
\]

When the technique of Example 4.4 is repeated here, the main difference is that: in place of the copy and paste for Example 4.4 where \(\mathbf{b}_3[k] \) was obtained separately for \(1 \leq k \leq 8 \) and \(9 \leq k \leq 16 \), we now use copy and paste to obtain \(\mathbf{b}_4[k] \) separately for \(1 \leq k \leq 20 \) and for \(21 \leq k \leq 40 \). Of course, this requires more patience. However, when details similar to those of Example 4.4 are carried out, the coefficients for \(I_{m,4} \) in (16.8) are found to be

\[
(16.9) \quad u_1 = -\frac{m - 3}{m}, \quad u_2 = -\frac{m - 3}{2}, \quad u_3 = -\frac{(m - 2)(m - 3)(5m + 7)}{10(m + 1)m(m - 1)} ,
\]
\[
 u_4 = \frac{(m - 2)(m - 3)}{10}, \quad u_5 = \frac{(m - 2)(m - 3)(5m + 6)}{5(m + 1)m^2}, \quad u_6 = \frac{(m - 2)(m - 3)(5m + 7)}{10(m + 1)m} ,
\]
\[
 u_7 = \frac{(m - 2)(m - 3)}{2m}, \quad u_8 = -\frac{(m - 1)(m - 2)(m - 3)(5m + 6)}{20(m + 1)m^2} ,
\]
\[
 u_9 = -\frac{(m - 1)(m - 2)(m - 3)(5m + 6)}{10(m + 1)m^2}, \quad u_{10} = -\frac{(m - 1)(m - 2)(m - 3)(2m + 3)}{20(m + 1)m} ,
\]
\[
 u_{11} = -\frac{(m - 1)(m - 2)(m - 3)}{10m}, \quad u_{12} = -\frac{(m - 1)(m - 2)(m - 3)}{120}.
\]

By setting \(m = 4 \) in these formulas, we obtain the coefficients for (1.17) on page 4.

Observation. The basic relative invariants \(\mathbf{I}_{m,1,s} \) of weight \(s \geq 3 \) for the equations (15.9) of order \(m \geq s \) are given explicitly by the computer program in Section 6.1 on pages 53–54. We note that \(\mathbf{I}_{m,3} \) in (16.5) with the coefficients of (16.7) is equal to \(\mathbf{I}_{m,1,3} \). Also, \(\mathbf{I}_{m,4} \) in (16.8) with the coefficients of (16.9) is equal to \(\mathbf{I}_{m,1,4} \).