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Canonical Parametrization

κ(θ) = ln

∫
R

exp(θx)ν(dx).

Definition

The natural exponential family generated by ν is

F(ν) :=
{

Pθ(dx) = eθx−κ(θ)ν(dx) : θ ∈ (C ,D)
}
.
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Re-parametrization

κ(θ) = ln
∫

R exp(θx)ν(dx) is strictly convex

κ′ : (C ,D) → (A,B) is invertible

κ′(ψ(m)) = m and ψ(κ′(θ)) = θ

Here m ∈ (A,B), θ ∈ (C ,D).

Definition

F(ν) =
{
W (m, dx) := Pψ(m)(dx), m ∈ (A,B)

}
(1)
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Variance Function

Parametrization by the mean

m = κ′(θ) =
∫

R xPθ(dx) ∈ (A,B). So
∫

R xW (m, dx) = m.

Definition

The variance function V : (A,B) → R is

V (m) =

∫
(x −m)2W (m, dx) = κ′′(ψ(m)).

Theorem (Mora)

The variance function V together with (A,B) determines F(ν)
uniquely.

Notation: F(V )
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Examples

Normal family

Generating measure ν = e−x2/2/
√

2π

κ(θ) = θ2/2 so

F(ν) =
{

eθx−x2/2−θ2/2dx/
√

2π : θ ∈ R
}

=
{

e−(x−θ)2/2dx/
√

2π : θ ∈ R
}

Parametrization by the mean:

F(ν) =
{

e−(x−m)2/2dx/
√

2π : θ ∈ R
}

Variance function V (m) = 1

Theorem

If an exponential family F has V (m) = 1 for all real m, then F is
as above.
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Poisson family

generating measure ν =
∑∞

k=0
1
k!δk

κ(θ) = eθ so

F(ν) =

{ ∞∑
k=0

eθk−eθ 1

k!
δk : θ ∈ R

}

Parametrization by the mean: m = eθ, so inverse θ = ln m

F(ν) =

{ ∞∑
k=0

e−m mk

k!
δk : m > 0

}
Variance function V (m) = m

Theorem

If an exponential family F has V (m) = m for all positive m, then
F is as above.
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Examples

Theorem ([Morris, 1982],[Ismail and May, 1978])

Suppose b ≥ −1. The natural exponential family with the variance
function

V (m) = 1 + am + bm2

consists of the following probability measures:

1 the normal (Gaussian) law if a = b = 0;

2 the Poisson type law if b = 0 and a 6= 0;

3 the Pascal (negative binomial) type law if b > 0 and a2 > 4b;

4 the Gamma type law if b > 0 and a2 = 4b;

5 the hyperbolic type law if b > 0 and a2 < 4b;

6 the binomial type law if −1 ≤ b < 0 and 1/b ∈ Z.

Free Version
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Convolution

Dispersion Models

For natural λ = 1, 2, . . . let

νλ(U) := (ν ∗ ν ∗ · · · ∗ ν)(λU)

νλ be the law of the average of λ independent random variables
with law ν.

Proposition

The exponential family generated by νλ has variance function

Vλ(m) = κ′′λ(ψλ(m)) =
V (m)

λ
. (2)

If V (m)
λ is a variance function for all 0 < λ ≤ 1, m ∈ (A,B), then

the exponential family generated by ν consists of infinitely divisible
probability laws.

Free Version
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Differential equation for the density

Proposition

If ν generates the natural exponential family with the variance
function V (m) defined for m ∈ (A,B), then the natural
exponential family W (m, dx) = w(m, x)νλ(dx) satisfies

∂w(m, x)

∂m
=

x −m

V (m)
wλ(m, x) (3)

Proof
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Difference Equation

The finite difference analog of

∂w

∂m
=

x −m

V (m)
w

is

∆mw(m, x) =
x −m

V (m)
w(m, x),

where

(∆mf )(m) :=
f (m)− f (m0)

m −m0
.

The solution with initial condition w(m0, x) = 1 is

wm0(m, x) =
V (m)

V (m) + (m −m0)(m − x)
. (4)
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Definition ([Bryc and Ismail, 2005])

A free exponential family centered at m0 is

Fm0(V ) :=

{
V (m)

V (m) + (m −m0)(m − x)
ν(dx) : m ∈ (A,B)

}
,

(5)
where ν = νm0 is a compactly supported probability measure with
mean m0 ∈ (A,B).
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Variance Function

Variance function

Proposition ([Bryc and Ismail, 2005])

Family

Fm0(V ) :=

{
V (m)

V (m) + (m −m0)(m − x)
ν(dx) : m ∈ (A,B)

}
,

is parameterized by the mean, and V is the variance function.

Skip Proof
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Variance Function

Proof.

With (∆mf )(m) := f (m)−f (m0)
m−m0

we have

∆mwm0(m, x) =
x −m

V (m)
wm0(m, x). (6)

Since ∆m1 = 0, applying operator ∆m to∫
wm0(m, x)ν(dx) = 1 (7)

and using (6) we get∫
xwm0(m, x)ν(dx) = m.
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Variance Function

Proof Cont.

Similarly, since ∆mm = 1, applying ∆m to∫
xwm0(m, x)ν(dx) = m.

and using again the difference equation

∆mwm0(m, x) =
x −m

V (m)
wm0(m, x).

we get ∫
(x −m)2wm0(m, x)ν(dx) = V (m). (8)

Back to Proposition
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Variance Function

Uniqueness

Proposition ([Bryc and Ismail, 2005])

If V is analytic in a neighborhood of m0 then the generating
measure ν of the free exponential family Fm0(V ) is determined
uniquely.

Skip Proof
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Variance Function

Proof of Proposition 12.

For m close enough to m0 so that V (m) > 0, re-write the
definition (7) as∫

1
V (m)
m−m0

+ m − x
ν(dx) =

m −m0

V (m)
.

Thus with

z = m +
V (m)

m −m0
, (9)

the Cauchy-Stieltjes transform of ν is

Gν(z) =
m −m0

V (m)
. (10)

This determines Gν(z) uniquely as an analytic function outside of
the support of ν.
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Examples

Semicircle family

Example (Semi-circle free exponential family)

Function V (m) ≡ 1/λ is the variance function of the free
exponential family generated by the semicircle law of variance 1/λ

Fλ =

{
πm,λ(dx) =

√
4− λx2

2πλ(1 + λm(m − x))
1x2≤2/λ : m2 < 1/λ

}
.

(11)

From [Hiai and Petz, 2000, (3.2.2)] for m 6= 0,
πm,λ = L(m −mX + 1/(λm)) is the law of the affine
transformation of a free Poisson random variable X with parameter
1/(λm2).
Since

∫
πm,λ(dx) = 1 when m2 ≤ 1/λ, in contrast to classical

exponential families, the interval (A,B) ⊂ (−1/
√
λ, 1/

√
λ) in (11)

cannot be chosen independently of λ.
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Examples

Theorem ([Bryc and Ismail, 2005])

Suppose b ≥ −1, m0 = 0. The free exponential family with the
variance function

V (m) = 1 + am + bm2

is generated by free Meixner laws

ν(dx) =

√
4(1 + b)− (x − a)2

2π(bx2 + ax + 1)
1(a−2

√
1+b,a+2

√
1+b)dx

+ p1δx1 + p2δx2 . (12)

Skip Discrete part
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Examples

ν(dx) =

√
4(1 + b)− (x − a)2

2π(bx2 + ax + 1)
1(a−2

√
1+b,a+2

√
1+b)dx

+ p1δx1 + p2δx2 .

The discrete part of ν is absent except:

if b = 0, a2 > 1, then p1 = 1− 1/a2, x1 = −1/a, p2 = 0.

if b > 0 and a2 > 4b, then p1 = max
{

0, 1− |a|−
√

a2−4b

2b
√

a2−4b

}
,

p2 = 0, and x1 = ± |a|−
√

a2−4b
2b with the sign opposite to the

sign of a.

if −1 ≤ b < 0 then there are two atoms at

x1,2 =
−a±

√
a2 − 4b

2b
, p1,2 = 1 +

√
a2 − 4b ∓ a

2b
√

a2 − 4b
.
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Examples

If V (m) = 1 + am + bm2 then up to the type ν is

1 the Wigner’s semicircle (free Gaussian) law if a = b = 0; see
[Voiculescu, 2000, Section 2.5];

2 the Marchenko-Pastur (free Poisson) type law if b = 0 and
a 6= 0; see [Voiculescu, 2000, Section 2.7];

3 the free Pascal (negative binomial) type law if b > 0 and
a2 > 4b; see [Saitoh and Yoshida, 2001, Example 3.6];

4 the free Gamma type law if b > 0 and a2 = 4b; see
[Bożejko and Bryc, 2005, Proposition 3.6];

5 the free analog of hyperbolic type law if b > 0 and a2 < 4b;
see [Anshelevich, 2003, Theorem 4];

6 the free binomial type law if −1 ≤ b < 0; see
[Saitoh and Yoshida, 2001, Example 3.4].

Morris Thm Skip Proof
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Examples

Proof of Theorem 14.

With

z = m +
V (m)

m −m0
, (13)

we showed that Gν(z) = m−m0
V (m) . Solving (13) for m we get

m =
z − a−

√
(a− z)2 − 4 (1 + b)

2 (1 + b)
,

and

G (z) =
a + z + 2 b z −

√
(a− z)2 − 4 (1 + b)

2 (1 + az + b z2)
. (14)

This Cauchy-Stieltjes transform appears in
[Anshelevich, 2003, Bożejko and Bryc, 2005,
Bryc and Weso lowski, 2005, Saitoh and Yoshida, 2001] and defines
the free-Meixner laws.
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Free Cumulants

Theorem ([Bryc and Ismail, 2005])

Suppose V is analytic in a neighborhood of m0, V (m0) > 0, and
λ > 0. Then the following conditions are equivalent.

V (·) is a variance function of a free exponential family;

There exists a probability measure ν with free cumulants
c1 = m0, and for n ≥ 1

cn+1 =
1

n!

dn−1

dxn−1
(V (x))n

∣∣∣∣
x=m0

. (15)

Measure ν is compactly supported and there exists an interval
(A,B) 3 m0 such that (5) defines a free exponential family
centered at m0 with variance function V .

Skip Proof
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Free Cumulants

Proof.

The inverse Kν = G−1
ν is well defined for m close to m0, and

m +
V (m)

m −m0
= Kν

(
m −m0

V (m)

)
.

so the R-transform of ν satisfies

Rν

(
m −m0

V (m)

)
= m. (16)

There exists ε > 0 such that for k ≥ 1 we have

ck+1 =
1

2πi

∮
|z|=ε

R(z)−m0

zk+1
dz .

Denote V0(z) = V (z + m0). Substituting z = (ξ −m0)/V (ξ) and
changing the path of integration we get
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Free Cumulants

Proof Cont.

ck+1 =
1

2πi

∮
|ξ−m0|=δ

V k(ξ)

(ξ −m0)k

(
1− (ξ −m0)V ′(ξ)

V (ξ)

)
dξ

=
1

2πi

∮
|z|=δ

V k
0 (z)

zk
dz − 1

2πiλk

∮
|z|=δ

V k−1
0 (z)

zk−1
V ′

0(z)dz .

Notice that

d

dz

V k
0 (z)

zk−1
= −(k − 1)

V k
0 (z)

zk
+ k

V k−1
0

zk−1
V ′

0(z).

Therefore,∮
|z|=δ

V k−1
0 (z)

zk−1
V ′

0(z)dz =
k − 1

k

∮
|z|=δ

V k
0 (z)

zk
dz .
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Free Cumulants

Proof Cont.

Thus

ck+1 =
1

k

1

2πi

∮
|z|=δ

V k
0 (z)

zk
dz =

1

k!

dk−1

dzk−1
V k

0 (z)

∣∣∣∣
z=0

. (17)

Suppose now that a probability measure ν satisfies (15) and∫
xν(dx) = m0. We first verify that ν has compact support. Since

V is analytic, (15) is equivalent to

ck+1 =
1

k

1

2πi

∮
|z|=δ

V k
0 (z)

zk
dz . (18)

Thus there exist M > 0 such that |ck | ≤ Mk .
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Free Cumulants

Proof Cont.

Denoting by NC[n] the set of non-crossing partitions of
{1, 2, . . . , n}, from [Hiai and Petz, 2000, (2.5.8)] we have∫

x2nν(dx) =
∑

V∈NC[2n]

∏
B∈V

c|B| ≤ M2n#NC[2n] = M2n 1

2n + 1

(
4n

2n

)
;

for the last equality, see [Hiai and Petz, 2000, (2.5.11)]. Thus

lim sup
p→∞

(∫
|x |pν(dx)

)1/p

≤ 2M <∞,

and ν has compact support. (See also [Benaych-Georges, 2004,
Theorem 1.3].)
From supp(ν) ⊂ [−2M, 2M] we deduce that the Cauchy-Stieltjes
transform Gν(z) is analytic for |z | > 2M, and the R-series is
analytic for all |z | small enough.
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Free Cumulants

Proof Cont.

Since V (m0) 6= 0 we see that z 7→ z−m0
V (z) is invertible in a

neighborhood of z = m0. Denoting by h the inverse, we have

h

(
z −m0

V (z)

)
= z .

From c1(ν) = m0 we see that R(m0) = 0 = h(m0). Repeating the
reasoning that lead to (15) with function h, we see that all
derivatives of h at z = m0 match the derivatives of R. Thus
h(z) = R(z) and (16) holds for all m in a neighborhood of m0. For
analytic Gν , the latter is equivalent to (7) holding for all m close
enough to m0. Thus V (m) is the variance function of a free
exponential family generated by ν with m ∈ (m0 − δ,m0 + δ) for
some δ > 0.
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Free Convolution

The λ-fold free convolution ν�λ is well defined for all λ ≥ 1, see
[Nica and Speicher, 1996]. Then measure

νλ(U) := ν�λ(λU))

is the law of the ”sample average” of λ free elements with law ν.

Proposition (B-Ismail (2005))

If ν generates free exponential family centered at m0 and its
variance function V is analytic in a neighborhood of m0, then for
λ ≥ 1, measure νλ generates the exponential family centered at m0

with the variance function V (m)/λ.
Moreover, if V (m)/λ if a variance function of a free exponential
family for all λ > 0, then ν is �-infinitely divisible.s

We note that in contrast to classical natural exponential families,
in (5) the interval (A,B) varies with λ, see Example 13.

Classical Version Skip Proof End Here
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Free Convolution

Proof.

The free cumulants of νm0,λ are c1(νm0,λ) = c1(νm0,λ0) = m0 and
for n ≥ 1

cn+1(νm0,λ) =
1

ρn
cn+1(νm0,λ0) =

1

ρnλn
0n!

dn−1

dxn−1
(V (x))n

∣∣∣∣
x=m0

=
1

λnn!

dn−1

dxn−1
(V (x))n

∣∣∣∣
x=m0

.

Theorem 15 implies that V /λ is the variance function of the free
exponential family generated by νλ and centered at m0.
If νm0,1/n exists for all n ∈ N, then the previous reasoning together
with uniqueness theorem (Proposition 12) implies that
ν = (Dn(νm0,1/n))�n, proving �-infinite divisibility.

The End
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Given k(x , θ).

Definition ([Weso lowski, 1999])

The kernel family K consists of probability measures{
k(x , θ)

M(θ)
ν(dx) : θ ∈ Θ

}
,

where M(θ) =
∫

k(x , θ)ν(dx) is the normalizing constant.

Natural exponential family: k(x , θ) = exp(θ(x −m0)), where
auxiliary parameter m0 cancels out.

Free exponential families: k(x , θ) = 1
1−θ(x−m0)

.
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Suppose ν is a compactly supported with
∫

xdν = m0. Then

M(θ) =

∫
1

1− θ(x −m0)
ν(dx).

The kernel family for k = 1
1−θ(x−m0)

is the family of probability
measures

K(ν; Θ) =

{
Pθ(dx) =

1

M(θ)(1− θ(x −m0))
ν(dx) : θ ∈ Θ

}
,

(19)
where Θ is an open set on which M(θ) is well defined. (One can
take Θ = (−ε, ε) with ε > 0 small enough.)
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Free Exponential Families

Theorem

Every compactly supported measure ν generates a free exponential
family.

There exists a function V which is positive and analytic in the
neighborhood of m0 =

∫
xν(dx), and an interval (A,B) 3 m0

such that V is the variance function of a free exponential
family Fm0(V ) with the generating measure ν.

Furthermore, F(V ) = K(ν; Θ) for some open set Θ ⊂ R.
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Free Exponential Families

Proof.

Without loss of generality we take m0 = 0. From

K(ν; Θ) =

{
Pθ(dx) =

1

M(θ)(1− θ(x −m0))
ν(dx) : θ ∈ Θ

}
we compute m(0) =

∫
xν(dx) = 0 and more generally

m(θ) =

∫
xPθ(dx) =

M(θ)− 1

θM(θ)
. (20)

Since M(θ) is analytic at θ = 0 and M(0) = 1, we see that m(θ) is
analytic for |θ| small enough. Furthermore,

m′(θ) =

∫
x2

(1− xθ)2
ν(dx) > 0

for all |θ| small enough. Thus θ 7→ m(θ) is invertible in a
neighborhood of 0; let ψ be the inverse function.
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Free Exponential Families

Proof Cont.

Note that if Gν(z) is the Cauchy-Stieltjes transform, then with
z = 1/θ we have Gν(z) = θM(θ). Thus (20) is equivalent to

1

θ
−m(θ) =

1

Gν(z)
. (21)

We now calculate the variance v(θ) =
∫

x2Pθ(dx)−m2(θ). Since∫
x2Pθ(dx) =

∫
x2 − x/θ + x/θ

M(θ)(1− θx)
ν(dx) =

m(θ)

θ

we see that the variance is

v(θ) = m(θ)

(
1

θ
−m(θ)

)
. (22)
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Free Exponential Families

Proof Cont.

Let V (m) = v(ψ(m)) denote the variance function in
parametrization of (a subset of) K by the mean; clearly V is an
analytic function. With z = 1/ψ(m) combining (22) with (21) we
get

m

V (m)
= Gν(z).

Therefore, from (22) we see that

Rν

(
m

V (m)

)
=

1

θ
− V (m)

m
= m.

Since Rν is analytic and we established (16), from the first part of
proof of Theorem 15 we get (15), and from the second part we
deduce that V is a variance function of the free exponential family
generated by ν.
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Free Exponential Families

Proof Cont.

It is clear that the families K(ν; Θ) defined by (19) with
Θ = ψ−1(−δ, δ), and F(V ) defined by (5) with the interval
(A,B) = (−δ, δ) coincide.
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Free Exponential Families

The end
Thank You
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Proof of Proposition 9.

Differentiating we get

∂

∂m
wm,x =

∂

∂m
eψ(m)x−κ(ψ(m))

= ψ′(m)(x − κ′(ψ(m))) exp (ψ(m)x − κ(ψ(m))) .

As κ′(ψ(m)) = m and ψ′(m) = 1/κ′′(ψ(m)) = 1/V (m), (3)
follows.

QED



Proof of Remark ??.

To prove infinite divisibility, without loss of generality we may
concentrate on fixed W1(m0, dx) ∈ F(ν).

F(ν) = F(W1(m0, dx))

For λ = 1/k where k = 1, 2, . . . , let Wλ(m, dx),m ∈ (A,B) be the
solution of (3). The variance function is V (m)/λ = kV (m).
Denote by ν the dilation of measure Wλ(m0, dx) by k. By (2), the
exponential family F(ν∗k) has the same variance function V (m) as
the exponential family F(W1(m0, dx)). By uniqueness of
parametrization by the means, W1(m0, dx) = ν∗k(dx), so infinite
divisibility follows.

QED
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