Exponential families

Differential Equation

Free Exponential Families

Kernel Families

Free Exponential Families

Włodzimierz Bryc Mourad Ismail

Department of Mathematical Sciences University of Cincinnati

April 4, 2006

Exponential families

Differential Equation

Free Exponential Families

Kernel Families

Canonical Parametrization

$$\kappa(\theta) = \ln \int_{\mathbb{R}} \exp(\theta x) \nu(dx).$$

Definition

The natural exponential family generated by ν is

$$\mathcal{F}(\nu) := \left\{ \mathsf{P}_{ heta}(\mathsf{d} x) = e^{ heta x - \kappa(heta)}
u(\mathsf{d} x) : heta \in (\mathsf{C}, \mathsf{D})
ight\}.$$

Exponential families	Differential Equation	Free Exponential Families	Kernel Families

Re-parametrization

•
$$\kappa(\theta) = \ln \int_{\mathbb{R}} \exp(\theta x) \nu(dx)$$
 is strictly convex

•
$$\kappa': (C,D) \rightarrow (A,B)$$
 is invertible

$$\kappa'(\psi(m)) = m$$
 and $\psi(\kappa'(\theta)) = \theta$

Here
$$m \in (A, B)$$
, $\theta \in (C, D)$.

Definition

$$\mathcal{F}(\nu) = \left\{ W(m, dx) := P_{\psi(m)}(dx), \ m \in (A, B) \right\}$$
(1)

Exponential families

Differential Equation

Free Exponential Families

Kernel Families

Variance Function

Parametrization by the mean

$$m = \kappa'(heta) = \int_{\mathbb{R}} x P_{ heta}(dx) \in (A,B).$$
 So $\int_{\mathbb{R}} x W(m,dx) = m.$

Definition

The variance function $V : (A, B) \rightarrow \mathbb{R}$ is

$$V(m) = \int (x-m)^2 W(m, dx) = \kappa''(\psi(m))$$

Theorem (Mora)

The variance function V together with (A, B) determines $\mathcal{F}(\nu)$ uniquely.

Notation: $\mathcal{F}(V)$

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
0000			
Examples			

- Generating measure $\nu = e^{-x^2/2}/\sqrt{2\pi}$
- $\kappa(\theta) = \theta^2/2$ so

$$\mathcal{F}(\nu) = \left\{ e^{\theta x - x^2/2 - \theta^2/2} dx / \sqrt{2\pi} : \ \theta \in \mathbb{R} \right\} = \left\{ e^{-(x - \theta)^2/2} dx / \sqrt{2\pi} : \ \theta \in \mathbb{R} \right\}$$

• Parametrization by the mean:

$$\mathcal{F}(\nu) = \left\{ e^{-(x-m)^2/2} dx / \sqrt{2\pi} : \ \theta \in \mathbb{R}
ight\}$$

• Variance function V(m) = 1

Theorem

Normal family

If an exponential family \mathcal{F} has V(m) = 1 for all real m, then \mathcal{F} is as above.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
00000			
Examples			

Poisson family

• generating measure $\nu = \sum_{k=0}^{\infty} \frac{1}{k!} \delta_k$

•
$$\kappa(heta) = e^{ heta}$$
 so

$$\mathcal{F}(
u) = \left\{ \sum_{k=0}^{\infty} e^{ heta k - e^{ heta}} rac{1}{k!} \delta_k : \; heta \in \mathbb{R}
ight\}$$

• Parametrization by the mean: $m = e^{\theta}$, so inverse $\theta = \ln m$

$$\mathcal{F}(\nu) = \left\{ \sum_{k=0}^{\infty} e^{-m} \frac{m^k}{k!} \delta_k : m > 0 \right\}$$

• Variance function V(m) = m

Theorem

If an exponential family $\mathcal F$ has V(m) = m for all positive m, then $\mathcal F$ is as above.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
00000			
Examples			

Theorem ([Morris, 1982],[Ismail and May, 1978])

Suppose $b \ge -1$. The natural exponential family with the variance function

$$V(m) = 1 + am + bm^2$$

consists of the following probability measures:

- the normal (Gaussian) law if a = b = 0;
- 2 the Poisson type law if b = 0 and $a \neq 0$;
- **3** the Pascal (negative binomial) type law if b > 0 and $a^2 > 4b$;
- the Gamma type law if b > 0 and $a^2 = 4b$;
- **(**) the hyperbolic type law if b > 0 and $a^2 < 4b$;
- the binomial type law if $-1 \le b < 0$ and $1/b \in \mathbb{Z}$.

Free Version

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
00000			
Convolution			

Dispersion Models

For natural $\lambda = 1, 2, \ldots$ let

$$\nu_{\lambda}(U) := (\nu * \nu * \cdots * \nu)(\lambda U)$$

 ν_λ be the law of the average of λ independent random variables with law $\nu.$

Proposition

The exponential family generated by u_{λ} has variance function

$$V_{\lambda}(m) = \kappa_{\lambda}''(\psi_{\lambda}(m)) = \frac{V(m)}{\lambda}.$$
 (2)

If $\frac{V(m)}{\lambda}$ is a variance function for all $0 < \lambda \le 1$, $m \in (A, B)$, then the exponential family generated by ν consists of infinitely divisible probability laws.

► Free Version

Free Exponential Families

Kernel Families

Differential equation for the density

Proposition

If ν generates the natural exponential family with the variance function V(m) defined for $m \in (A, B)$, then the natural exponential family $W(m, dx) = w(m, x)\nu_{\lambda}(dx)$ satisfies

$$\frac{\partial w(m,x)}{\partial m} = \frac{x-m}{V(m)} w_{\lambda}(m,x)$$
(3)

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
	•		
Difference Equation			

The finite difference analog of

$$\frac{\partial w}{\partial m} = \frac{x - m}{V(m)}w$$

is

$$\Delta_m w(m,x) = \frac{x-m}{V(m)} w(m,x),$$

where

$$(\Delta_m f)(m) := \frac{f(m) - f(m_0)}{m - m_0}.$$

The solution with initial condition $w(m_0, x) = 1$ is

$$w_{m_0}(m,x) = \frac{V(m)}{V(m) + (m - m_0)(m - x)}.$$
 (4)

Definition ([Bryc and Ismail, 2005])

A free exponential family centered at m_0 is

$$\mathcal{F}_{m_0}(V) := \left\{ \frac{V(m)}{V(m) + (m - m_0)(m - x)} \nu(dx) : m \in (A, B) \right\},$$
(5)

where $\nu = \nu_{m_0}$ is a compactly supported probability measure with mean $m_0 \in (A, B)$.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
Variance Function			
Variance functi	on		

Proposition ([Bryc and Ismail, 2005])

Family

$$\mathcal{F}_{m_0}(V):=\left\{\frac{V(m)}{V(m)+(m-m_0)(m-x)}\nu(dx):m\in(A,B)\right\},$$

is parameterized by the mean, and V is the variance function.

➡ Skip Proof

Exponential	families

Free Exponential Families

Kernel Families

Variance Function

Proof.

With
$$(\Delta_m f)(m) := \frac{f(m) - f(m_0)}{m - m_0}$$
 we have

$$\Delta_m w_{m_0}(m, x) = \frac{x - m}{V(m)} w_{m_0}(m, x).$$
 (6)

Since $\Delta_m 1 = 0$, applying operator Δ_m to

$$\int w_{m_0}(m,x)\nu(dx) = 1 \tag{7}$$

and using (6) we get

$$\int x w_{m_0}(m,x) \nu(dx) = m.$$

Exponent	ial families
Variance	Function

Free Exponential Families

Kernel Families

Proof Cont.

Similarly, since $\Delta_m m = 1$, applying Δ_m to

$$\int x w_{m_0}(m,x) \nu(dx) = m.$$

and using again the difference equation

$$\Delta_m w_{m_0}(m,x) = \frac{x-m}{V(m)} w_{m_0}(m,x).$$

we get

$$\int (x-m)^2 w_{m_0}(m,x)\nu(dx) = V(m).$$
 (8)

Exponential	families

Free Exponential Families

Kernel Families

Variance Function

Uniqueness

Proposition ([Bryc and Ismail, 2005])

If V is analytic in a neighborhood of m_0 then the generating measure ν of the free exponential family $\mathcal{F}_{m_0}(V)$ is determined uniquely.

➡ Skip Proof

Exponential families

Differential Equation

Free Exponential Families

Kernel Families

Variance Function

Proof of Proposition 12.

For m close enough to m_0 so that V(m) > 0, re-write the definition (7) as

$$\int \frac{1}{\frac{V(m)}{m-m_0}+m-x}\nu(dx) = \frac{m-m_0}{V(m)}.$$

Thus with

$$z = m + \frac{V(m)}{m - m_0},\tag{9}$$

the Cauchy-Stieltjes transform of ν is

$$G_{\nu}(z) = rac{m-m_0}{V(m)}.$$
 (10)

This determines $G_{\nu}(z)$ uniquely as an analytic function outside of the support of ν .

Exponential	families

Free Exponential Families

Kernel Families

Examples

Semicircle family

Example (Semi-circle free exponential family)

Function $V(m) \equiv 1/\lambda$ is the variance function of the free exponential family generated by the semicircle law of variance $1/\lambda$

$$\mathcal{F}_{\lambda} = \left\{ \pi_{m,\lambda}(dx) = \frac{\sqrt{4 - \lambda x^2}}{2\pi\lambda(1 + \lambda m(m - x))} \mathbf{1}_{x^2 \le 2/\lambda} : m^2 < 1/\lambda \right\}.$$
(11)

From [Hiai and Petz, 2000, (3.2.2)] for $m \neq 0$, $\pi_{m,\lambda} = \mathcal{L}(m - mX + 1/(\lambda m))$ is the law of the affine transformation of a free Poisson random variable X with parameter $1/(\lambda m^2)$. Since $\int \pi_{m,\lambda}(dx) = 1$ when $m^2 \leq 1/\lambda$, in contrast to classical exponential families, the interval $(A, B) \subset (-1/\sqrt{\lambda}, 1/\sqrt{\lambda})$ in (11) cannot be chosen independently of λ .

Exponential	families

Examples

Differential Equation

Free Exponential Families

Kernel Families

Theorem ([Bryc and Ismail, 2005])

Suppose $b \ge -1$, $m_0 = 0$. The free exponential family with the variance function

$$\mathcal{V}(m)=1+\mathsf{a}m+\mathsf{b}m^2$$

is generated by free Meixner laws

$$\nu(dx) = \frac{\sqrt{4(1+b) - (x-a)^2}}{2\pi(bx^2 + ax + 1)} \mathbf{1}_{(a-2\sqrt{1+b}, a+2\sqrt{1+b})} dx + p_1 \delta_{x_1} + p_2 \delta_{x_2}.$$
 (12)

xponential families	Differential Equation	Free Exponential Families	Kernel Families
		000000000000000000000000000000000000000	
xamples			

$$\nu(dx) = \frac{\sqrt{4(1+b) - (x-a)^2}}{2\pi(bx^2 + ax + 1)} 1_{(a-2\sqrt{1+b},a+2\sqrt{1+b})} dx + p_1 \delta_{x_1} + p_2 \delta_{x_2}.$$

The discrete part of ν is absent except:

- if $b = 0, a^2 > 1$, then $p_1 = 1 1/a^2$, $x_1 = -1/a, p_2 = 0$. • if b > 0 and $a^2 > 4b$, then $p_1 = \max\left\{0, 1 - \frac{|a| - \sqrt{a^2 - 4b}}{2b\sqrt{a^2 - 4b}}\right\}$, $p_2 = 0$, and $x_1 = \pm \frac{|a| - \sqrt{a^2 - 4b}}{2b}$ with the sign opposite to the sign of a.
- if $-1 \le b < 0$ then there are two atoms at

$$x_{1,2} = rac{-a \pm \sqrt{a^2 - 4b}}{2b}, \ p_{1,2} = 1 + rac{\sqrt{a^2 - 4b} \mp a}{2b\sqrt{a^2 - 4b}}$$

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
		000000000000000000000000000000000000000	
Examples			

If $V(m) = 1 + am + bm^2$ then up to the type ν is

- 1 the Wigner's semicircle (free Gaussian) law if a = b = 0; see [Voiculescu, 2000, Section 2.5];
- 2 the Marchenko-Pastur (free Poisson) type law if b = 0 and $a \neq 0$; see [Voiculescu, 2000, Section 2.7];
- 3 the free Pascal (negative binomial) type law if b > 0 and $a^2 > 4b$; see [Saitoh and Yoshida, 2001, Example 3.6];
- 4 the free Gamma type law if b > 0 and $a^2 = 4b$; see [Bożejko and Bryc, 2005, Proposition 3.6];
- **5** the free analog of hyperbolic type law if b > 0 and $a^2 < 4b$; see [Anshelevich, 2003, Theorem 4];
- **(**) the free binomial type law if -1 < b < 0; see [Saitoh and Yoshida, 2001, Example 3.4].

Morris Thm 🔪 🕨 Skip Proof

Exponential families

Differential Equation

Free Exponential Families

Kernel Families

Examples

Proof of Theorem 14.

With

$$z = m + rac{V(m)}{m - m_0},$$
 (13)

we showed that $G_{\nu}(z) = \frac{m-m_0}{V(m)}$. Solving (13) for m we get

$$m = rac{z-a-\sqrt{(a-z)^2-4\ (1+b)}}{2\ (1+b)},$$

and

$$G(z) = \frac{a + z + 2 b z - \sqrt{(a - z)^2 - 4 (1 + b)}}{2 (1 + az + b z^2)}.$$
 (14)

This Cauchy-Stieltjes transform appears in [Anshelevich, 2003, Bożejko and Bryc, 2005, Bryc and Wesołowski, 2005, Saitoh and Yoshida, 2001] and defines the free-Meixner laws.

Exponential	families

Free Cumulants

Differential Equation

Free Exponential Families

Kernel Families

Theorem ([Bryc and Ismail, 2005])

Suppose V is analytic in a neighborhood of m_0 , $V(m_0) > 0$, and $\lambda > 0$. Then the following conditions are equivalent.

- $V(\cdot)$ is a variance function of a free exponential family;
- There exists a probability measure ν with free cumulants $c_1 = m_0$, and for $n \ge 1$

$$c_{n+1} = \left. \frac{1}{n!} \frac{d^{n-1}}{dx^{n-1}} \left(V(x) \right)^n \right|_{x=m_0}.$$
 (15)

 Measure ν is compactly supported and there exists an interval (A, B) ∋ m₀ such that (5) defines a free exponential family centered at m₀ with variance function V.

➡ Skip Proof

Free (Cumulants	
	Proof.	
	The inverse ${\cal K}_ u = {\cal G}_ u^{-1}$ is well defined for m close to m_0 , and	
	$m+rac{V(m)}{m-m_0}= \mathcal{K}_ u\left(rac{m-m_0}{V(m)} ight).$	
	so the R-transform of ν satisfies	
	$R_ u\left(rac{m-m_0}{V(m)} ight)=m.$	(16)
	There exists $\varepsilon > 0$ such that for $k \ge 1$ we have	
	$c_{k+1}=rac{1}{2\pi i}\oint_{ z =arepsilon}rac{R(z)-m_0}{z^{k+1}}dz.$	

Free Exponential Families

Kernel Families

Differential Equation

Exponential families

Denote $V_0(z) = V(z + m_0)$. Substituting $z = (\xi - m_0)/V(\xi)$ and changing the path of integration we get

Exponential families	Differential Equation O	Free Exponential Families	Kernel Families
Free Cumulants			
Proof C	ont.		
c_{k+1}	$L = \frac{1}{2\pi i} \oint_{ \xi-m_0 =\delta} \frac{V^k}{(\xi-h_0)}$	$\frac{U(\xi)}{m_0)^k} \left(1 - \frac{(\xi - m_0)V'(\xi)}{V(\xi)}\right)^k$	$\left(\right) d\xi$
=	$\frac{1}{2\pi i}\oint_{ z =\delta}\frac{V_0^k(z)}{z^k}dz-\frac{1}{z^k}dz$	$\frac{1}{2\pi i \lambda^{k}} \oint_{ z =\delta} \frac{V_{0}^{k-1}(z)}{z^{k-1}} V_{0}'(z)$)dz.
Notice t	hat		
	$\frac{d}{dz}\frac{V_0^k(z)}{z^{k-1}} = -(k-1)$	$1)\frac{V_0^k(z)}{z^k} + k\frac{V_0^{k-1}}{z^{k-1}}V_0'(z).$	
Therefor	e,		
	$\oint_{ z =\delta} \frac{V_0^{k-1}(z)}{z^{k-1}} V_0'(z) dz$	$z = rac{k-1}{k} \oint_{ z =\delta} rac{V_0^k(z)}{z^k} dz$	

Exponential families	Differential Equation	Free Exponential Families	Kernel Fam
		000000000000000000000000000000000000000	
Free Cumulants			

Thus

$$c_{k+1} = \frac{1}{k} \frac{1}{2\pi i} \oint_{|z|=\delta} \frac{V_0^k(z)}{z^k} dz = \frac{1}{k!} \frac{d^{k-1}}{dz^{k-1}} V_0^k(z) \Big|_{z=0}.$$
 (17)

Suppose now that a probability measure ν satisfies (15) and $\int x\nu(dx) = m_0$. We first verify that ν has compact support. Since V is analytic, (15) is equivalent to

$$c_{k+1} = \frac{1}{k} \frac{1}{2\pi i} \oint_{|z|=\delta} \frac{V_0^k(z)}{z^k} dz.$$
 (18)

lies

Thus there exist M > 0 such that $|c_k| \le M^k$.

Exponential families

Differential Equation

Free Exponential Families

Kernel Families

Free Cumulants

Proof Cont.

Denoting by $\mathcal{NC}[n]$ the set of non-crossing partitions of $\{1, 2, \ldots, n\}$, from [Hiai and Petz, 2000, (2.5.8)] we have

$$\int x^{2n}\nu(dx) = \sum_{\mathcal{V}\in\mathcal{NC}[2n]} \prod_{B\in\mathcal{V}} c_{|B|} \le M^{2n} \# \mathcal{NC}[2n] = M^{2n} \frac{1}{2n+1} \binom{4n}{2n}$$

for the last equality, see [Hiai and Petz, 2000, (2.5.11)]. Thus

$$\limsup_{p\to\infty}\left(\int |x|^p\nu(dx)\right)^{1/p}\leq 2M<\infty,$$

and ν has compact support. (See also [Benaych-Georges, 2004, Theorem 1.3].) From supp $(\nu) \subset [-2M, 2M]$ we deduce that the Cauchy-Stieltjes transform $G_{\nu}(z)$ is analytic for |z| > 2M, and the *R*-series is analytic for all |z| small enough.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
Free Cumulants			

Since $V(m_0) \neq 0$ we see that $z \mapsto \frac{z-m_0}{V(z)}$ is invertible in a neighborhood of $z = m_0$. Denoting by *h* the inverse, we have

$$h\left(\frac{z-m_0}{V(z)}\right)=z.$$

From $c_1(\nu) = m_0$ we see that $R(m_0) = 0 = h(m_0)$. Repeating the reasoning that lead to (15) with function h, we see that all derivatives of h at $z = m_0$ match the derivatives of R. Thus h(z) = R(z) and (16) holds for all m in a neighborhood of m_0 . For analytic G_{ν} , the latter is equivalent to (7) holding for all m close enough to m_0 . Thus V(m) is the variance function of a free exponential family generated by ν with $m \in (m_0 - \delta, m_0 + \delta)$ for some $\delta > 0$.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
		000000000000000000000000000000000000000	
Free Convolution			

The λ -fold free convolution $\nu^{\boxplus\lambda}$ is well defined for all $\lambda \ge 1$, see [Nica and Speicher, 1996]. Then measure

$$u_\lambda(U) :=
u^{\boxplus\lambda}(\lambda U))$$

is the law of the "sample average" of λ free elements with law $\nu.$

Proposition (B-Ismail (2005))

If ν generates free exponential family centered at m_0 and its variance function V is analytic in a neighborhood of m_0 , then for $\lambda \ge 1$, measure ν_{λ} generates the exponential family centered at m_0 with the variance function $V(m)/\lambda$. Moreover, if $V(m)/\lambda$ if a variance function of a free exponential

family for all $\lambda > 0$, then ν is \boxplus -infinitely divisible.s

We note that in contrast to classical natural exponential families, in (5) the interval (A, B) varies with λ , see Example 13.

Exponential	families

Free Exponential Families

Kernel Families

Free Convolution

Proof.

The free cumulants of $u_{m_0,\lambda}$ are $c_1(
u_{m_0,\lambda}) = c_1(
u_{m_0,\lambda_0}) = m_0$ and for $n \ge 1$

$$c_{n+1}(\nu_{m_0,\lambda}) = \frac{1}{\rho^n} c_{n+1}(\nu_{m_0,\lambda_0}) = \frac{1}{\rho^n \lambda_0^n n!} \frac{d^{n-1}}{dx^{n-1}} (V(x))^n \Big|_{x=m_0}$$
$$= \frac{1}{\lambda^n n!} \frac{d^{n-1}}{dx^{n-1}} (V(x))^n \Big|_{x=m_0}$$

Theorem 15 implies that V/λ is the variance function of the free exponential family generated by ν_{λ} and centered at m_0 . If $\nu_{m_0,1/n}$ exists for all $n \in \mathbb{N}$, then the previous reasoning together with uniqueness theorem (Proposition 12) implies that $\nu = (D_n(\nu_{m_0,1/n}))^{\boxplus n}$, proving \boxplus -infinite divisibility.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
00000		00000000000000000	000000

Given $k(x, \theta)$.

Definition ([Wesołowski, 1999])

The kernel family \mathcal{K} consists of probability measures

$$\left\{rac{k(x, heta)}{M(heta)}
u(extsf{d} x): \ heta\in\Theta
ight\},$$

where $M(\theta) = \int k(x, \theta) \nu(dx)$ is the normalizing constant.

- Natural exponential family: $k(x, \theta) = \exp(\theta(x m_0))$, where auxiliary parameter m_0 cancels out.
- Free exponential families: $k(x, \theta) = \frac{1}{1-\theta(x-m_0)}$.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families

Suppose ν is a compactly supported with $\int x d\nu = m_0$. Then

$$M(\theta) = \int \frac{1}{1-\theta(x-m_0)} \nu(dx).$$

The kernel family for $k = \frac{1}{1-\theta(x-m_0)}$ is the family of probability measures

$$\mathcal{K}(\nu;\Theta) = \left\{ P_{\theta}(dx) = \frac{1}{M(\theta)(1 - \theta(x - m_0))} \nu(dx) : \theta \in \Theta \right\},$$
(19)

where Θ is an open set on which $M(\theta)$ is well defined. (One can take $\Theta = (-\varepsilon, \varepsilon)$ with $\varepsilon > 0$ small enough.)

Exponential	families

Free Exponential Families

Theorem

Every compactly supported measure ν generates a free exponential family.

- There exists a function V which is positive and analytic in the neighborhood of $m_0 = \int x\nu(dx)$, and an interval $(A, B) \ni m_0$ such that V is the variance function of a free exponential family $\mathcal{F}_{m_0}(V)$ with the generating measure ν .
- Furthermore, $\mathcal{F}(V) = \mathcal{K}(\nu; \Theta)$ for some open set $\Theta \subset \mathbb{R}$.

Free Exponential Families				
	Proof.			
	Without loss of generality we take $m_0 = 0$. From	L		
	$\mathcal{K}(u;\Theta)=\left\{P_{ heta}(dx)=rac{1}{M(heta)(1- heta(x-m_0))} u(dx): heta\in\Theta ight\}$			
	we compute $m(0) = \int x \nu(dx) = 0$ and more generally	L		
	$m(\theta) = \int x P_{\theta}(dx) = \frac{M(\theta) - 1}{\theta M(\theta)}.$ (20)			
	Since $M(\theta)$ is analytic at $\theta = 0$ and $M(0) = 1$, we see that $m(\theta)$ is analytic for $ \theta $ small enough. Furthermore,			
	$m'(\theta) = \int \frac{x^2}{(1-x\theta)^2} \nu(dx) > 0$			

Free Exponential Families

Kernel Families

Differential Equation

Exponential families

for all $|\theta|$ small enough. Thus $\theta \mapsto m(\theta)$ is invertible in a neighborhood of 0; let ψ be the inverse function.

Exponential families	Differential Equation	Free Exponential Families	Kernel Familie
		000000000000000000000000000000000000000	000000
Free Exponential Families			

Note that if $G_{\nu}(z)$ is the Cauchy-Stieltjes transform, then with $z = 1/\theta$ we have $G_{\nu}(z) = \theta M(\theta)$. Thus (20) is equivalent to

$$\frac{1}{\theta} - m(\theta) = \frac{1}{G_{\nu}(z)}.$$
(21)

We now calculate the variance $v(\theta) = \int x^2 P_{\theta}(dx) - m^2(\theta)$. Since

$$\int x^2 P_{\theta}(dx) = \int \frac{x^2 - x/\theta + x/\theta}{M(\theta)(1 - \theta x)} \nu(dx) = \frac{m(\theta)}{\theta}$$

we see that the variance is

$$v(\theta) = m(\theta) \left(\frac{1}{\theta} - m(\theta)\right).$$
 (22)

Exponential families	Differential Equation	Free Exponential Families	Kernel Families
Free Exponential Families			

Let $V(m) = v(\psi(m))$ denote the variance function in parametrization of (a subset of) \mathcal{K} by the mean; clearly V is an analytic function. With $z = 1/\psi(m)$ combining (22) with (21) we get

$$\frac{m}{\nu(m)}=G_{\nu}(z).$$

Therefore, from (22) we see that

$$R_{\nu}\left(rac{m}{V(m)}
ight)=rac{1}{ heta}-rac{V(m)}{m}=m.$$

Since R_{ν} is analytic and we established (16), from the first part of proof of Theorem 15 we get (15), and from the second part we deduce that V is a variance function of the free exponential family generated by ν .

Free Exponential Families			
00000		000000000000000000	000000
Exponential families	Differential Equation	Free Exponential Families	Kernel Families

It is clear that the families $\mathcal{K}(\nu; \Theta)$ defined by (19) with $\Theta = \psi^{-1}(-\delta, \delta)$, and $\mathcal{F}(V)$ defined by (5) with the interval $(A, B) = (-\delta, \delta)$ coincide.

Exponential families	Differential Equation	Free Exponential Families	Kernel Families 00000●
Free Exponential Families			
The end ^{Thank} You			

References I

Anshelevich, M. (2003).

Free martingale polynomials.

Journal of Functional Analysis, 201:228–261. arXiv:math.CO/0112194.

Benaych-Georges, F. (2004).

Taylor expansions of R-transforms, application to supports and moments.

Technical Report DMA - 04 - 15, DMA, École normale supérieure.

math.PR/0410459; Indiana University Mathematics Journal, to appear.

References II

Bożejko, M. and Bryc, W. (2005).
 On a class of free Lévy laws related to a regression problem.
 J. Funct. Anal.
 (to appear), arxiv.org/abs/math.OA/0410601.

Bryc, W. and Ismail, M. (2005).

Approximation operators, exponential, and free exponential families.

arxiv.org/abs/math.ST/0512224.

Bryc, W. and Wesołowski, J. (2005).
 Conditional moments of *q*-Meixner processes.
 Probab. Theory Related Fields, 131:415–441.
 arxiv.org/abs/math.PR/0403016.

📕 Hiai, F. and Petz, D. (2000).

The semicircle law, free random variables and entropy, volume 77 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.

Ismail, M. E. H. and May, C. P. (1978).
 On a family of approximation operators.
 J. Math. Anal. Appl., 63(2):446–462.

Morris, C. N. (1982).

Natural exponential families with quadratic variance functions. *Ann. Statist.*, 10(1):65–80.

References IV

Nica, A. and Speicher, R. (1996).

On the multiplication of free *N*-tuples of noncommutative random variables.

Amer. J. Math., 118(4):799-837.

Saitoh, N. and Yoshida, H. (2001).
 The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory.
 Probab. Math. Statist., 21(1):159–170.

Voiculescu, D. (2000).

Lectures on free probability theory.

In Lectures on probability theory and statistics (Saint-Flour, 1998), volume 1738 of Lecture Notes in Math., pages 279–349. Springer, Berlin.

References V

Proof of Proposition 9.

Differentiating we get

$$\frac{\partial}{\partial m} w_{m,x} = \frac{\partial}{\partial m} e^{\psi(m)x - \kappa(\psi(m))}$$
$$= \psi'(m)(x - \kappa'(\psi(m))) \exp(\psi(m)x - \kappa(\psi(m))).$$

As $\kappa'(\psi(m)) = m$ and $\psi'(m) = 1/\kappa''(\psi(m)) = 1/V(m)$, (3) follows.

▲ QED

Proof of Remark ??.

To prove infinite divisibility, without loss of generality we may concentrate on fixed $W_1(m_0, dx) \in \mathcal{F}(\nu)$.

$$\mathcal{F}(\nu) = \mathcal{F}(W_1(m_0, dx))$$

For $\lambda = 1/k$ where k = 1, 2, ..., let $W_{\lambda}(m, dx), m \in (A, B)$ be the solution of (3). The variance function is $V(m)/\lambda = kV(m)$. Denote by ν the dilation of measure $W_{\lambda}(m_0, dx)$ by k. By (2), the exponential family $\mathcal{F}(\nu^{*k})$ has the same variance function V(m) as the exponential family $\mathcal{F}(W_1(m_0, dx))$. By uniqueness of parametrization by the means, $W_1(m_0, dx) = \nu^{*k}(dx)$, so infinite divisibility follows.

▲ QED