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Large Deviations by the
Asymptotic Value Method

Wlodzimierz Bryc

0. Introduction. In this paper we present an approach to large deviations which is based
on the converse to Varadhan's "asymptotic integral theorem”. We call it the asymptotic value
approach to the large deviation principle. The method puts less emphasis on rate functions
and on the underlying probability theory; in particular, "changes of measure” are not used in
our proofs.The asymptotic value approach follows a pattern analogous to the weak
convergence of measures: limits over suitable continuous functions replace lower and upper
bounds for probabilities. We need to find limits L(F) = limv_va(F) for some bounded
continuous functions F, knowing the limits L(f)zlimv__m L(f) for much simpler (e. g.
linear) functions f. An inspection of the proofs of the theorems shows that few properties of
the asymptotic value mapping f—»Z(f) are really used: without any reference to probability
theory, properties expressed by (3.1)—(3.4) below are responsible for a (non—standard)
rate function representation of the asymptotic value; to get the standard rate function
representation, we use L(fvg)=L(DVL(g) and compactness of the "state space” (or good
enough approximations by compact sets, such as the one in the conclusion of lemma L.4.1
below). This might broaden the scope of the large deviation method in applications to those
asymptotic problems, where there is no evident probabilistic representation behind the
formulas analyzed, compare e. g. van den Berg, Lewis & Pulé [3].
Throughout this paper we assume that the asymptotic value £(.) arises in a probabilistic
context, and is given by (1.3) below, We shall show that effective and useful criteria for the
large deviation principle follow naturally from the asymptotic value approach. These
theorems, when accompanied by theorem 3.1 of de Acosta [8], give short proofs of some
non—trivial large deviation principles; the lower—upper bounds pattern of proof is replaced
here by the following two steps: verification of "exponential tightness” (see the definition
below), and showing that the limit (1.3) exists for a large enough class of functions.
Some aspects of the traditional approach to large deviations were not retained in the paper.

We didn't attempt to establish criteria for large deviations "uniform with respect to a starting
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point”, or to separate conditions responsible for upper bounds from those responsible for
lower bounds. Both of those aspects of large deviations are very well understood in the
context of Markov chains, c¢. f. de Acosta [10].
Section 1 contains statements of the main results. Theorems T.1.1 and T.1.2 show that if
L{F) exists for all bounded continuous functions F, then it has a rate function representation
(1.4) or (1.9) . We also state two related criteria for the large deviation principle. Theorem
T.1.3 is our basic asymptotic value criterion; theorem T.1.4 extends results known in the
literature, see the commentary preceding corollary C.2.2, Section 2 gives applications of the
general theorems in specific situations. Several corollaries of theorems T.1.3 and T.1.4 are
stated. Examples (all well known) at the end of section 2 show how the method can be
applied and also illustrate the convenience of having several related criteria. In section 3, the
non—standard rate function representation T.1.1 is proved. Section 4 contains the proof of
T.1.2. In section §, useful auxiliary results are obtained. In section 6, the main large
deviation criteria T.1.3 and T.1.4 are proved. The method of proof is new and is based on
theorem T.1.2 .
Othier authors used variants of the asymptotic value method less explicitly or less gencrally,
see Baldi [2}, Comets [6], Dawson & Giirtner [7], Ellis [15], Giirtner [ 16], de Acosta [8], de
Acosta [9]; Kifer [17], Ney & Nummelin {19], Plachky [21], Sievers {24].

1. Notation and the main results. Let X be ‘a metric space with a metric d(x, y) and
the finitely additive Borel field B¢, . By ®¢, (X) we denote a complete metric space of all
regular finitely additive probability measures on (X, By ,) with the weak topology, P(X)
stands for all countably additive probability measurés on (X, B), where the Borel o-field B
is generated by B 4. By Cy(X) we denote a Banach space of all bounded continious
functions F: ¥R with the supremum norm. Through the paper {P"}v €9 is’a family of
probability measures, i. e. Pye P(X), ved; 4 is a fixed unbounded (and not necessarily
countable) subset of real numbers v21. To simplify the notation, we write {v21} instead of
ved,
Following Varadhan [26], we say that {Py} satisfies the large deviation principle with 4 rate
function I: X-3[0, =<}, if the following two conditions are satisfied

(LD —inf{ #{x): xeA}< lim infv__‘wo 1V log Py(A)
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foreach openset AC X;
(1.2) lim L iviog PylA) § — inf{l(x): xe A}
for each closed set AC X,
We also require J(.) to be lower semicontinuous and with compact level sets 10, a]) for
each a20. (Then X)) is determined uniquelly, see e. g. Ellis [15] Theorem IL 3. 2 or Orey
[203.)
The following definition is motivated by analogy with weak convergence of measures; the
concept occurs explicitly in Deuschel & Stroock [11] and in Lynch & Sethuraman [18] (in the
last paper under the name "large deviation tightness"); a number of authors used the same
concept less explicitly, see Azencott [1], Baldi [2], de Acosta [8] Theorem 2. 1. (i), Stroock
[25] Theorem 3. 26,
Definition. We say that {Py} is $-exponentially tight, if for each M>0 there exist a compact
set KX such that

supy eg 1V log Py(K®) <— M.
Note that exponential tightmess depends both on the topology of X and on the index set 4.
Since through this paper ¢ is fixed, we shall suppress the 9-dependence in our terminology.
Exponential tightness of probability measures on RY is usually verified using exponential
moments and the Chebyshev inequality. For probability measures on infinite dimensional
spaces, de Acosta [8] theorem 3. 1 is helpful.
Definition. We say that a family {Py}, . {.admits an asymptotic value over a class &F of
measurable functions, if
(1.3) L(F) = limv_m v loglS % exp{VF(x)} dPy(x)]

exists and is finite for each function F €,

The following theorem shows that each asymptotic value over Cb(x) has a "rate function
representation” (1.4). The proof of (1.4) uses only properties of L(.), listed in Lemma L.3.1
below:

Theorem T.L1. If & family {P\,}v21 admits an asymptotic value L(.) over Cy,(X), then

there exists a lower semicontinuous function J: ®g 5 (X)={0, o] such that
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a4 L(F)y=sup {WE)—J): pePp, (X))

and the supremum is attained: Furthermore the following variational expression holds
(1.3 J(w=sup (WE)-LEF): FeCp(X)]).

Also

(1.6) ~inf{Jlp): pe Pg, , WA)=1}< lim infv__m v log PylA)

for each open set AC X;

1)) lim sup, . 1V log Py(A) € -inf{J{p): pe Py, (H(A)=1]

for each closed set AC X,

[with the convention inf P=oe],

The following variant of T.1.1 gives a converse to Varadhan's [26] theorem 2. 2, and is the
basis of our asymptotic value approach to large deviation principles. The proof is simpler

than, and independent of, theorem T.1.1; the rate function (.} need not be convex.

Theorem T.1.2. If a family {Py}, ., admits an asymptotic value L(.) over Cy(X) and is
exponentially tight, then the large deviation principle holds with the rate function
Kxy=J(5y). In particular the following dual variational formulas hold

(1.8) (x)=sup{Fx)-L(F): FeCy(X) b

{1.9) L{F)=sup {F(x)-I(x): xeX}.

§
.

The next result is our main criterion for the large deviation principle. Its assumptions are
rather technical, but additional flexibility is gained in the choice of the family §. Corollaries in
section 2 apply this criterion to a subset § of the concave functions, with (1.10), (1.11), and
(1.13) either trivially satisfied or easily checked.

Recall that a family O of functions X—R separates points of X, if

¥x, yeX %a, be R 3 ge O such that g(x)= a and g(y)=b.

Theorem T.1.3. Let {Py} be an exponentially tight family of probability measures.
Suppose @ is a subset of the space of all continuous (not necessarily bounded) functions
X-»R, such that the following conditions are satisfied

(1.10) O separates points of X;




Large Deviations 451

(1.11) 9 contains the constant functions and is closed under finite pointwise minima, i. e. if
£1r o0 Ene 0. then g1A ... AgRED:;

(1.12) {Py] admits an asymptotic value over .

Then {Py,} satisfies the large deviation principle.

Moreover, if

(1.13) for cach ge 9 there is O<g<1 and a measurable function B such that g<gB and

(1.14) supy [y exp(VB()} dPy()]" <em,
then the rate function #(.) is given by
(1.15) Kx)=sup{g(x)—L(g): ge9}.

The following large deviation principle criterion is a non-trivial consequence of T.1.3.
Theorem T.1.4. Let {Py} be an exponentially tight family of probability measures.
Suppose there is a subset F of the space of all continuous (not necessarily bounded)
functions X-»R such that the following conditions hold.

(1.16) &F separates points of X;

(1L.17) & is lincar (i. e. closed under finite lincar combinations);

(1.18) {Py} admits an asymptotic value over &F;

(1.19) %:L((l«t)fl +tf2)n=0 exists for each f1, e,

Then {Py} satisfies the large deviation principle with a rate function K.) given by
(1.20) Ix)y=sup {f(x)~-L(f); fe F ).

Theorem T.1.1 is proved in section 3, theorem T.1.2 is proved in section 4, theorems T.1.3

and T.1.4'are proved in section 6.

2. Corollaries; In this scction we list simple but useful consequences of theorems T.1.3
and T.1.4. The following corollary of T.1.3 specifies the family $ and simplifies {1.15) for
convex rate functions. The proof is given in section 6.

Corollary C.2.1. Let 'V be a locally convex Hausdorff topological linear space with the
conjugate space W™, Suppose XC'V is a metric space in the relative topology, and ACY*
is a dense linear subspace. Define 9={g: g(x):miﬂi{xi(x)wi}, cie R, AgsA, 1€i<n, neN}.




452 Wilodzimierz Bryc

Suppose {Py} is exponentially tight and admits an asympiotic value over O

Then {Py] satisfies the large deviation principle with a rate function J(x) defined by (1.15):

If in addition suple log[f X exp{vA(x)} dPy{x)]xes for each 2e V¥ RC W is closed,
convex and J(.) defined by (1.15) is conivex, then L(A) exists for each AeW *and

@0 I(x)= sup{A(x)— L(A): Ae W *}.

Remark R.2.1. In a typical application, exponential tightness is verified with the help of de
Acosta [8] theorem 3.1, The fact that {Py} admits an asymptotic value over 9 is then verified
by showing that v»ﬂog[f X exp{vA(x)} dPy(x)] is close to some super-additive function;
the limit then exists by ¢.g. Dunford & Schwartz-[13] VIIL1.4 (c. f. our example 2 for this
type of argument).

The following corollary of T.1.4 generalizes 1o the infinite-dimensional setting Girtner {16}
leminas 1.1 -and 1..2; see also Dawson & Girtner [7] Theorem 3. 4, de Acosta {8] Theorem
2.1, Ellis [15] Theorem 1. 6. 1, Plachky {211, Sievers [24] for related resulis. The result is
especially easy to apply to sequences of probability measures obtained from ani i. d
sequence; see our example 1 below, Baldi {2}, Dawson & Géirter [7] (for an application of
C.2.4 below). The corollary is proved in section 6.

Corollary C.2.2. Let W be a locally convex Hausdorff topological linear space with the
conjugate space W *. Suppose XC W is a meric space in the relative topology and is closed
and convex. Let {Py} be an exponentially tight family of probability measures which admits
an asymptotic value L{1) for each bounded continuous functional Ae'V *. Furthermore
suppose that L(A) is Gateaux differentiable in each direction ye'W* and at each point
AeW* Then {Py} satisfies the large deviation principle with a rate function #.) defined by
(2.1).

The assumptions of the next corollary eliminate the need to consider concave functions in
(1.3) and (1.15) and avoid any explicit differentiability assumption. Similar result in the more
specific context of empirical measures and with W * replaced by a dense linear subspace of
functionals has been recently presented by Kifer [17] (c.f. our C.2.6, which was added to the
preliminary draft of this manuscript afier secing Kifer's paper).
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Corollary C.2.3. Let W be alocally convex Hausdorff topological linear space with the
conjugate space W ™. Suppose closed and convex XC'W is a metric space in the relative
topology. Let {Py} be an exponentially tight family of probability measures which admits an
asymptotic value ZL(A) over A&V *.- Also suppose ‘that (2.1) defines a strictly convex
function I(.), and that supk GL(?L)«: for some open set OcWV”® Then {Py} satisfies

the large deviation principle with the rate function 1(.}.

Proof. The assumptions guarantee that L(L) is continuous, see ¢. g. Ekeland & Temam
[14], p. 12, Proposition 2.5. To use Corollary C.2.2, it is enough to show that L(A) is
Gateaux-differentiable at each point Ae'W *. For a finite dimensional vector space W the
result is stated explicitly in Ruelle {22] p. 252. In general, the proof can be sketched as
follows. By strict convexity of 1(.), the subgradient 9L(L) is unique. Indeed, xedL(X) if
and only if LOFI(x)=A(x), see Ekeland & Temam [14], p. 21, Proposition 5. 1.
Therefore xedL(A) is & unique minimum of the strictly convex function 7(x)=-A(x).
Proposition’5. 2 of Ekeland & Temam {14}, p. 23 ends the proof of Gateaux-differentiability
of L{.) and the result now follows from Corollary C.2.2,

The following corollary of C.2.2 is essentially a variant of theorem 3. 4 of Dawson &
Giirtner [7]. We write it down here to show that it follows from C.2.2; even though the
explicit assumption of exponential tightness is absent. Similar variants with no explicit
smoothness assumptions can be deduced from C.2.3.

Corollary C.2.4. Let W be a vector space with a countable Hamel basis. Define W to be
the algebraic dual U with o (W, ¥ )-topology. Let X be a closed convex subset of W,
with the relative topology. Suppose [Py} is a family of probability measures on (X, %)
which admits an asymptotic value L(A) over all bounded continuous. functionals ‘A& V',
Furthermore suppose that Z(A) is Gateaux-differentiable at each point X'V . Then {Py)
satisfies the large deviation principle with a rate function #(x) defined by (2.1).

Proof. To apply C.2.2, we need only to verify that X is a metric space (which is actually an
inessential assumption made throughout this paper for the sake of simplification) and that
{Py} is exponentially tight. The first claim follows trivially from the fact that under our

assumptions the topology of W is metrizable, see Dunford & Schwartz [13] V. 7. 34
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Exponential tightness follows from Chebyshev's inequality and Dunford & Schwartz [13] V.
4.1 (use the assumption IL(A)les for cach fixed Ae V).

Remark R.2.2. As in Dawson & Girtner [7] theorem 3. 4(iii), the assumption that X is a
closed convex subset of W, needed in C.2.1 and consequently in corollaries C.2.2-C.24 to
get (2.1), can be replaced by what is actually used in the proof, i. e. by {x: I(x)<ee} CX.

The next three corollaries are direct -applications of C.2.1 and C.2.2 to empirical
distributions of a Z9-indexed random field. In this application X=P(IE} is a closed and
convex subset of the locally convex Hausdorff topological vector space W of all signed
measures on IE, with the topology of weak convergence. The space [E will be either a given
metric "state space” F, or its product de. The natural normalization corresponds to 9={1,
2d 3d .+}; however we shall index empirical; measures by neZ and substitute nd forv in
all other places.

Let IF be a Polish space. Suppose {Xz}zezd is an F-valued random field. Define P(F)-
valued empirical distributions

Vn‘“'dqut;n S{Xk},
where G, ={z: ISz}Sn].
Define also P(FZ).valued empirical fields
Bp=n dzki‘dn 5 Xpaicdpe Zd.
We - shall say that empirical distributions/fields are exponentially tight, if the induced
probability measures on P (IE) are exponentially tight (after re-indexation v=nd).
Corollary C.2.5. Let Cy be a dense linear subset of Cp(IF). Suppose for each k21 and
every Fy, Fg, ..., Fre Cy there exists
limn_‘}wn"dlog(E( exp(min, SiSkzz " .ang(Xz)) D=L{F, Fy, .. F)
If the empirical measures {vy} are exponentially tight, then {vy,} satisfies the large deviation
principle with a rate function Io(.): P (IF)—{[0,e¢] given by
Io(p)=sup{p(FNAPEDA .APEFK-LF], ..., Fx): F, Fy, ..., FeeCp, keN .
1f in addition Z5(.) is convex, then it can be identified by using k=1 only, Le.
(2.2) Kp)= sup{p(F)-L(F): FeCg}.
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Proof, This is essentially C.2.1 in the application-adjusted notation. (The integrability
condition for (2.1) is here superfluous, since X=P(IF) is bounded; by continuity, the
supremum in (2.2) can be taken over F&C, rather than over Fe Cy,{F), as would follow
from (2.1).)
Remark R.2.3. Convexity of I,() can be verified whenever for each p, g ®(F) and
F1,F3, .., FgeC, one can find Gy, Gy, ..., Gk, Hy, Hy, ..., HyeCy -such that
simultaneously we have 2L(Fy, .., F)2L(G1, ..., Gg)+L(Hy, ..., Hg) and
E+OEDAP+QEIA - AP+QF=2p(GDAP(CIA..AP(G=2q(HDAQ(H)A...A
p(Hy). In practical instances such G; and Hj are obtained by adding suitable constants to
functions Fj,
Corollary C.2.6. Let C, be a dense linear subset of Cy(F). Suppose for each k21 and
every Fe C, there exists

limn_mn-dlog(E{exp(Em.GnF(Xz))})==L(F).
Suppose furthermore that -é%l.(F-l—tG) exists for each F, Ge C,.
If the empirical measures {vy} are exponentially tight on P (IF), then {vy} satisfies the large
deviation principle with a rate function I(.): P(IF)—{0,] given by (2.2).
Proof. If C;=Cy,(IF), this is C.2.2 in the application adjusted notation. In the general case
the large deviation principle is proved exactly as in C.2.2; then (2.2) is established by an
argument used in the proof of (2.1), using the additional fact that our X is bounded in W -
norm. The detailed proof is omitted.

d
Corollary  C.2.7 Let C, be any dense subset of Cp(F z ). Put
d

Yf(X,z,,_,.)rE 2d€ ]Fz . Suppose for each k=1 and every Fy, Fy, ..., Fye C, there exists
limn_’wn'dlog(E{exp(minlsiskzzﬁani(Yz))}):L(F 1. F2, s FiO).

If the empirical fields {j,} are exponentially tight, then {jt5} satisfies the large deviation

d

principle with a rate function Jo(.): 1’(]17:2 )-3[0,00] given by
Es(py=sup{pFIApFDA .. APFR)-LF1, .. Fi): Fy, Fy, ., FceCo, ke N |

If in addition J,(.) is convex, then it can be identified by (2.2).

Proof. This is essentially C.2.1 in the application adjusted notation.

Remark R.2.4. In a typical application, C, consists of all those bounded continuous
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funictions F: IFZd-éR, which depend on finite number of coordinates only.

The: following examples illustrate. both-the use:of the asymptotic value method. and the
convenience of having several different criteria, We consider sums of random vectors only;
similar examples with empirical measures, or "empirical processes” could have been
presented equally easily. The first example is the large deviation principle for i. i. d. random
vectors, see Donsker & Varadhan [12] theorem 5.3; the second example gives a result that
seems. to follow via the contraction principle from known large deviation results for the
empirical measure of a- Markov chain; the third example is synthetic and shows how non-
convex rate functions can be handled by the asymptotic value method. The upper bounds in a
related to our example 3, but more general setting, have been obtained in de Acosta [8]
theorem 3. 1.

Example 1. Suppose (W, Il . ll) is a separable Banach space with the conjugate space W
Let {X;} be a sequence of W -valued i. i. d. random variables such that E{exp(aliX 1) }<ee

for each oee R. Then {(Xq+... +X)/n} satisfies the large deviation principle with

n=1, 2.

a rate function I{v)=sup J?u(v)—»log E{exp(AX))]).
eV

This follows from C€.2.2: By the independence assumption L(A)=log E{exp(A(X))}; hence
(L) exists for each Ae W * and is Gateaux-differentiable. Exponential tighmess follows
from theorem 3. 1 of de -Acosta [8].

Example 2. Suppose (W, Il. Il) is a separable Banach space with the conjugate space v,
Let {X,} be a W -valued stationary Markov chain such that E{exp(aliXll) oo for each
ae R. Let n(dx) be a distribution of Xy. Suppose that there is C<eo such that 1-step
transition probabilities T1(x, dy) satisfy

(2.3) Tl(x, A)CTI(y, A) for n®n-almost all x, y € W and all Borel sets A.

Then {(Xy+... +Xp)/n} satisfies the large deviation principle (with a convex rate

n=1,2, ..
function; below we omit the convexity argument).
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This follows from C.2.1 applied to A=V *. Inequality (2.3) implies

E{exp(f: (X, }SICE {exp(g(X ;) }1" for any semi-norm g(.), hence theorem 3, 1 of

de Acx;::a [8] guarantees exponential tightness. We shall verify that {(X{+... +X,)/n}
admits an asymptotic value over the family 9, defined in C.2.1. Fix g()e 8 and put
M=n-ess inf E, {exp(g(X1+... +X))}. By the integrability assumption each M, is finite.
Also My, 2M M, since g(.) is concave. This shows that n'llog M, has a finite limit, see
e. g. Dunford & Schwartz [13] VIIL 1. 4. It remains only to notice that by (2.3}
Mp<E{exp(g(X{+.. +X ))}SCM,, which shows that L(g) exists.

Example 3. Suppose {Xy} is an infinite [0, 1]-valued exchangeable sequence. If a tail o-

field MY (Xyys Xpi1s ) s finitely generated, then {(Xy+... -I»Xﬂ)/n}nzl satisfies the
21

large deviation principle (with, in general, a non-convex rate function).
This follows from C.2.1 applied to W =A=R and the compact set X=[0, 1]. By the de
Finetti theorem, the distribution of {Xy } is a mixture of product measures ®k1te(dxk) with a
discrete mixing measure o(d0). Take a concave continuous function ge 9. Then

n'llog E{exp(g(Xy+... +Xp)}=

- llog Sexp(g(xy+... +x,)Tg(dx1)... 7o (dx,)e(d8)—smaxgLg (),
where the maximum is taken over a finite number of values 0 supp o only, and Le(.) isan

asymptotic value corresponding to the product measure ®kste(dxk), Be supp a.

3. Proof of T.1.1. The following propertics of L{.) follow immediately from (1.3) and
the proof is omitted!.

Lemma L.3.1. If a family {P\,}V21 admits an asymptotic value L(.) over Cb(X), then
3B.1) L(F+G)/D)<LE)2+LIG)2

foreach F, G e Cy(X);

3.2 infy ¢ R [FX)-GR)ISLE}-L(G)Ssupx e g [F(X)-G(x)]

for each F, G & C(X);

(3.3) L(F+cons)=L{F)+const;

3.4) L(0)=0.

3.1) follows from Holder's inequality.
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Denote
3.5 Ly(F) = v loglS X exp {(VF(x)} dPy(x)], v=1,2, ...
Lemma L.3.2. If L{(g1), ..., L(gy) exist for some measurable functions gi(x), 1sisn,
then L{max{g1, ..., gq}) exists and
L(max{g1, ..., gn})= max{ L(g1), .... L{gn)}.
Proof. Since Lylmax{g1, ... gn})2 max{ L(g1): ... In(gn)}. we have
lim inf Ly(max{gy, ... 8a})2 max{ L(g}), ..., L(gn)}.
It remains to show that
(3.6) lim sup In{max{g1. ... 8n))Smax{ L{gy), ... L{gn)}.
Without losing generality we may assume that
max{ L(g1): ..., L(gn)}=L(g1).
Fix £>0 and let v, be such that for cach v>v,, and every 1sisn
1Mog S exp (vgi(x) }dPy(x)S L(gj)+e.
Then J exp{vg;i(x)}dPy(x)s VL@ +VEC VL(R1)HVE

Therefore Ly(max{g1, ... ga})S WV logz I exp{vg;(x)}dPy(x)<
#

1v logne "~ (gl)+V€]~+L(g;) +€ as V—ee, which proves (3.6).

Note (1o be used in the proof of T.1.3). The proof actually shows that

lim sup v._va(max(g;, ey En )=

max{ lim S“Pv___)ml'v(gl)' ooy lim supv_}ml,v(gn)}.
Proof of (1.4). Let J{.) be defined by (1.5) and fix FoeCy(X). By the definition of
JL.), we need to show that

3.7 L(Fo)= sup y; inf g {I(Fg) -HF)+LEF)},
where the supremum is taken over all je ?f.a. (X) and the infimum is taken over all
FaCp(X).

Moreover, since by (1.5) J@)2p(Fo)-L(F,) for each pe ‘Pf.a. (X), therefore
LFo)zsup y inf p {W(F) -EHLE)}.

Hence to prove (3.7), it remains to show that there is oe'&’f.a’ (X) such that

(3.3) L(Fg)<o(Fy) ~o(F)+L(F) for each FeCy(X).
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Also, for this ¢, the supremum in (1.4) will be attained.

To find 6, define the following sets of functions. Let

M= {Fe Cb(X): infy [F(x)-Fy(x)]>0]} and let T\ be a set of all finite convex combinations
of functions g(x) of the form g(x)= F(x)+ L{Fy)- L(F), where FﬁCb(X). It is easily seen
that T, and | are convex; also T is open and non-empty (e. g. 1+F,e T, ). Furthermore

n n
M, and N\, are disjoint. Indeed, take an arbitrary ‘D.ag::ké aka+L(Fo)——k§1 o, L(E)).
n n
Then infy {g(x)-Fo(x)}=infy (Y, @ F(x) -Fo®)}- Y, o LE )+ LFQ)S
k=1 k k=1 k
n n
infx{ Y, @, Fi () Fo(x)} =7 @ F )+ LFQSO,
k=1 Je=)

where the first inequality follows from (3. 1) and the second follows from (3. 2) applied to

F=1§1 aka(x) and G= F. Therefore ge 7.
Convex and open Tl can be separated from disjoint convex T\ by a linear functional, i. e.
there is 0#f" ¢ Cy,*(X) such that for some e R
(3.9 ()< a< (M),
see ¢, g. Ekeland & Temam [14] Ch. 1, section 1. 2, or Dunford & Schwartz {131 V. 2. 8.
Claim: f* is non-negative.
Indeed, it is easily seen that Fp(.) belongs to T\, and, as a limit of e+ Fy(x) as e\0, F,
belongs also to the closure of T,. Therefore by (3.9) we have a=f" (Fp). To end the proof,
take a function F with inf xF(x)>0. Then F;= F+ Foe TN and by (3.9)

*F)= £*(F;- Fo)= £*(F )~ £*(Fo)> a— f*(F)=0.
‘This ends the proof of the claim.
Without loosing generality, we may assume £(1)= 1; then it is well known, see e. g
Bergstrom [5] Ch. 2 Section 4 theorem 1, that £*(F)= o(F) for some oﬁ'pf.a. (X) (Dunford
& Schwartz [1311V. 6. 2 implies that ¢ is regular). It remains to check that ¢ satisfies (3.8).
To this end observe that since F+L(Fo)- L(F)e N\, by (3.9) we have
o(B)+ L(Fp)- L(F)$ a= o(F,) for every Fe Cb(X). This ends the proof of (1.4).

Proof of the lower and upper bounds.

For AC X and &0 denote [A}E‘:—.{x: d(x, A)ge):={x: inf ye Ad(x, y)se}. Clearly [A]6 is
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0
closed and [A] s the closure of A,
Proposition P.3.1. If a family {Py} admits an asymptotic value L{.) over Cb(X) and
J{.) is defined by (1.5), then for any measurable set ACX we have

(3.10)) ~inf(J): pe Pg, , wint(A)=1)<lim inf, __ 1v log Py(A);
(3.11) Hm supv%llvlog PV(A)Sr»«Iime\Noinf{J‘(p.): e Pf.a.’ wIAS21-e).
[with the convention inf J=zee],

Proof of (3.10). Fix an open set ACX and i, such that py(A)=1. Since W, is regular,
therefore for each M21 we may choose a closed set CpyCA such that uO(CM)zl-lsz. Let
Fyy: X-[-M, 0] be a continuous function such that Fp(x)=-M for x €A, Fp(x)= 0 for xe
Cp Then
w loglS < exp(VFp(®)} dPy(x)IS 1V logle YMP(A)+Py(A)).
Therefore
LV(FM)S /v log 2+max{-M;1/v log Py(A)].
Considering separately two cases: lim infv___)w 1 log Py(A)=-eo and
lim infv__)‘m 1V log Py(A)>—e0, we obtain
lim i“fv.qm Ivlog Py(A)2lim infy,  L(F)p.
Indeed, if im infv_m i log Py(A)=—00, then L\,(FM)QN log 2 ~ M for all large enough

00

v, so that lim infM —300 L(FM)z«—m. And if g=lim infv__m iv log Py(A)>—ee, then
LV(FM)S 17 log(2)+1/v log Py(A) for all large enough v and for each M> —q.
Therefore by (1.4)
lim infv__m 1v log Py(A)2lim infM —0aSUPRL {H(FM)»J(LL): fe @f.a, Xz
liminfy, _ (Ho(Fy)-Jliio)}.
It remains to notice that since po(FM)z—Muo(CMc)z«—IM—m, therefore
lim infM_)w{pO(FM)ﬂImo)}E«ﬁ(uo). Since pg is an arbitrary element of ¢, (X)
such that p(A)=1, this ends the proof of (1.6).
Proof of (3.11). Fix a closed set AC X and 0. Let FM: X-3[-M, 0] be a continuous
function such that Fpp(x)= ~ M for x4 [AJ€and Fpj(x)= 0 for xeA. Then
v 1og[f X exp{VFp(x)} dPy(x)]z IV log Py(A).
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Hence lim SUPL oo IvlogPy(A) <
infM lim supv___)m Iv lcg[f x 6XP {VEp(x)) de(x)]=infM L(FM).
By (1.4) we obtain lim SUp ... IviegPyA) £

infyy (supy (WFpP-J): M0, pe Pp, (X), p(AI921-¢ v
supy {I(Fy)-J0): M>0, pe P, (X), (AIS)<1-€ }} <
supy { ~J(W): pe Pg, (X), W([AID21-¢} Vv infyg supy (W(Fpp): M0, pe Py, (X),
WIAE)<1-¢€ ).
Notice that if w({AJ%)<1-¢, then H(F)PS-Me—-—o. Hence
lim sup 1A log Py(A) Ssupy { ~J): pe P, (X), WIAER21-¢€ }=
- infy {~J): pe®g, (X), plAI921-€},
which ends the proof of (3.11).
Proof of (1.7). Since ?f.a. (X) is compact and J(.) is lower semicontinuous, by the

standard subsequence argument we can pass in (3.11) to the limit as e—0.

4 Proof of T.1.2.
Lemma L.4.1. If {Py] is an exponentially tight family of probability measures, then for
each M>0 there is a compact set KCX with the following property.
If h is a measurable function such that h(x)< M and lim supv__’wb\,(h)z 0, then
lim |, _[Ly(h)- v lcngexp{vh(x)} dP\(x)] = 0.
(Recall that Ly, is defined by (3.5).)
Proof. Let K be a compact set such that sup,,1/v log Py(K9s - 2M.
Since Ly(h)=
v 1og[fKexp(vh(x)} dP(x)+ chexp{vh(x)} dPy(x)1g

ivlog 2 +1Nl0g([.f chp{vh(x)} dPy(x)1v exp(vM)Pv(Kc)),
therefore

@.n Ly(h)s
iviog 2+ Uviog[J‘Kexp{vh(x)} dPy(x)]V [M+sup,, IVlog Py(K%)}s

1vlog 2+ (-M)V lNlog[,fKexp{vh(x)} dPy(x)].

Since M>0 and lim supvm,oobv(h)zo, from (4.1) we obtain
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lim sup __Ly(h)slim sup 1NV log[fKexp{vh(x)} dPy(x).
This, together with the trivial inequality /v Iag[f Kexp {Vh(x)}dPy(x))sLy(h), ends the
proof,

Proposition P.4.1. If {Py} admits an asymptotic value L(.) over Cb(X) and I(.)
satisfies (1.9), then (1.1) holds and

“.2) lim sup v log Py(A) £ -lim inf{#(x): x& [AJE}.
Vedors FAY

[with the usual convention inf @ =ss].

Proof. (4.2) is proved in the same way, as (3.11), except that (1.9) should be used in place
of (1.4).

Proof of T.1.2.

As a trivial consequence of (1.8) we get

4.3 L{F)zsup {F(x)~I(x): xeX}.

To prove (1.9) pick a bounded continuous function F. By lemma L.4.1 there is a compact set

K such that both L(F) and L(FXK) exist and are equal; here XK denotes the indicator
function of K. By (4.3) we need only to show that
4.4) lim supv% LV(FXK)ssup {F(x)~i(x): xeK}
for each compact set KCX.
To prove (4.4) fix FreCp(X) and 0. Let s=sup {Fo(x)~I(x): xK}. By (1.8) and
(3.3), for each xeK, there is Fye Cp(X) such that F(x)-Fx(x)<s+€ and L(Fy)=0.
This means that open sets Ug={yeX: Fo(y)-Fx(y)<s+e} cover K, and we may choose a
finite covering Uy(1), ... Ux(k). Then

F(x)< max, . ngX(i)(")“"-‘*'& xeK.
By (3.2) and (3.3)

lim s N Ly(FX )ss+e+lim sup, .., Ly(max, o 4 Fx (X)X )<

s+e+l{max 1< SkFxi((:y:})::.w;-w,
because Lemma L.3.2 gives L(max1 giskFXi("»"‘g' This concludes the proof of (1.9).
Since (1.9) has been proved, by P.4.1 we need only to show that /() has compact level sets

and
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(4.5) lims\oinf{l(x): xe [AJF }=inf{I(x): xe A},

where I(.) is defined by (1.8) and A is a closed set. This is proved by the standard
subsequence argument, since, by P.4.2, sets Anf‘l[(), 4] are compact foreach A2 0 .
Proposition P.4.2. If {Py} admits an asymptotic value L(.) over Cy(X) and I() is
defined by (1.8), then the following two conditions are equivalent:

(@) {Py} is exponentially tight;

(i) #-1[0, A} is a compact set for each A>0.

Proof. Since (1.9) was proved, (1.1) follows by P.4.1 and the proof of Stroock [25]
Theorem 3. 26 gives the implication (i)=>(ii). For the implication (ii)=3(i) see Lynch &

Sethuraman [18] lemma 2. 6.

The following proposition complements T.1.1 and P.3.1.
Proposition P.4.3. If a family {Py]} of probability measures admits an asymptotic value
L() over Cy(X) and I(x)=J(8y) is defined by (1.8), then (1.1) holds and
{4.6) lim s INlog Py(K)s—~inf{I(x): xeK }
for each compact set KCX.
Proof. Inequality (1.1) is a trivial consequence of (1.6). To prove (4.6) put F=0 in (4.4) to
obtain
lim s TN INlog Py(K)=lim SUD, o Lng(F XK}S
sup {Fx)-(x): xeK]}= ~inf{I{x): xeK}.

5. Extension lemmas. The results of this section will be used to identify the rate function.
Lemma L.5.1. Suppose {Py} is tight. If f is a continuous function, then there exist a
constant M>0 such that
.1 lim _ [y®- Ly(Ev(- M)]=0.
(Recall that Ly, is defined by (3.5).)
Proof.From the tightness assumption and continuity of f it follows that there are O<p<1/2
and M>0 such that Py(x: f(x)=-M)>p. This implies that

Pulx: F02-M),, o 1(1-p).

Py(x: f(x)<-M)
Therefore for each v21
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Hf:X-Risa continuous function such that for some O<q<l
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(5.2) 18 log Py(x: fx)2— M)z v log Pylx: f(x)<— M)+ 1iv log(p/(1-p)).
Define g(x)=f(x)V (-~ M). Since f< g, therefore Ly(D)s Ly{g), which shows that
lim sup vw‘“"’“ Ly(g)1s 0. To-analyze the lower limit, observe that
(5.3) Ly(@)=1v logle~VMP(x: f(x)<~ M)*‘rfa..m exp{VE(x)) dPy(x)I<

1 log 2¢max{ — M+1/v Tog Py(f(x)<-MD); I logf&*Mexp{Vf(x)} dPy(x)}.
However, by (5.2) we have

iy logffeuMexp{vf(x)}de(x)Z»— M+ 1A log Py(f(x)2-M)2

= M+ /v log Py(f(x)<-M)+ 1v log(p/(1-p)).

and by our choice of p we have log(p/(1-p))<0. Therefore (5.3) implies
Ly(2)S Wiviog 2— Uvlog(p/(1-p)+ IV Iugf & Mcxp {vi(x)}dPy(x)s
1/v log 2 1iv log(p/(1=p )i+ L(£).

‘This shows that lim inf v%[Lv(ﬁ‘” Ly(©)}2 0 and the lemma is proved.

Lemma L.5.2. Suppose a family {Py} of probability measures admits an asymptotic value
L{.) over Cb(X) and is tight. Let B: X R be a measurable function such that (1.14) holds.

(5.4) f(x)=qB(x),
then L(f) exists. Moreover L(f) is finite and there are constants Mg, N such that Z{f)=
LIMVEHAN) for cach MSM,, and each N2N,,.
Proof. From Lemma L.5.1 it follows that for each continuous function £ there is a constant
M>0 such that if g(x)= f(x)Vv(~ M), then both L(f) and L (g) have the same lim sup and
lim inf. Therefore it is enough to show that
lim infmev(g)z Lim sup v_mlh’.\,(g).
Define H(x)=g(x)AN, where N>0 will be chosen later. Since g2H and H 'is bounded and
continuous, therefore L{H) exists and lim inf V_”)ml,\,(g) 2 L{H).
We shall show that lim supv__mbv(g) < L(H) for all large enough N. To this end observe
that
(5.5) Lylg)s v log 2+
max{IVlo gf exp{vg(x) }dPy(x); llvlogf exp{vg(x)}dPW(x)}.
ga2N g<N
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By the tightness assumption, there are 0<p<1/2 and Ny>0 such that
Py(x: g(x)<Ngp)>p. Since g2- M, this implies that for N>Ng
v logf g(chp(vg(x)}de(x)lev log[e"VMPv(gqN)]Z-—M+ INvlog p2 ~M+log p.
By Hoélder's inequality we have 5 g>Nexp{vg(x)}de(x)s
S exp{vg(x)/q}dPV(x))q(PV(gZN))l”q. Hence using Chebyshev's inequality, (5.4) and
(1.14) we obtain

ngN"""("g("” dPy(x)<

LS, exp (VB()) dPy0l? (VNS exp{vg(/q) dPy(x)1 1 ~9<

[, exp (VB(0)) dPy(oy) & VN,
Therefore

v logfgchxp{vg(x)}dPV(x)S C-N(1-q)/q,
where C= log supvzl[f X exp{VvB(x)} dP\,(x)]lN.
In particular 1/v logf gZNexp{vg(x)}dP\,(x)sm M+log p for all N large enough. This
shows that (5.5) amounts to

Ly(g)<1v log 2+ v logf gSNexp{Vg(x)} dPy(x)S1v log 2+ Ly(H),
provided that N>N,, and N>(C+M-log p)q(1-q)"\. Hence lim sup_ Ly(®) SLGD.
Proposition P.5.1. Suppose X is a metric subset of a linear space 'V with the dual W™,
If {Py} admits an asymptotic value L(.) over C,(30,.{Py] is tight and
supyl S exp(VA())dPy(x)] V< w for each Ae W *, then L(A) exists and is finite,
eV ™,
Proof. Since exp{IAI}< exp(A)+exp(-A), therefore sup\,[f chp{le?u(x)l} dPy(x)] 1N<m
for each functional Ae 'V >, and the result follows from L.5.2, applied to f(.)=A(), q=1/2
and B(x)=21Ax)L

The following result extends (1.9) to non-bounded continuous functions, compare de Acosta

[9] Lemma 6. 1.
Proposition P.5.2. If for some continuous function f the assumptions of L.5.2 are

satisfied and (1.9) holds for all Fe Cy,(X), then L(f)=supy, {f(x)-1(x)}.
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Indeed, L.5.2 shows that one can find constants M, N such that L{H))=L(MVHAN), and
the equality is not affected by decreasing M, or increasing N. Take M< L{f). By (1.9
applied to L{(MVHAN) we get

L= supxz&be{f{x)AN—I(x)}v sup {M-I(x)}. Since M< L({f) and

x:f(x)ysM
#(.)20, this means that L(f)= supy{NAL(x)- #(x)}, for each large enough N. Therefore

L= Supy Supx {NASx)-I(x)}= supg (f(x)-I(x)}.

6. Proofs of the Large Deviation Principle Criteria. We begin with the two part
proof of Theorem T.1.3: in Part A we show that the large deviation principle holds; in Part B
we identify the rate function.
Proof of Theorem T.1.3. Part A (large deviation principle). Fix a bounded
continuous function F, By T.1.2, it is enough to prove that L(F) exists. By adding a
constant, see (3.3), without loosing generality we may assume 0SF<M for some M20. Let
>0 be fixed. We shall show that
6.1) lim supV“MLV(F)S lim mfv__)va(F)»i-Ze.
Since F20, we have lim infv__)va(F)Z 0. Therefore from Lemma L.4.1 follows that we
need only to show that
6.2) lim SUP, e livlog[f chp {(VF(x) }dP({(x)]%
lim inf IV logfxexp{vF(x)}de(x) + 26,

where K is a compact set from the conclusion of Lemma L.4.1.
By the Stone-Weierstrass theorem, see e. g. Schacfer [23] p. 243, there is a finite collection
{81} 1<i<p of functions in @, such that
(6.3) sup, . KIF(X)«maxigi(x)IS&
Moreover, since 0SF(x)<M, passing to 8jAM if necessary, we may assume gj SMforall j
and we can also take g0=0‘
From (6.3) we obtain

lim supv___)mIlvlog{fKexp{vF(x)}dP‘v(x)]S

e+ lim SUP, o Ivogl S chp{v[maxigi(x)}}de(x)].

Since by Lemma L.3.2 (see the note following its proof)
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lim sup,_, _ IMlog[S"y exp(vmax;gi(x))dPy(x)]= max;L(gi(x)),
therefore
6.4 Em suprlfvxog[fKexp{vF(x)}de(x)ls e+max;L(gj(x)).
Using (6.3) once more we get

lim inf llvlog[fKexp{\rF(x)}de(x)]z

lim inf . INlog[chxp{vmaxig;(x)}dl’y(x)]—-e.
Notice that since max;L(gj(x))2 L(gg)= 0, by Lemma L 4.1

lim mfv__m1Mog[fxexp{vmaxig;(x)} dPy(x)]= max;L(g;(x))
and hence

(6.5) lim infv___)m }/vlog[f Kexp {VF(x) }dPy(x)]2 max;L{g;(x))-€.

Together (6.5) and (6.4) imply (6.2) and the large deviation principle is proved.
Proof of Theorem T.1.3. Part B (rate function identification).
Lot V@={max{g;()}: g;¢ 9, 1sisn, n21}.
T.1.2 says that the rate function I5(.) is defined by (1.8). Therefore
(6.6) Io(x)2sup (h(x)-L(h): heV 9nCip(X)}.
Claim 1, Io(x)<sup {h(x)-L(h): heV @nCr(0}.
Indeed, let F be a continuous function, 0SFSM and let >0, xgeX be fixed. Let K=KM bea
compact set from the conclusion of Lemma L.4.1, enlarged to ensure x,#K. From part I of
the proof we see that there is he V 3nCy(30), b2 0 such that
IF(x)-h(x)l<€ at each xeK;
L(F)-L(h)le.
Therefore
F(x)-L(F)sh(x)-L{h)+2¢.
Since £>0 is arbitrary, this concludes the proof of Claim 1.
Claim 2. sup {h(x)-L(h): heV 3nCp(X)}=sup{h(x)-L(h): heV 3}
Indeed, inequality "<" is trivial: To prove"2" fix xg and h=g, V... vg,eV9. FromL.52.
applied to f:=h, B(x):= max By(x) and g= max.g; [here B, and ¢; come from (1.13), applied
to each g 1<i<n], one can find numbers: M, N such that
6.7 L(hy=L{(hvM)AN).
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(Lemma L.5.2 can be applied because the large deviation principle holds)

‘We can also decrease M and increase N so that (6.7) holds and h(xy)=(h(xs) VM)AN, Then
h(xo)-L(h)=(h(x) VM) AN-L((hvM)AN)Ssup {h(x)-L(h): heV 9nCp(X)}.

Since h and x, were arbitrary, this ends the proof of Claim 2.

Claim 3. sup {h(x)-L(h): he V @ }=sup {g(x)-L(g): ge AN=I(x)).

Indeed, inequality "2" is trivial. To prove "S" observe that by (1.15) L(g)=

supy {g(x)-I(x)}. Lemma L.3.2 implies that L(maxigi)z max; sup, { gi(x)—I(x)} .

Therefore sup (h(x)-L(h): he V 3 }=sup gi{maxigi(x)—L(maxigi) 1<

supg. infy {max,g;(x)-max;g;(y)+I(y)} < I(x), where the last inequality was obtained by
i

taking y=x. This proves Claim 3.

Claims 1, 2 and 3 together with (6.6) end the proof of (1.15).

Proof of C.2.1. By the Hahn-Banach theorem, W * separates points of X, sec e. g.
Ekeland & Temam [14] Ch. 1. page 5 Corollary 1. 2. Since A is dense and linear, it separates
points of X, too, and all the assumptions of Theorem T.1.3 hold, see the proof of
Proposition P.5.1 for T.1.3 (1.13). Therefore the large deviation principle holds with a rate
function I,(.) given by (1.15). It remains to show that if X is a convex closed subset of V
and I,(.) is convex, then Io(.) is defined by (2.1).

Since for each Ae V* the assumptions of L.5.2 are satisfied (take e.g. g=1/2, B=2IA)), by
Proposition P.5.2 the large deviation principle implies L(A)=sup {A(x)~Io(x): x€X]}.
However, since X is closed and convex, (1.15) gives I5(v)=cc at each véX. Therefore
L(?L)=supv eV {A(v)-I5(v)} for every Ae W™ and the well known result on the bi-
conjugate of a convex lower semicontinuous function, see e. g. Ekeland & Temam [14] Ch.
1, gives (2.1).

Proof of T.14.

The following lemma is the main step in the proof of T.1.4.

Lemma L.6.1. Fix n21. Let measurable functions f;(x), 1<i<n, be such that
n

(i) L(f) exists and is a finite number for each linear combination f=2 osfy;
i=1

n n
(i) Z%L«I“t)fﬁg)lt:() exists for each pair of convex combinations f=2 o, g-—-z Bifi~

i=1 i=1
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Then L(min{fy, ..., fp}) exists and
(6.8) L(min{fy, ..., fy}) =inf{L( a1f1+... + 0 fp) 1 020, oy, + a,=1}.
Proof. Since ey, )—)L(a]flh.. + cxnfn) is continuous (as a convex and bounded
function), therefore the infimum on the right hand side of (6.8} is aitained. Suppose the
n n
infimum is attained at the point fy= 3, 04f; , where 20, i = 1,2, ..., n, and Y, oy=1.

51 i=l

Then f| A... Afy=EgAf;A... Afp and we need to show that
(6.9) L(fo)-—-inf (L(a0f0+alf1+..‘ +o f) 020, ¥ I, ogh. + o=l L
implies LA, A... Afp)=L{fy).
Notice that since fOAfIA”‘ Afps fo, therefore lim supv_;ooLV(fOAflA"' A< L(fo),
and to prove L(i’oAf1 A Af= L(fo) we need only to show that
6.10) lim inf\,_)ml'v(fgl\fll\--- T Ay L(fO).
To end the proof fix £>0 and let 0=/ (1+&}&(0, 1). Obviously we have
6.11) foz B(fOAfo.,. Afy) + (I"e)m”‘()skSn{ (l+e)fy-efi ).
Using the fact that each Ly(.) is non-decreasing and convex, compare L.3.1, from (6.11)
we obtain
(6.12) L\,(fo) SBLv(foAfl/\... A+ (1“9Mm“05ksn{(l+€)f0"8fk})’
This by Lemma L.3.2 implies
6.1 3)L(f0) <Olim ini’v_')ml.w(f‘oz'\f‘1 A A l-e)maxoskSnL(( L+e)fg—efy).
‘We shall deduce (6.10) from (6.13) by considering separately the following two cases.
Case 1. There is €0 such that ma"lgkgnl'((“'ﬂ)fO"ﬁfk)s L(fo).
In this case (6.13) implies L(fo) £ 6lim invav(fof\flAm Af )+ (1-8)L(fg), and (6.10)
follows, since 0>0,
Case 2. maxy g o L((1+8)fg—ef)> L(fy) for each £>0.
In this case there is an index k (1<k<n) such that
L((1+epfg-gdfi)= max, o L((1+efp-efi)=max . . L((1+e)f-¢f;)
for the infinite number of values >0, r=1, 2, ... and without losing generality we may
assume £,~>0. Then (6.13) implies
L(fa) £ Blim invav(ngflAm Al (1-0)L{(1+e)fp—e.f).
Since 8= g/(1-+€), this in tum implies that
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lim inf Lv(foz\flt\ ALty Z[LE-LL(1+e)fy-£ 501 e,
Passing to the limit as r—yee, and after taking into account the differentiability assumption, we
obtain

lim inf Lv(foAf Ao Afp) - L2
[L(fo)—-L((1+er)f0-—erfk)]/8r-8/38L((l-e)fmefk)' 020
where the last inequality follows from the assumption thatL(fG) L L{(1-e)fp+efy) for each

Ly TS

&0, see (6.9).
Proof of Theorem T.1.4, Without loosing generality we may assume that & contains me
constant functions, see (3.3). Consider

G=ATF={g g(x):fl(x)/\... /\fn(x), nzl, fjeF).
It is easy to check that Af satisfies the assumptions of Theorem T.1.3. Indeed, T.1.3. (1.13)
holds with g=2, B=2(fv0) [condition (1.14) for B is checked similarly as in the proof of
Proposition P.5.1}; T.1.3. (1.10) is assumed for F so it holds for AF, too; T.1.3. (1.12)
holds by Lemma L.6.1 ; T.1.3. (1.11) holds by the definition of AF.
Therefore by Theorem T.1.3. the large deviation principle holds with a rate function
6.14). Ly(x)=sup{g(x)-L(g): geNTF}.
Let I(.) be defined by (1.20). Since the supremum in (1.20) is taken over the smaller set,
therefore J(.)SI,(.). To prove the converse inequality, take g——nmnh;J G/\S’ By (6.8),

there are numbers 0,20, j=1,2, ... n, 2 o.=1, such that g(x)-L(g)= g(x)ﬂz.(z o).
=l

Since mm f < 2 a f therefore this implies g(x)—L(g)SE ajf)(x)-l,(z a.fj)s I(x).

Since ge 3’ was arbitrary, this ends the proof.

Proof of C.2.2. We shall show that C.2.1. can be applied. By Lemma L.6.1 L(g) is
defined for each g=f; A... Af, where fi(x)=A;(X)+cj, cje R, Aje W*, 1<i<n, neN. To
check that (1.15) defines a convex function, we use Lemma L.6.1 again, Indeed, by (6.8)
L(g)—-L(Z o, f) for some o, 20, 2 o,

Ie=1
therefore, since each () is linear, we get

(=1 Since trivially g(x)< 2 @ fi (),

n n
8OO LS (X, @ fIMM)-L(Y, o )=
k=1 k=1

.
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In n
WY, e I~ LCY, @ £) < supp{n(H- LO}SUIX)
o K k o1 K k f
for each (say discrete) measure . Since g was arbitrary, this shows J(u(x))spZ(x)), i. e.
I(.) is convex.
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