Conditional expectation with respect to dependent σ-fields

In this note we will deal with random variables (X_k), which are the conditional expectation of some random variable X with respect to σ-fields (F_k). In the case where (F_k) are independent σ-fields such random variables were characterized by Bryc and Kwapień [2] and by a similar technique part of their results was carried over to some dependent σ-fields by Bryc [3]. The asymptotic behaviour of (X_k) for Markov dependent σ-fields (F_k) was studied by Isaac [4].

Here we will concentrate on the case of two σ-fields F_1, F_2 and we will look for the conditions close to being necessary for all reasonable X_1, X_2 to be of the form $X_k = E^{F_k}(X), \ k = 1, 2$; cf. the theorem below.

We assume in the sequel that each $F_k, \ k = 1, 2$, is a P-complete σ-field. Let $G = F_1 \cap F_2$ and denote by $L^p_0(G)$ the Banach subspace of $L^p, 1 \leq p \leq \infty$, generated by F_k-measurable random variables Y such that $E^G(Y) = 0$, $k = 1, 2$ (L^p denotes the Banach space of all p-integrable random variables with the usual norm). Let us observe that the conjugated space to $L^p_0(G)$ is isometrically isomorphic to $L^p_0(G)$, where $p < \infty$, p and p' are conjugated numbers, i.e. $1/p + 1/p' = 1$ ($\infty = 1$).

First, let us observe that if there exists a random variable $X \in L^1$ such that $X_k = E^{F_k}(X), \ k = 1, 2$, then $E^G X_1 = E^G X_2$. Moreover it is possible to assume that $E^G X_k = 0, \ k = 1, 2$, since evidently the assertions

(i) $\forall \ X_k \in L^p_0(F_k), \ E^G(X_1) = E^G(X_2) \Rightarrow \exists Z \in L^p$, such that $X_k = E^{F_k}(Z), \ k = 1, 2$,

and

(ii) $\forall \ X_k \in L^p_0(F_k), \ \exists Z \in L^p$, such that $X_k = E^{F_k}(Z), \ k = 1, 2$.

Lemma 1. Let $1 \leq p < \infty$. Then the following conditions are equivalent

(A) For every $X_k \in L^p_0(F_k)$, $k = 1, 2$, there exists $Z \in L^p$ such that $X_k = E^{F_k}(Z), \ k = 1, 2$;

(B) There exists $C > 0$ such that for every $Y_k \in L^p_0(F_k)$,

$$\|Y_1\|_{p'} + \|Y_2\|_{p'} \leq C \|Y_1 + Y_2\|_{p'}.$$

Proof. We will prove the lemma only for $1 < p < \infty$. If $p = \infty$ some changes are needed in the reasoning (a conjugate version of the Banach theorem has to be used). Let $T : L^p \rightarrow L^p_0(F_1) \times L^p_0(F_2)$ be defined by $T(X) = (E^{F_1}(X), E^{F_2}(X)), k = 1, 2$. Then $T^* : L^p_0(F_1) \times L^p_0(F_2) \rightarrow L^{p'}$ is easily seen to be defined by $T^*((X_1, X_2)) = X_1 + X_2$. By the Banach theorem (see, e.g., Rudin [6], Th. 4.15) the linear operator T is "onto" if the adjoint operator

409
\(T^* \) is an isomorphic embedding, i.e. there exists a constant \(C \) such that
\[\left\| (Y_1, Y_2) \right\| \leq C \left\| T^*((Y_1, Y_2)) \right\| \]
where \(\left\| \cdot \right\| \) is any of the equivalent norms on \(L_p^0(F_2) \times L_p^0(F_2) \). Choosing \(\left\| (Y_1, Y_2) \right\| = \left\| Y_1 \right\|_p + \left\| Y_2 \right\|_p \) we conclude the proof.

Let \(\rho = \sup \{ \left\langle E(X_1, X_2) : X_2 \in L_p^0(F_2), \left\| X_2 \right\|_2 = 1, k = 1, 2 \} \). Note that \(0 \leq \rho \leq 1 \). In the case where \(G \) is the trivial \(\sigma \)-field \(\rho \) is known as the \textit{maximal correlation coefficient}. The rôle of \(\rho \) in the context of conditional expectations is partially explained by

Corollary 1. Let \(F_1, F_2 \) be \(\sigma \)-fields such that for every \(X_k \in L_p^0(F_2), k = 1, 2 \), there exists \(Z \in L_2 \) such that \(X_k = E^{F_k}(Z), k = 1, 2 \). Then \(\rho < 1 \).

Proof. On account of Lemma 1 the corollary follows from the inequality
\[\left\| X_1 + X_2 \right\|_2^2 \leq (1 - \rho) \left\langle E \left| X_1 \right|^2 + E \left| X_2 \right|^2 \right\rangle. \]

Note that since the inequality in the proof of Corollary 1 can be arbitrarily close to equality the converse implication holds, too. This will be reproved in more constructive a way in our main result

Theorem. Let \(1 < p < \infty \) and assume \(F_1, F_2 \) are such that \(\rho < 1 \). Then for every \(X_1 \in L_p^0(F_1), X_2 \in L_p^0(F_2) \) there exists \(Z \in L_p \) such that \(X_k = E^{F_k}(Z), k = 1, 2 \).

As an immediate consequence of the theorem we have

Corollary 2. If \(F_1, F_2 \) are \(\sigma \)-fields such that for every \(X_k \in L_p^0(F_k) \) there exists \(Z \in L_2 \) such that \(X_k = E^{F_k}(Z), k = 1, 2 \), then for every \(X \in L_p^0(F_2) \) there exists \(Z \in L_p \) such that \(X_k = E^{F_k}(Z), k = 1, 2 \), \(\forall 1 < p < \infty \).

For the proof of the theorem we will need one more lemma which strengthens the convergence in the "alternierende Verfahren" (Rota [5]).

Lemma 2. Let \(1 < p < \infty \), \(\rho < 1 \). If \(E^{F_k} \) is considered as a linear operator acting on \(L_p \), then \((E^{F_k})^k \to E \) as \(k \to \infty \) in the norm topology. The same holds for \(E^{F_k}F_k \).

Proof. Let \(Q = E^{F_k}F_k \). First, let us observe that if \(Q \) is considered as acting on \(L_p^0 \), then \(\left\| Q \right\| < \rho \). Indeed, \(\left\| Qf \right\|^2 = E(\left\langle E^{F_k}F_k f, E^{F_k}F_k f \right\rangle) = E(\left\langle E^{F_k} f, E^{F_k} f \right\rangle) \leq \left\| Q \right\|_2 \left\| f \right\|_2 \). Therefore \(Q \to 0 \) as \(k \to \infty \) when \(Q \) is considered as an operator acting on \(L_p^0 \), and since \(\left\| Q^k \right\|\leq \left\| Q \right\|^k \to 0 \) as \(k \to \infty \) the lemma is proved for \(\rho = 2 \).

Now, let \(1 < \rho < 2 \). Then, since \(\left\| Q^k \right\| < \rho \), \(\left\| L_{p-1} \right\| \leq 2 \), \(\left\| Q^k \right\|_{L_{p-1}} \to 0 \) as \(k \to \infty \) by the Riesz convexity theorem ([1], Th. 1.1.1.) \(\left\| Q^k \right\|_{L_{p-1}} \leq C \left\| Q^k \right\|_{L_2} \to 0 \) as \(k \to \infty \).

A similar argument with \(L_m \) instead of \(L_1 \) proves the lemma in the case \(2 < \rho < \infty \).

By symmetry the same holds for \(E^{F_k}F_k \).

Proof of the theorem. By Lemma 2 both series \(\sum_{k=0}^{\infty} (E^{F_k}F_k)^k \) and \(\sum_{k=0}^{\infty} (E^{F_k})^k \) are convergent in the operator norm, when considered as linear operators acting on the Banach space \(L_p^0 \). Indeed, \((E^{F_k}F_k)^k = (E^{F_k})^k - E \) on \(L_p^0 \), hence \(\left\| (E^{F_k}F_k)^k \right\| < 1 \) for some \(n_0 \) large and \(\left\| (E^{F_k})^k \right\| \leq \left\| (E^{F_k})^k \right\| \leq \left\| (E^{F_k})^k \right\| < 1 \).

To complete the proof it suffices now to notice that if \(X_k \in L_p^0(F_k), k = 1, 2 \), then \(X_1 = E^{F_1}(X_2) \) and \(X_2 = E^{F_2}(X_1) \) are in \(L_p^0 \). Therefore

\[
Z = \sum_{k=0}^{\infty} (E^{F_k}F_k)^k (X_1 - E^{F_k}(X_2)) + \sum_{k=0}^{\infty} (E^{F_k})^k (X_2 - E^{F_k}(X_1))
\]
is a well-defined \(\beta \)-integrable random variable. A direct computation shows that
\[E^\beta(Z) = X_n, \quad n = 1, 2. \]

Remark: During the Dragov Conference the author was convinced that the theorem holds at least for \(\beta = 1 \) without any assumptions on the dependence of \(\sigma \)-fields. This appeared not to be true. To see this let us consider the interval \([0, 1]\) with the uniform probability distribution and the following \(\sigma \)-fields: \(\mathcal{F}_2 \) is generated by a family \(I \) of intervals such that \(I = \bigcup_{n=1}^{\infty} I_n \), where

\[I_n \]

is any finite partition of \((2^{n+1}, 2^n)\) consisting of intervals of length less than \(2^{-n\beta} \); \(\mathcal{F}_1 \) is generated by a family \(J \) of intervals such that \(J = \bigcup_{n=1}^{\infty} J_n \), where \(J_n \) is a finite partition of \((2^{n+1}, 2^n)\) generated by the centers of intervals in \(I_n \) (thus the intervals in \(J_n \) are of length less than \(2^{-n\beta} \), too). Then the \(\sigma \)-field \(\mathcal{G} = \mathcal{F}_1 \cap \mathcal{F}_2 \) is generated by the intervals \((2^{n+1}, 2^n)\). To prove that there are \(\mathcal{F}_2 \)-measurable random variables \(X_n \), \(\beta = 1, 2 \), such that \(E^\beta(X_n) = E^{\beta}(X_1) \) and which cannot be of the form \(X_n = E^\beta(Z) \), \(\beta = 1, 2 \), for any integrable \(Z \), we use Lemma 1. Namely, we will show that there is no constant \(C > 0 \) such that for every \(Y \in L^2(\mathcal{F}_1), Y \in L^2(\mathcal{F}_2) \),

\[\|Y\|_1 + \|Y\|_2 < C \|Y - Y_1\|_1. \]

To this end let \(n \in N \) be fixed and define

\[Y(w) = \begin{cases} 2^{n\beta}w - 1 & \text{if } 2^{-\beta} < w < 2^n, \\ 0 & \text{otherwise.} \end{cases} \]

and

\[Y_n = E^\beta(Y), \quad n = 1, 2. \]

Then, since \(I_n \) consists of intervals of length less than \(2^{-n\beta} \) and \(Y \) is a Lipschitz function with constant \(2^n \beta \), we have \(\|Y - Y_n\|_2 < \sigma^{-1} \) and, similarly, \(\|Y - Y_n\|_1 < \sigma^{-1} \). Thus, \(\|Y - Y_2\|_2 < 2\sigma^{-1} \) and \(\|Y - Y_2\|_1 < 2\sigma^{-1} \), which contradicts (1) since \(n \) is arbitrary and \(\|Y\|_1, \|Y\|_2 \geq (n - 1)/n. \)

Acknowledgments. The author wishes to thank T. Bojdecki whose critical remark on the author's Ph. D. thesis suggested the topic of this note. Our thanks are also due to L. Blake who acquainted the author with "aleatorische Variablen," to S. Kwapień who suggested the example given in the remark above, and to R. Siger and G. Zielgans for helpful conversations during the Dragov Conference. Finally, the author thanks G. Zielgans for further comments and remarks, which in particular improved the presentation of the paper.

REFERENCES

Proceedings of the Seventh Conference on Probability Theory

August 29 – September 4, 1982
Brașov, Romania

The Conference was organized by
THE CENTRE OF MATHEMATICAL STATISTICS
OF THE NATIONAL INSTITUTE
OF METROLOGY BUCHAREST

Edited by Marius Iosifescu

with the cooperation of
Şerban Grigorescu and Tiberiu Postelnicu

EDITURA ACADEMIEI REPUBLICII SOCIALISTE ROMÂNIA
București, 1984