Weak convergence

This is based on [Billingsley, Section 25]

1. Convergence in distribution

A cumulative distribution function F can have at most a countable number of discontinuity points. In fact, the set \(\{x : F(x) - F(x^-) \geq 1/n\} \) can have at most n points. (This observation will be used in many proofs.)

Definition 9.1. Let F_n, F be cumulative distribution functions. We say that $F_n \xrightarrow{D} F$ if $F_n(x) \to F(x)$ for every point x of continuity of F.

We say that $X_n \xrightarrow{D} X$ if $F_n \xrightarrow{D} F$.

We first show how to use the definition to prove weak convergence.

Example 9.1. Suppose \(\{X_k\} \) are independent exponential. Then $\max_{1 \leq k \leq n} X_k - \ln n \xrightarrow{D} Y$ where Y has the Gumbel distribution: $P(Y \leq x) = \exp(-e^{-x})$.

Indeed, $P(\max_{1 \leq k \leq n} X_k - \ln n \leq x) = P(\max_{1 \leq k \leq n} X_k \leq x + \ln n) = P(X_1 \leq x + \ln n)^n = (1 - e^{-x \ln n})^n = (1 - e^{-x/n})^n \to e^{-e^{-x}}$

The following example illustrates that we cannot require convergence for all $x \in \mathbb{R}$.

Example 9.2. Suppose X_n are uniform $U(0, 1/n)$ with

$$F_n(x) = \begin{cases} 1 & x > 1/n \\ nx & x \in [0, 1/n] \\ 0 & x < 0 \end{cases}$$

It is clear that $X_n \to 0$ with probability one, so we expect (and can prove, see Theorem 9.2 below) that $X_n \xrightarrow{D} 0$, i.e. that $F_n(x) \to F(x) = \begin{cases} 1 & x \geq 0 \\ 0 & x < 0 \end{cases}$. And indeed, $F_n(x) = 0$ for $x < 0$ and $F_n(x) \to 1$ for $x > 0$. But note that $F_n(0) = 0$ does not converge to $F(0)$.

103
The following example illustrates that a popular interpretation of weak convergence as “approximating all probabilities” for X_n by the asymptotic probabilities for X has significant restrictions.

Example 9.3. Suppose $P(X_n = k) = 1/n$. Then $\frac{1}{n} X_n \xrightarrow{D} U(0, 1)$. Indeed, $F_n(x) = [nx + 1]/n \to x$. Note however that $P(\frac{1}{n} X_n \in V)$ may fail to converge to $\lambda(V)$ for some Borel sets $V \in \mathcal{B}$.

In view of Example 9.3, it is interesting to have a criterion where a stronger form of weak convergence holds.

Theorem 9.1 (Scheffe’s theorem). Suppose X_n has a density $f_n(x)$ with respect to a (possibly infinite, possibly discrete) measure $\nu(dx)$ on \mathbb{R}. If $f_n(x) \to f(x)$ pointwise and f is a density of a random variable X, then

$$\sup_U |P(X_n \in U) - P(X \in U)| \to 0$$

Proof. Consider $g_n = f - f_n$. Then $g_n^+ \to 0$ and $0 \leq g_n^+ \leq f$ so by the dominated convergence theorem $\int g_n^+ \nu(dx) \to 0$. Now $\int |g_n| \nu(dx) = \int_{g_n > 0} g_n \nu(dx) - \int_{g_n \leq 0} g_n \nu(dx)$. Since $\int g_n \nu(dx) = 0$ we have $\int_{g_n \leq 0} g_n \nu(dx) = -\int_{g_n > 0} g_n \nu(dx)$ so

$$\int |g_n| \nu(dx) = 2 \int g_n^+ \nu(dx) \to 0$$

Thus $|P(X_n \in U) - P(X \in U)| \leq \int_U |g_n(x)| \nu(dx) \to 0$ for any $U \in \mathcal{B}$. \qed

Example 9.4. Suppose X_n is binomial $\text{Bin}(n, p = \lambda/n)$. Then $X_n \xrightarrow{D} Y$ where Y is Poiss(λ). Indeed, the density with respect to the counting measure ν converges pointwise

$$P(X_n = k) = \binom{n}{k} p^k (1 - p)^{n-k} = \frac{n(n-1)\ldots(n-k+1) \lambda^k}{k!} \frac{1 - \lambda/n}{(1 - \lambda/n)^n} \to e^{-\lambda} \lambda^k / k!$$

Thus in this case $P(X_n \in A) \to P(Y \in A)$ for all A. For example,

$$P(X_n \text{ is even}) \to e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{2k!}$$

Similarly, as the number of degrees of freedom $d \to \infty$, the density of student T_d distribution converges to the standard normal density.

Theorem 9.2. If $X_n \xrightarrow{P} X$ then $X_n \xrightarrow{D} X$.

Proof. Let x be a point of continuity of $F(x)$. Then

$$P(X_n \leq x) = P(X_n \leq x, |X_n - X| \leq \varepsilon) + P(X_n \leq x, |X_n - X| > \varepsilon)$$

So

$$P(X_n \leq x) \leq P(X \leq x + \varepsilon) + P(|X_n - X| > \varepsilon)$$

Similarly,

$$P(X \leq x - \varepsilon) \leq P(X_n \leq x) + P(|X_n - X| > \varepsilon)$$

So

$$F(x - \varepsilon) \leq \lim \inf P(X_n \leq x) \leq \lim \sup P(X_n \leq x) \leq F(x + \varepsilon)$$

Taking the limit $\varepsilon \to 0$,

$$F(x^-) \leq \lim \inf P(X_n \leq x) \leq \lim \sup P(X_n \leq x) \leq F(x)$$
Remark 9.3. If $X_n \xrightarrow{D} a$ for a deterministic random variable a then $X_n \xrightarrow{P} a$. Indeed, $P(X_n \leq a - \varepsilon) \to 0$ and $P(X_n \leq a + \varepsilon) \to 1$ so
\[
P(|X_n - a| > \varepsilon) \leq P(X_n \leq a - \varepsilon) + 1 - P(X_n \leq a + \varepsilon) \to 0
\]

Theorem 9.4 (Slutsky’s Theorem). Suppose (X_n, Y_n) are defined on the same probability space. If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} 0$ then $X_n + Y_n \xrightarrow{D} X$

Proof. Take $y' < y''$ two continuity points of the law of X and $y' < x - \varepsilon < x < x + \varepsilon < y''$. Then
\[
P(X_n \leq y') - P(|Y_n| > \varepsilon) \leq P(X_n + Y_n \leq x) \leq P(X_n \leq y'') + P(|Y_n| > \varepsilon)
\]
So
\[
F(y') \leq \lim \inf P(X_n + Y_n \leq x) \leq \lim \sup P(X_n + Y_n \leq x) \leq F(y'')
\]
We now note that the set $\{x : F(x-) - F(x) \geq 1/n\}$ has at most n points, so the set of all discontinuities of F is at most countable. Therefore, if x is a continuity point of F we can find continuity points $y' < x < y''$ that are arbitrarily close to x. Thus taking a sequence $y' \to x$ and $y'' \to x$ of such points we get
\[
F(x) \leq \lim \inf P(X_n + Y_n \leq x) \leq \lim \sup P(X_n + Y_n \leq x) \leq F(x)
\]

The following corollary is often useful. (Its proof requires tightness!).

Corollary 9.5. Suppose (X_n, Y_n) are defined on the same probability space. If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$ then $X_nY_n \xrightarrow{D} cX$.

Proof. See Exercise 9.2

2. Fundamental results

Theorem 9.6 (Skorohod’s theorem). Suppose $X_n \xrightarrow{D} X$ i.e. $F_n \xrightarrow{D} F$. Then there exist a probability space (Ω, \mathcal{F}, P) and random variables Y_n, Y with CDF F_n, F on (Ω, \mathcal{F}, P) such that $Y_n \to Y$ for all $\omega \in \Omega$.

Proof. We choose $\Omega = (0, 1)$ with Lebesgue measure. Recalling the quantile function (4.3) we define
\[
Y_n(\omega) = \inf\{x : F_n(x) \geq \omega\}
\]
\[
Y(\omega) = \inf\{x : F(x) \geq \omega\}
\]
Recall that $Y(\omega) \leq x$ iff $F(x) \geq \omega$ so $Y(\omega) > x$ implies $F(x) < \omega$.

Given $\varepsilon > 0$ choose $Y(\omega) - \varepsilon < x < Y(\omega)$ such that $F(x-) = F(x)$.

Since $F_n(x) \to F(x) < \omega$, this implies that $F_n(x) < \omega$ for large n. Thus $Y_n(\omega) > x > Y(\omega) - \varepsilon$.

Since $\varepsilon > 0$ this shows that $\lim \inf Y_n \geq Y$.

Now choose $\omega < \omega'$ and a continuity point y of F such that $Y(\omega') < y < Y(\omega) + \varepsilon$. The first inequality then implies that $\omega < \omega' \leq F(y)$, so for large n we have $F_n(y) > \omega$. Thus $Y_n(\omega) \leq y < Y(\omega') + \varepsilon$. This shows that $\lim \sup Y_n(\omega) \leq Y(\omega)$ for all points ω of continuity of Y.

Note that Y is an increasing function so it can have at most countable number of discontinuities.
At such points we re-define $Y_n(\omega)$ to be $Y(\omega)$. This changes Y_n on the set of measure zero, so does not affect the result.

Theorem 9.7 (Portmanteau Theorem). The following conditions are equivalent:

(i) $X_n \overset{D}{\to} X$

(ii) $E(f(X_n)) \to E(f(X))$ for every bounded continuous function f

(iii) $E(f(X_n)) \to E(f(X))$ for every bounded Lipschitz (uniformly continuous) function f

(iv) $P(X_n \in U) \to P(X \in U)$ for every Borel set U such that $P(X \in \partial U) = 0$

Proof. (Omitted in 2019) (1)⇒(2) Using Theorem 9.6 we have $f(Y_n) \to f(Y)$ so by Lebesgue’s dominated convergence theorem (Theorem 6.9), the integrals converge. Note that this proof works for \mathbb{R} but not for \mathbb{R}^2, so it is of interest to have a direct proof that will not use Theorem 9.6. See [Billingsley, Theorem 29.1]

(2)⇒(3) is obvious

(3)⇒(1) Fix a point of continuity x_0 of F and let

$$f(x) = \begin{cases}
1 & x \leq x_0 \\
\text{linear} & x_0 < x < x_0 + \varepsilon \\
0 & x > x_0 + \varepsilon
\end{cases}$$

Then $F_n(x_0) \leq E(f(X_n)) \to Ef(X) \leq F(x_0 + \varepsilon)$ so $\limsup F_n(x_0) \leq F(x_0)$.

Next, take

$$f(x) = \begin{cases}
1 & x \leq x_0 - \varepsilon \\
\text{linear} & x_0 - \varepsilon < x < x_0 \\
0 & x \geq x_0
\end{cases}$$

Then $F_n(x_0) \geq E(f(X_n)) \to Ef(X) \geq F(x_0 - \varepsilon)$ Thus $\liminf F_n(x_0) \geq F(x_0)$.

(4)⇒(1) is obvious

(1)⇒(2) [Second proof] Suppose f is continuously differentiable and $f' = 0$ outside of a finite interval $[-K, K]$. Then from Fubini’s theorem we get

$$Ef(X_n) = f(0) + \int_0^K f'(t)P(X_n > t)dt - \int_{-K}^0 f'(t)P(X_n \leq t)dt$$

Since $P(X_n \leq t) \to P(X \leq t)$ except for a countable (Lebesgue-measure zero) set of t, by Lebesgue dominated convergence theorem we get $Ef(X_n) \to Ef(X)$.

\[^1f(x) = f(0) + \int_{x>0}^x f'(t)dt - \int_{x<0}^x f'(t)dt\]
As an immediate corollary, we get an important result.

Theorem 9.8 (Continuous Mapping Theorem). If \(X_n \overset{D}{\to} X \) and \(f \) is a continuous (but perhaps unbounded) function then \(f(X_n) \overset{D}{\to} f(X) \).

Example 9.5. In the setting of Example 9.3, we have \(E(f(X_n/n)) = \frac{1}{n} \sum_{k=1}^n f(k/n) \to \int_0^1 f(x) \, dx \).

Definition 9.2. A sequence of probability measures \(\mu_n \) on \(\mathbb{R} \) is tight if for every \(\varepsilon > 0 \) there exists \(K \) such that \(\mu_n([-K, K]) > 1 - \varepsilon \).

It is clear that if \(X_n \overset{D}{\to} X \) then \(X_n \) is tight.

Theorem 9.9 (Helly, Prokhorov). If \(\mu_n \) is a tight family of probability measures then there is a probability measure \(\mu \) and a subsequence \(n_k \to \infty \) such that \(\mu_{n_k} \overset{D}{\to} \mu \).

Proof. Since \(F_n(r) \) is a bounded sequence of numbers, there is a subsequence that converges. In fact, by using a diagonal method, there is a subsequence \(n_k \) such that \(F_{n_k}(r) \to G(r) \) for all \(r \in \mathbb{Q} \).

To see this, enumerate all rational numbers \(q_1, q_2, \ldots \). Since \([0, 1]\) is compact, we can choose a sequence \(n(k) = n_1(k) \) such that \(F_{n_1(k)}(q_1) \) converges to, say, \(G(q_1) \). Choose a subsequence \(n_2(k) \) of \(n_1(k) \) such that \(F_{n_2(k)}(q_1) \) converges to, say, \(G(q_1) \) and so on.

\[
\begin{array}{cccccc}
 n_1(1) & n_1(2) & n_1(3) & \cdots & \cdots & F_{n_1(k)}(q_1) \to G(q_1) \\
n_2(1) & n_2(2) & n_2(3) & \cdots & \cdots & F_{n_2(k)}(q_2) \to G(q_2) \\
n_3(1) & n_3(2) & n_3(3) & \cdots & \cdots & F_{n_3(k)}(q_3) \to G(q_3) \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
n_j(1) & n_j(2) & n_j(3) & \cdots & n_j(j) & \cdots & F_{n_j(k)}(q_j) \to G(q_j) \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\end{array}
\]

Then the diagonal subsequence \(m_k := n_k(k) \) has the property that \(F_{m_k}(q) \to G(q) \) for every \(q \in \mathbb{Q} \).

Define
\[
F(x) = \inf\{G(r) : r > x\}
\]
Note that \(F(x) = \lim_{r \downarrow x} G(r) \), so \(F \) is non-decreasing and right-continuous. By tightness, \(F(x) < \varepsilon \) if \(x < K \) and \(F(x) > 1 - \varepsilon \) if \(x > K \). Next we check that \(F \) is right-continuous:

Now we verify the weak convergence. Let \(x \) be a point of continuity of \(F \). Choose \(r_k \uparrow x \) and \(r'_k \downarrow x \).

Then

\[
F_n(r_k) \leq F_n(x) \leq F_n(r'_k)
\]

so for every \(k \) we have

\[
G(r_k) \leq \liminf F_n(x) \leq \limsup F_n(x) \leq G(r'_k)
\]

But \(G(r'_k) \to F(x) \) as \(k \to \infty \). And for any \(\varepsilon_k > 0 \) converging to 0 we have \(G(r_k) \geq F(r_k - \varepsilon_k) \to F(x) \) by continuity.

\[\square\]

Example 9.6. Suppose \(X_n \) are uniform on \((0, n)\). Then

\[
F_n(x) = \begin{cases}
0 & x < 0 \\
x/n & 0 \leq x \leq n \\
1 & x > n
\end{cases}
\]

So \(F_n(x) \to F_{\infty}(x) \) for all \(x \). Clearly \(F_{\infty}(x) \) is not a cumulative distribution function, and \(X_n \) is not a tight sequence.

We will need the following corollary.

Theorem 9.10. If \(\mu_n \) is a tight family of probability measures and if each subsequence converges to the same probability measure \(\mu \) then \(\mu_n \xrightarrow{D} \mu \).

Proof. Suppose \(\mu_n \) fails to converge to \(\mu \) with CDF \(F \). Then there is a point of continuity \(x \) of \(F \) and an infinite sequence \(n_k \) such that \(|F_{n_k}(x) - F(x)| > \delta \) for all \(k \). Since subsequence \(\mu_{n_k} \) is tight, choose a convergent subsequence. By assumption, this sequence converges to \(\mu \), so \(F_{n_{k_j}}(x) \to F(x) \), which contradicts that \(|F_{n_k}(x) - F(x)| > \delta \) for all \(k \).

\[\square\]

Recall Definition 6.3: Family \(\{X_n\} \) is uniformly integrable if for every \(\varepsilon > 0 \) there is \(K \) such that \(\int_{|X_n| > K} X_n^2 dP < \varepsilon \).

Proposition 9.11. If \(\{X_n\} \) is uniformly integrable, then \(\sup_n E|X_n| < \infty \)

Proof. (This should have been an assigned exercise!) \(E|X_n| = \int_{|X_n| \leq K} |X_n|dP + \int_{|X_n| > K} |X_n|dP < K\varepsilon + \varepsilon \).

\[\square\]

Theorem 9.12. Suppose \(X_n \xrightarrow{D} X \) and \(\{X_n\} \) is uniformly integrable. Then \(X \) is integrable and \(E(X_n) \to E(X) \).

First proof. From Theorem 9.6 there exists a sequence \(Y_n \to Y \) such that \(E(Y_n) = E(X_n) \). [For this proof, we need to know that \(|Y_n - Y| \) is uniformly integrable!] By Lebesgue’s dominated convergence theorem (See Remark 6.13), \(E(Y_n) \to E(Y) \).

\[\square\]
Second proof. The first step is to prove that X is integrable, which we will omit.\footnote{Choose bounded continuous f_K as in the main part of the proof but apply it to $|X_n|$ so that $0 \leq f_K(|X_n|) \leq |X_n|$. Then $E(|X|/|X_n|) \leq E f_K(|X_n|)$. But $Ef_K(|X|) = \lim_{n \to \infty} Ef_K(|X_n|)$. And $Ef_K(|X_n|) \leq E|X_n| \leq M$ by Proposition 9.11. So $E|X| = \lim_{n \to \infty} E(|X|/|X_n|) \leq M < \infty$.}

Given $\varepsilon > 0$ choose K such that $\int_{|X_n| > K} |X_n|dP < \varepsilon$. Since X is integrable, we can increase K to ensure that we also have $\int_{|X| > K} |X|dP < \varepsilon$.

Let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise-linear bounded continuous function such that $f(x) = x$ for $x \in [-K, K]$ and $f(x) = 0$ for $x \notin [-K - 1, K + 1]$. (Draw the graph. Note that $f = f_K$ depends on K.) By Theorem 9.7, $Ef(X_n) \to Ef(X)$. On the other hand, $X_n = f(X_n)$ for $|X_n| \leq K$ and $|f(x)| \leq |x|$ for all x, so

$$|E(X_n) - E(X)| \leq |E(X_n) - Ef(X_n)| + |E(X) - Ef(X)| + |Ef(X_n) - Ef(X)|$$

$$\leq 2 \int_{|X_n| \geq K} |X_n|dP + 2 \int_{|X| \geq K} |X|dP + |Ef(X_n) - Ef(X)|$$

$$\leq 4\varepsilon + |Ef(X_n) - Ef(X)|$$

Since $|Ef(X_n) - Ef(X)| \to 0$ this implies convergence.

The proof of the next result contains solution of (a generalization of) Exercise 6.6.

Corollary 9.13. Suppose $\sup_n E|X_n|^r$ is finite for a natural r and $\delta > 0$. If $X_n \overset{D}{\to} X$ then $E(|X|^r) < \infty$ and $E(X_n^r) \to E(X^r)$.

Proof. We verify that $|X_n|^r$ is uniformly integrable, compare Exercise 6.6.

$$\int_{|X_n| > t} |X_n|^r dP = \int_{|X_n| > t} |X_n|^r 1dP \leq \int_{|X_n| > t} |X_n|^r \frac{|X_n|^\delta}{\delta} dP \leq \frac{1}{\delta} \sup_n E|X_n|^r$$

\[\square\]

Required Exercises

Exercise 9.1. Suppose $\{X_k\}$ are independent uniform $U(0, 1)$ random variables. Show that

$$n \min_{1 \leq k \leq n} X_k \overset{D}{\to} Y$$

and determine the law of Y.

Exercise 9.2. Prove Corollary 9.5: if $X_n \overset{P}{\to} c$ for a constant c and $Y_n \overset{D}{\to} Y$, show that $X_nY_n \overset{D}{\to} cY$.

Exercise 9.3. Suppose $X_n \overset{D}{\to} X$. Show that the laws of X_n are tight.

Exercise 9.4. Suppose $X_n \in \mathbb{Z}$ and $X_n \overset{D}{\to} X$. Show that $P(X \in \mathbb{Z}) = 1$ and that $P(X_n = k) \to P(X = k)$ for every $k \in \mathbb{Z}$.

109
Exercise 9.5. Suppose X_n has density $f_n(x) = 1 + \cos(2\pi n x)$ on $[0, 1]$. Prove that $X_n \xrightarrow{D} X$ (and determine the law of X).

Exercise 9.6. Suppose $E(X_n^2) = 1$. Show that F_n is tight.

Exercise 9.7. Suppose $E(X_n^2) = 1$. Show that $\{X_n\}$ is uniformly integrable.

Exercise 9.8. Show that X is integrable if and only if for every $\varepsilon > 0$ there exists K such that $\int_{|X| > K} |X| dP < \varepsilon$. \hspace{1cm} (This is Corollary 6.12 on page 73)

Exercise 9.9. Suppose that $\sup_n E(|X_n| f(|X_n|)) < \infty$ for some non-decreasing function f such that $\lim_{x \to \infty} f(x) = \infty$. Show that $\{X_n\}$ is uniformly integrable.

Exercise 9.10. The Lévy distance between two probability measures on \mathbb{R} is defined as

$$d(F,G) = \inf\{\varepsilon > 0 : G(x - \varepsilon) - \varepsilon \leq F(x) \leq G(x + \varepsilon) + \varepsilon \text{ for all } x\}$$

(i) Verify that this is a metric3.

(ii) Verify that $F_n \xrightarrow{D} F$ iff $d(F_n, F) \to 0$

(iii) Verify that for every probability measure μ on Borel sets of \mathbb{R} there exists probability measures μ_n with finite support such that $\mu_n \xrightarrow{D} \mu$. Show further that the support can be taken from \mathbb{Q}, so that the space of distribution functions is separable in the Lévy metric.

Definition 9.3. We say that $(X_n, Y_n) \xrightarrow{D} (X,Y)$ if for every bounded continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ we have $E(f(X_n, Y_n)) \to E(f(X,Y))$.

Exercise 9.11. Suppose (X_n, Y_n) are independent and $X_n \xrightarrow{D} X, Y_n \xrightarrow{D} Y$. Prove that $(X_n, Y_n) \xrightarrow{D} \mu$ where $\mu = F_X \otimes F_Y$ is the product measure.

Exercise 9.12. Suppose $(X_n, Y_n) \xrightarrow{D} (X,Y)$. Prove that $X_n^2 + Y_n^2$ converges in distribution.

3Non-negative, triangle inequality, and $d(F,G) = 0$ only for $F = G$
Bibliography

[Gut] A. Gut, Probability: a graduate course
Index

L_1 metric, 11
L_2 metric, 11
L_p-norm, 59, 76
λ-system, 25
π-system, 25
σ-field, 16
σ-field generated by X, 41
distribution of a random variable, 42
Bernoulli random variables, 46
Binomial distribution, 17, 73
bivariate cumulative distribution function, 30
Bonferroni's correction, 18
Boole's inequality, 18
Borel σ-field, 16
Borel sigma-field, 16
Cantelli's inequality, 65
cardinality, 9
Cauchy distribution, 114
Cauchy-Schwarz inequality, 58
centered, 63
Central Limit Theorem, 117
characteristic function, 111
characteristic function – continuity theorem, 114
Characteristic functions – uniqueness, 113
Characteristic functions – inversion formula, 113
Chebyshev's inequality, 57
countable additivity, 14
covariance matrix, 130
cumulative distribution function, 26, 43
cylindrical sets, 32, 33
cylindrical sets, 32
de Moivre formula, 108
DeMorgan's law, 8
density function, 29, 74
diadic interval, 135
discrete random variable, 73
discrete random variables, 45
equal in distribution, 43
events, 13, 17
expected value, 54, 69
Exponential distribution, 74
exponential distribution, 29
Fatou's lemma, 71
field, 13
finite dimensional distributions, 32
finitely-additive probability measure, 14
Fubini's Theorem, 82
Geometric distribution, 73
Hölder's inequality, 60, 76
inclusion-exclusion, 18
independent σ-fields, 35
independent events, 35
independent identically distributed, 46
independent random variables, 44
indicator functions, 9
induced measure, 42
infinite number of tosses of a coin, 135
integrable, 69
intersection, 8
Jensen's inequality, 58
joint cumulative distribution function, 30
joint distribution of random variables, 43
Kolmogorov’s maximal inequality, 91
Kolmogorov’s one series theorem, 91
Kolmogorov’s three series theorem, 92
Kolmogorov’s two series theorem, 92
Kolmogorov’s zero-one law, 90
Kolmogorov-Smirnov metric, 10, 11
Kronecker’s Lemma, 94
Lévy distance, 106
law of \(X \), 42
Lebesgue’s dominated convergence theorem, 71, 72
Lebesgue’s dominated convergence theorem – used, 73, 89, 102, 115
Levy’s metric, 11
Levy’s theorem, 93
Lindeberg condition, 120
Lyapunov’s condition, 121
Lyapunov’s inequality, 58
marginal cumulative distribution functions, 30
Markov’s inequality, 57
maximal inequality, Etemadi’s, 95
maximal inequality, Kolmogorov’s, 91
mean square convergence, 76
measurable function, 41
measurable rectangle, 81
metric, 10
metric space, 10
Minkowski’s inequality, 59
Minkowski’s inequality, 76
moment generating function, 56, 77
moments, 55
Monotone Convergence Theorem, 69
multivariate normal, 129
multivariate normal distribution, 130
multivariate random variable, 41
negative binomial distribution, 18
normal distribution, 29
Poisson distribution, 18, 73
Polya’s distribution, 18
Portmanteau Theorem, 102
power set, 7
probability, 13
probability measure, 14
probability space, 13, 17
product measure, 82
quantile function, 44, 101
random element, 41
random variable, 41
random vector, 41
sample space, 13
Scheffe’s theorem, 100
section, 81
semi-algebra, 15
semi-ring, 15
sigma-field generated by \(A \), 16
simple random variable, 53
simple random variables, 45
Skorohod’s theorem, 101
Slutsky’s Theorem, 101
Standard normal density, 74
stochastic process with continuous trajectories, 43
stochastic processes, 42
stochastically bounded, 51
symmetric distribution, 97
tail \(\sigma \)-field, 36
Tail integration formula, 84
Taylor polynomials, 107
tight, 51
tight probability measure, 19
Tonelli’s theorem, 82
total variation metric, 11
truncation of r.v., 50
uncorrelated, 63
uniform continuous, 28
Uniform density, 74
uniform discrete, 28
uniform singular, 28
uniformly integrable, 72, 105
union, 8
variance, 56
Waserstein distance, 11
weak convergence, 49
weak law of large numbers, 63
zero-one law, 36, 90